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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!

needs macroscopic fluid properties
equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
relaxation times, ...

ab initio calculation of transport properties difficult but in principle fixed
by microscopic properties encoded in lagrangian

standard model of high energy nuclear collisions based on relativistic
dissipative fluid dynamics

ongoing experimental and theoretical effort to understand this better
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Fluid description of high energy nuclear collisions

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, 1909.10485]

Identified particle transverse momentum spectra at the LHC
7
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FIG. 3. Top: The best fit for ⇡, K, p spectra compared to the experimental data in five centrality classes in Pb–Pb collisions
at
p

sNN = 2.76 TeV. Bottom: The data to model ratios. The shaded areas correspond to what?.

A. Fitted particle spectra of ⇡, K, p

In Fig. 3 we show the momentum resolved spectra
of identified light hadrons using our best fit parameters
listed in Table II (lines) and we compare our results with
the ALICE measurement (symbols) [29]. The best fit
has �2/Ndof = 2.80, if only experimental uncertainties
are included.

Simulations are in good agreement with the experimen-
tal measurements for kaon spectra in all the centrality
classes and for pions with momenta pT > 0.5 (GeV/c).
The low-pT pions, especially in central collisions, are not
well described by the model and make a major contribu-
tion to the large �2 in the fit. [Justify the claim by com-
paring �2/Ndof with di↵erent momentum ranges.] Such
discrepancies of pion spectra with hydrodynamic calcu-
lation have been previously observed [11, 34] and are
typically attributed to the feed-down of resonance de-
cays not included in the model. However, as we can see
from the lower panels of Fig. 3, where the residual di↵er-
ence between measurements and model calculations are
shown, the measured pion spectra and the model calcu-
lations are in agreement within 3�. [S.F. does not see
this.] In addition, although the proton spectra are re-
produced reasonably well, the model calculations show
a slightly di↵erent slope with momenta compared to the
experimental measurements. This might be due to the
additional boost to higher pT, that protons receive in
the hadronic phase after the chemical freeze-out, which

is not included in our framework. The dilute hadronic
phase is usually described by the usage of hadronic cas-
cade models, like UrQMD [35] or SMASH [36], which
shift protons to higher pT, resulting in a harder spec-
trum [11, 37]. However, it is also important to mention
that within the experimental uncertainties a di↵erence
between measurements and model calculations is not sig-
nificant [How many sigmas?].

In addition to the data to model comparison of par-
tice spectra, we can compute other derived observables:
particle multiplicity and mean pT. In the top panel of
Fig. 4 we compare our results of total charged and iden-
tified particle multiplicities at mid-rapidity as a function
of collision centrality for pions, kaons, and protons with
the ALICE measurements [29]. Our calculation agrees
with the experimental data within the uncertainties and
gives a good description of the centrality dependence of
the charged hadron multiplicity. However, also in this
case we see a tension with the pion and total charged
hadron yields, especially in most central collision, which
is a clear reflection of the underestimation of the low pT

pion spectra observed in Fig. 3.

In the bottom panel of Fig. 4 we compare the mean
transverse momentum hpTi, for pions, kaons, and protons
as a function of centrality between our simulations and
the experiment [29]. While hpTi of pions and kaons agree
with the experimental measurements within the uncer-
tainties [cannot see uncertainties?], the hpTi of protons
is systematically underpredicted. This is connected to
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Entropy and information

[Claude Shannon (1948)]

consider a random variable x with probability distribution p(x)

information content or “surprise” associated with outcome x

i(x) = − ln p(x)
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Entropy at thermal equilibrium

micro canonical ensemble: maximal entropy S for given conserved
quantities E,N in given volume V

universality at equilibrium

starting point for development of thermodynamics ...

S(E,N, V ), dS =
1

T
dE − µ

T
dN +

p

T
dV

... grand canonical ensemble with density operator ...

ρ =
1

Z
e−

1
T

(H−µN)

... Matsubara formalism for quantum fields ...
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Figure 3: The thermodynamic equation of state p(T ) as parametrized in equation (5.1). We show energy

density ✏, pressure p and the trace anomaly ✏ � 3 in units of T 4 in the left panel and the squared sound

velocity c2
s(T ) in the right panel. Lattice QCD data underlying the fit at high temperatures are taken from

ref. [45] and ref. [46], the hadron resonance gas approximation used at low temperatures was calculated

following ref. [47]. In the transition region both results were smoothly connected.

The parametrization of pressure as a function of temperature is taken as the following combination of

exponential and rational functions,

p(T )
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(5.1)

Note that for asymptotically large temperatures p(T ) approaches the result for free gluons and Nf free

quarks. Below we take Nf = 3 and Tc = 154 MeV. The best fit results for the fit parameter aj , bj , c

and d are reported in table 1. The exponential terms in the prefactor in eq. (5.1) help in particular

a1 -0.752335 a2 -1.8151 a3 -2.83317 a4 4.20517 c 0.547521

b1 -1.68716 b2 7.83336 b3 -13.3421 b4 9.22752 d 0.0148163

Table 1: Best fit parameter for the thermodynamic equation of state as parametrized in equation (5.1).

to reproduce the hadron resonance gas regime while the rational term parametrizes the crossover to a

quark-guon plasma.

In the left panel of fig. 3 we show the resulting energy density ✏, pressure p and trace anomaly ✏�3p in

units of T 4 as a function of temperature. The right panel shows the square of the thermodynamic velocity of

sound c2
s as a function of temperature. The latter is particularly important for the fluid dynamic evolution

and determines for example the characteristic velocities in the absence of dissipative stresses.

To develop the fit (5.1) we have considered the trace anomaly ✏ � 3p. In fig. 4 we show our fit (solid

curve), together with available numerical data from the HotQCD collaboration [46] (for 2+1 quark flavors,

symbols with error bars), an analytic parametrization of lattice QCD data from ref. [45] (for 2 + 1 + 1

– 13 –
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Ideal fluid dynamics

thermal equilibrium

Tµν = εuµuν + p(uµuν + gµν), Nµ = nuµ, sµ = suµ

fluid velocity uµ

thermodynamic equation of state p(T, µ) with dp = sdT + ndµ

local thermal equilibrium approximation: uµ(x), T (x), µ(x)

neglect gradients: lowest order of a derivative expansion

evolution of uµ(x), T (x) and µ(x) from conservation laws

∇µTµν(x) = 0, ∇µNµ(x) = 0.

entropy current also conserved

∇µsµ(x) = 0.
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Out-of-equilibrium

is non-equilibrium dynamics also governed by information?

approach to equilibrium

universality
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Entropy in quantum theory

[John von Neumann (1932)]

S = −Tr{ρ ln ρ}

based on the quantum density operator ρ

for pure states ρ = |ψ〉〈ψ| one has S = 0

for mixed states ρ =
∑
j pj |j〉〈j| one has S = −∑j pj ln pj > 0

unitary time evolution conserves entropy

−Tr{(UρU†) ln(UρU†)} = −Tr{ρ ln ρ} → S = const.

quantum information is globally conserved
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Dissipative relativistic fluid dynamics

approximate description of quantum field dynamics

local dissipation = local entropy production

∇µsµ(x) > 0

e. g. in Navier-Stokes approximation

∇µsµ =
1

T

[
2ησµνσ

µν + ζ(∇ρuρ)2] ≥ 0

crucial difference to quantum field theory: entropy not conserved
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What is an entropy current?

can not be density of global von-Neumann entropy for closed system∫
Σ

dΣµ s
µ(x) 6= −Tr {ρ ln ρ}

kinetic theory for weakly coupled (quasi-) particles [Boltzmann (1890)]

sµ(x) = −
∫
d3p

p0
{pµf(x, p) ln f(x, p)}

molecular chaos: keep only single particle distribution f(x, p)

how to go beyond weak coupling / quasiparticles?

aim: local notion of entropy in QFT
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Entropy and entanglement

consider a split of a quantum system into two A+B

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

reduced density operator for system A

ρA = TrB{ρ}

entropy associated with subsystem A

SA = −TrA{ρA ln ρA}

pure product state ρ = ρA ⊗ ρB leads to SA = 0

pure entangled state ρ 6= ρA ⊗ ρB leads to SA > 0

SA is called entanglement entropy
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Why is entanglement interesting?

Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

|ψ〉 =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B)

=
1√
2

(| →〉A| ←〉B − | ←〉A| →〉B)

Bertlemann’s socks and the nature of reality [Bell (1980)]
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Bell’s inequalities and Bell tests

[John Stewart Bell (1966)]

most popular version [Clauser, Horne, Shimony, Holt (1969)]

S = |E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2

holds for local hidden variable theories

expectation value of product of two observables

E(a, b) = 〈A(a)B(b)〉

with possible values A = ±1, B = ±1.

depending on measurement settings a, a′ and b, b′ respectively

quantum mechanical bound is S ≤ 2
√

2

experimental values 2 < S ≤ 2
√

2 rule out local hidden variables

one measurement setting but at different times [Leggett, Garg (1985)]
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Entanglement in high energy (QCD) physics

[. . ., Elze (1996), Kovner, Lublinsky (2015), Kharzeev & Levin (2017), Berges, Floerchinger &

Venugopalan (2017), Shuryak & Zahed (2017), Kovner, Lublinsky, Serino (2018), Baker &

Kharzeev (2018), Tu, Kharzeev & Ullrich (2019), Armesto, Dominguez, Kovner, Lublinsky, Skokov

(2019), . . .]

entanglement of quantum fields instead of particles

entanglement on sub-nucleonic scales

entanglement in non-Abelian gauge theory / color / confinement

discussions in mathematical physics [e. g. Witten (2018)]

connections to black holes and holography [Ryu & Takayanagi (2006)]

thermalization in closed quantum systems
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Classical statistics

consider system of two random variables x and y

joint probability p(x, y) , joint entropy

S = −
∑
x,y

p(x, y) ln p(x, y)

reduced or marginal probability p(x) =
∑
y p(x, y)

reduced or marginal entropy

Sx = −
∑
x

p(x) ln p(x)

one can prove: joint entropy is greater than or equal to reduced entropy

S ≥ Sx

globally pure state S = 0 is also locally pure Sx = 0
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Quantum statistics

consider system with two subsystems A and B

combined state ρ , combined or full entropy

S = −Tr{ρ ln ρ}

reduced density matrix ρA = TrB{ρ}
reduced or entanglement entropy

SA = −TrA{ρA ln ρA}

for quantum systems entanglement makes a difference

S � SA

coherent information IB〉A = SA − S can be positive!

globally pure state S = 0 can be locally mixed SA > 0
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Entanglement entropy in quantum field theory

entanglement entropy of region A is a local notion of entropy

SA = −trA {ρA ln ρA} ρA = trB {ρ}

however, it is infinite already in vacuum state

SA =
const

εd−2

∫
∂A

dd−2σ
√
h + subleading divergences + finite

UV divergence proportional to entangling surface

quantum fields are very strongly entangled already in vacuum

Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all
particle states
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Relative entropy

relative entropy of two density matrices

S(ρ|σ) = tr {ρ (ln ρ− lnσ)}

measures how well state ρ can be distinguished from a model σ

Gibbs inequality: S(ρ|σ) ≥ 0

S(ρ|σ) = 0 if and only if ρ = σ

quantum generalization of Kullback-Leibler divergence
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Relative entanglement entropy

consider now reduced density matrices

ρA = TrB{ρ}, σA = TrB{σ}

define relative entanglement entropy

SA(ρ|σ) = Tr {ρA (ln ρA − lnσA)}

measures how well ρ is represented by σ locally in region A

UV divergences cancel: contains real physics information

well defined in quantum field theory [Araki (1977)]

[see also works by Casini, Myers, Lashkari, Witten, Liu, ...]
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An approximate local description

consider non-equilibrium situation with
true density matrix ρ
local equilibrium approximation

σ =
1

Z
e−

∫
dΣµ{βν(x)Tµν+α(x)Nµ}

reduced density matrices ρA = TrB{ρ} and σA = TrB{σ}
σ is very good model for ρ in region A when

SA = TrA{ρA(ln ρA − lnσA)} → 0

does not imply that globally ρ = σ
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Monotonicity of relative entropy

monotonicity of relative entropy

S(N (ρ)|N (σ)) ≤ S(ρ|σ)

with N completely positive, trace-preserving map

N unitary evolution
S(N (ρ)|N (σ)) = S(ρ|σ)

N open system evolution with generation of entanglement to environment

S(N (ρ)|N (σ)) < S(ρ|σ)
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Local form of second law

for small volume A→ 0 (hypothesis)

SA(ρ|σ) =

∫
A

dΣµs
µ(ρ|σ)

local form of second law of thermodynamics

∇µsµ(ρ|σ) ≤ 0

relative entanglement entropy between ρ and any state, in particular
thermal state σ is non-increasing
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Quantum field dynamics

new hypothesis

local dissipation = quantum entanglement generation

quantum information is spread

locally, quantum state approaches mixed state form

full loss of local quantum information = local thermalization

Quantum
field theory

Fluid 
dynamics

Information
theory
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Local equilibrium & partition function

[Floerchinger, JHEP 1609, 099 (2016)]

x

�0

x

�(x)d� d�

(a) Global thermal equilibrium (b) Local thermal equilibrium

FIG. 2. Comparison between the global thermal equilibrium (a) and local thermal equilibrium

states (b).

where aī ⌘ �e��uī, �
0
īj̄ ⌘ �īj̄ + uīuj̄, and we used g̃0̄0̄ = �Ñ2 + ÑīÑ

ī = �e2�. In this

parametrization, the square root of determinant of metric becomes
p�g̃ = Ñ

p
� = e�

p
�0.

This parametrization of the Massieu-Planck functional was discussed in Ref. [28]. Following

Ref. [28], we can easily see that this metric is invariant under the local transformation (the

Kaluza-Klein gauge transformation),
8
>>>><
>>>>:

t̃ ! t̃ + �(x̄),

x̄ ! x̄,

aī(x̄) ! aī(x̄) � @ī�(x̄),

(42)

where �(x̄) is an arbitrary function of the spatial coordinates. We note that �īj̄ nonlinearly

transforms under this transformation since �0īj̄ does not change, so that � is not gauge

invariant. This symmetry enables us to restrict possible terms that appear in the Massieu-

Planck functional [28]. For example, aī appears in the Massieu-Planck functional only

through the gauge invariant combination such as the field strength, fīj̄ ⌘ @īaj̄ � @j̄aī.

In addition to the above symmetry associated with the imaginary time translation, the

Massieu-Planck functional has the (d � 1)-dimensional spatial di↵eomorphism, x̄ ! x̄0(x̄).

This spatial di↵eomorphism invariance also restricts possible terms that could appear in the

Massieu-Planck functional. For example, �0 appears only in combination with dd�1x̄, i.e.,

dd�1x̄
p
�0 = d⌃t̄Ne��. In Sec. IV, we will write down the possible form of the Massieu-

Planck functional within the derivative expansion using these symmetric properties.

Although we only consider the neutral scalar field, the extension to a system with finite

chemical potential is straightforward: We may replace the partial derivative @⌧ with the

covariant one, D⌧ ⌘ (@⌧ � e�µ), in which the additional term e�µ = ⌫/�0 is Kaluza-Klein

11

local equilibrium with T (x) and uµ(x)

βµ(x) = uµ(x)
T (x)

represent partition function as functional integral with periodicity

φ(xµ − iβµ(x)) = ±φ(xµ)

partition function Z[J ], Schwinger functional W [J ] in Euclidean

Z[J ] = eWE [J] =

∫
Dφe−SE [φ]+

∫
x Jφ
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One-particle irreducible or quantum effective action

in Euclidean domain Γ[φ] defined by Legendre transform

ΓE [Φ] =

∫
x

Ja(x)Φa(x)−WE [J ]

with expectation values

Φa(x) =
1√
g(x)

δ

δJa(x)
WE [J ]

Euclidean field equation

δ

δΦa(x)
ΓE [Φ] =

√
g(x) Ja(x)

resembles classical equation of motion for J = 0

need analytic continuation to obtain a viable equation of motion
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Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

variational principle with effective dissipation from analytic continuation

analysis of general covariance leads to entropy current and local entropy
production

∇µsµ =
1√
g

δΓD
δΦa

∣∣∣
ret
βλ∂λΦa + βµ∇ν

(
− 2√

g

δΓD
δgµν

∣∣∣
ret

)

can likely be understood as entanglement generation
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Thermalization beyond collisions

quantum fields can be locally thermal without collisions

horizons: black holes, de-Sitter space

space-time dynamics of entanglement
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Entanglement, QCD strings and thermalization

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

hadronization in Lund string model (e. g. Pythia)

reduced density matrix for region A

ρA = TrB{ρ}

entanglement entropy

SA = −TrA{ρA ln ρA}

could this lead to thermal-like effects?
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The thermal model puzzle

elementary particle collision experiments such as e+ e− collisions show
some thermal-like features

particle multiplicities well described by thermal model500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

conventional thermalization by collisions unlikely

more thermal-like features difficult to understand in Pythia
[Fischer, Sjöstrand (2017)]

alternative explanations needed
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Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi − 1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]
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Schwinger model

QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi − 1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ− 1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
scalar mass related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Expanding string solution 1

z

t

external quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

metric ds2 = −dτ2 + τ2dη2

symmetry with respect to longitudinal boosts η → η + ∆η

31 / 40



Expanding string solution 2

Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ/
√
π must approach the U(1) charge of

the external quarks E → qe for τ → 0+

φ̄(τ)→
√
πqe

q
(τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =

√
πqe

q
J0(Mτ)
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Gaussian states

theories with quadratic action often have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA =
1

2
TrA

{
D ln(D2)

}
operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Local density matrix and temperature in expanding string

[Berges, Floerchinger, Venugopalan, Thermal excitation spectrum from entanglement in an

expanding quantum string, PLB778, 442 (2018)]

p

q

τ = const
η = const

region A

region B

z

t

Bjorken time τ =
√
t2 − z2, rapidity η = arctanh(z/t)

local density matrix thermal at early times as result of entanglement

T (τ) =
~

2πτ

Hawking-Unruh temperature in Rindler space T (x) = ~c
2πx
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Physics picture

coherent state at early time contains entangled pairs of quasi-particles
with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute
∆η → ∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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Testing the picture

explicit calculations in non-equilibrium QFT

experimental tests with high-energy collisions

explicit calculations in holography

explicit calculations in small dimensions with tensor networks

quantum simulations with universal quantum computers

quantum simulation with ultracold atoms
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Entropic uncertainty relations
Heisenberg / Robertson uncertainty relation [Robertson (1929)]

σ(X)σ(Z) ≥ 1

2
|〈ψ|[X,Z]|ψ〉|

Entropic uncertainty relations [Maassen & Uffink (1988), Frank & Lieb (2012)]

H(X) +H(Z) ≥ ln
1

c
+ S(ρ)

Shannon information entropy for measurement outcome

H(X) = −
∑
x

p(x) ln p(x)

von-Neumann entropy
S(ρ) = −Tr{ρ ln ρ}

maximal overlap between basis states

c = max
x,z
|〈x|z〉|2
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Entanglement and entropic uncertainty relations

[Berta et al. (2010)]

side information from entanglement with system B

H(XA|XB) +H(ZA|ZB) ≥ ln
1

c
+ S(A|B)

use measurement on B to infer outcome on A

quantum conditional entropy can be negative for positive coherent
information

S(A|B) = S(ρ)− S(ρB) = −IA〉B

experiments with cold atoms [with M. Gärttner and M. Oberthaler]

towards test of local dissipation = quantum entanglement generation

towards test of entanglement in horizon physics

more applications in nuclear and high energy physics to be explored
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Conclusions

new perspectives on relativistic fluids from quantum information theory

relative entanglement entropy useful to describe local thermalization

quantum field theoretic description of relativistic fluid dynamics with two
density matrices

true density matrix ρ evolves unitary
fluid model σ agrees locally but evolves non-unitary

local thermalization without collisions possible

excitations in expanding QCD strings locally thermal at early times
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