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Fluid dynamics

Bl

o long distances, long times or strong enough interactions

@ quantum fields form a fluid!
@ needs macroscopic fluid properties

e equation of state p(T, )
o shear viscosity (T, )

o bulk viscosity ¢(T, )

e relaxation times, ...

@ ab initio calculation of transport properties difficult but in principle fixed
by microscopic properties encoded in lagrangian

o standard model of high energy nuclear collisions based on relativistic
dissipative fluid dynamics

@ ongoing experimental and theoretical effort to understand this better
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Fluid description of high energy nuclear collisions

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, 1909.10485]

Identified particle transverse momentum spectra at the LHC
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Entropy and information

[Claude Shannon (1948)]
@ consider a random variable x with probability distribution p(x)

@ information content or “surprise” associated with outcome x
i(x)
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Entropy at thermal equilibrium
@ micro canonical ensemble: maximal entropy S for given conserved
quantities £, N in given volume V
o universality at equilibrium
@ starting point for development of thermodynamics ...

_1l oo n p
S(E,N,V), dS = ZdE — ZdN + ZdV

@ ... grand canonical ensemble with density operator ...
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@ ... Matsubara formalism for quantum fields ...
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Ideal flurd dynamics

thermal equilibrium

™ = eu'u” + p(u*u” + g""), N" = nu”, st = sut

fluid velocity u*

thermodynamic equation of state p(7, u) with dp = sdT + ndu
local thermal equilibrium approximation: u*(x), T'(z), u(z)
neglect gradients: lowest order of a derivative expansion

evolution of u*(z), T'(z) and u(x) from conservation laws
V.T" (z) =0, V.N¥(z) = 0.
entropy current also conserved

Vst (xz) = 0.
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Out-of-equilibrium

@ is non-equilibrium dynamics also governed by information?
@ approach to equilibrium

@ universality
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Entropy in quantum theory

[John von Neumann (1932)]
S=—-Tr{plnp}

@ based on the quantum density operator p
o for pure states p = |¢)(¢)| one has S =0
for mixed states p = 3. p;|j)(j| one has S = —3 . pjlnp; >0

@ unitary time evolution conserves entropy

—T{(UpUN In(UpU")} = —Tr{pIn p} - S = const.

@ quantum information is globally conserved
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Dissipative relativistic fluid dynamics

@ approximate description of quantum field dynamics
@ local dissipation = local entropy production

Vst (xz) >0

@ e. g. in Navier-Stokes approximation

1
Vst = T [2no o™ + C(Vpup)Q] >0

o crucial difference to quantum field theory: entropy not conserved
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What is an entropy current?

can not be density of global von-Neumann entropy for closed system

[ a2 @) # ~Te(ptnp)

kinetic theory for weakly coupled (quasi-) particles [Boltzmann (1890)]

() = — / ‘fDTp (0" f(z,p) In f(z, p)}

molecular chaos: keep only single particle distribution f(z,p)

how to go beyond weak coupling / quasiparticles?

@ aim: local notion of entropy in QFT
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Entropy and entanglement

@ consider a split of a quantum system into two A + B

==

B A B

o reduced density operator for system A

pa = Tra{p}

@ entropy associated with subsystem A

Sa=—-Tra{palnpa}

@ pure product state p = pa ® pp leads to S4 =0
e pure entangled state p # pa ® pp leads to Sa4 > 0

@ S, is called entanglement entropy
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Why is entanglement interesting?

o Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

1
K0) :E (IMaldys—=14alte)
:% (| =)l <5 = | <al =)5)

@ Bertlemann's socks and the nature of reality [Bell (1980)]
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Bell’s inequalities and Bell tests

[John Stewart Bell (1966)]

@ most popular version [Clauser, Horne, Shimony, Holt (1969)]
S =|E(a,b) — E(a,b') + E(a’,b) + E(a’,b")| <2

holds for local hidden variable theories

@ expectation value of product of two observables
E(a,b) = (A(a)B(b))

with possible values A = +1, B = +1.
o depending on measurement settings a, a’ and b, b’ respectively
e quantum mechanical bound is S < 2v/2
o experimental values 2 < S < 21/2 rule out local hidden variables

@ one measurement setting but at different times [Leggett, Garg (1985)]
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Entanglement in high energy (QCD) physics

[..., Elze (1996), Kovner, Lublinsky (2015), Kharzeev & Levin (2017), Berges, Floerchinger &
Venugopalan (2017), Shuryak & Zahed (2017), Kovner, Lublinsky, Serino (2018), Baker &
Kharzeev (2018), Tu, Kharzeev & Ullrich (2019), Armesto, Dominguez, Kovner, Lublinsky, Skokov
(2019), .. ]

@ entanglement of quantum fields instead of particles

@ entanglement on sub-nucleonic scales

@ entanglement in non-Abelian gauge theory / color / confinement
o discussions in mathematical physics [e. g. Witten (2018)]

@ connections to black holes and holography [Ryu & Takayanagi (2006)]

@ thermalization in closed quantum systems
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Classical statistics

consider system of two random variables x and y

joint probability p(z,y) , joint entropy

S=- plz,y)np(z,y)

z,y

reduced or marginal probability p(z) =3, p(,y)

reduced or marginal entropy

@ one can prove: joint entropy is greater than or equal to reduced entropy

S>8:

globally pure state S = 0 is also locally pure S; =0
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Quantum statistics

@ consider system with two subsystems A and B

@ combined state p , combined or full entropy

S =—-Tr{pnp}

o reduced density matrix pa = Tre{p}

o reduced or entanglement entropy

SA = —TrA{pA lnpA}

e for quantum systems entanglement makes a difference

S # Sa

@ coherent information Ipy4 = Sa — S can be positive!

o globally pure state S = 0 can be locally mixed S4 > 0
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Entanglement entropy in quantum field theory

entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa =trp{p}

@ however, it is infinite already in vacuum state

. - o -
g, = Sons / d*26vh + subleading divergences + finite
9A

ed—2

UV divergence proportional to entangling surface
@ quantum fields are very strongly entangled already in vacuum

@ Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all
particle states
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Relative entropy

o relative entropy of two density matrices

S(plo) =tr{p(Inp—Ino)}

@ measures how well state p can be distinguished from a model o
o Gibbs inequality: S(plo) >0
S(plo) =0ifand only if p =0

@ quantum generalization of Kullback-Leibler divergence
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Relative entanglement entropy

@ consider now reduced density matrices

pA:TI’B{p}7 O’AITI‘B{O'}

o define relative entanglement entropy

Sa(plo) =Tr{pa(Inpa —Inoa)}

o measures how well p is represented by o locally in region A
o UV divergences cancel: contains real physics information

o well defined in quantum field theory [Araki (1977)]
[see also works by Casini, Myers, Lashkari, Witten, Liu, ...]
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An approximate local description

@ consider non-equilibrium situation with
o true density matrix p
o local equilibrium approximation

o= %e— J A2 B (@) THY +a() N}

reduced density matrices pa = Tre{p} and o4 = Tre{c}

@ o is very good model for p in region A when

Sa = TrA{pA(lnpA — anA)} —0

@ does not imply that globally p = o
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Momnotonicity of relative entropy

@ monotonicity of relative entropy
SN (pIN () < S(plo)

with A completely positive, trace-preserving map

o AN unitary evolution

SWN(p)IN(0)) = S(plo)

o N open system evolution with generation of entanglement to environment

SWN(p)IN(0)) < S(plo)
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Local form of second law

o for small volume A — 0 (hypothesis)

Salple) = [ a2, olo)

@ local form of second law of thermodynamics

V5" (plo) < 0

o relative entanglement entropy between p and any state, in particular
thermal state o is non-increasing

21/40



Quantum field dynamics

new hypothesis

local dissipation = quantum entanglement generation

@ quantum information is spread

locally, quantum state approaches mixed state form

o full loss of local quantum information = local thermalization

Quantum
field theory

Fluid Information
dynamics theory
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Local equilibrium € partition function

[Floerchinger, JHEP 1609, 099 (2016)]

(a) Global thermal equilibrium (b) Local thermal equilibrium
E (IT ‘ IH.
x xr

o local equilibrium with T'(z) and u*(x)

u“ xT
ﬁu(x) = T((x)>

5
&

@ represent partition function as functional integral with periodicity
o(a" —if" (a)) = +o(a")
@ partition function Z[J], Schwinger functional W[J] in Euclidean

2] = "Bl = /D¢e—sE[¢]+J; iz
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One-particle irreducible or quantum effective action

@ in Euclidean domain I'[¢] defined by Legendre transform
Ip[®] = / Ja(2)®a(z) — WalJ]

with expectation values
By (z) = ﬁ%@)mm

o Euclidean field equation
55 T 1% = Va(@) (@)

resembles classical equation of motion for J =0

@ need analytic continuation to obtain a viable equation of motion
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Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

@ variational principle with effective dissipation from analytic continuation
@ analysis of general covariance leads to entropy current and local entropy
production
. 1 d0p
ret

2 or
us == oT'p
\/§ 6q)a ret

_% 0w

ﬂ/\a)\¢a + BHVV (

@ can likely be understood as entanglement generation
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Thermalization beyond collisions

@ quantum fields can be locally thermal without collisions
@ horizons: black holes, de-Sitter space

@ space-time dynamics of entanglement
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Entanglement, QCD strings and thermalization

—
==

B A B

hadronization in Lund string model (e. g. PYTHIA)

o reduced density matrix for region A

pa = Tre{p}

entanglement entropy

Sa=—-Tra{palnpa}

could this lead to thermal-like effects?
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The thermal model puzzle

@ elementary particle collision experiments such as e

+

some thermal-like features

@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely

@ more thermal-like features difficult to understand in PyTHIA

[Fischer, Sjéstrand (2017)]

@ alternative explanations needed
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Microscopic model

QCD in 141 dimensions described by 't Hooft model

) , _ 1 )
¥ = —d)i’yu(au — ZgAu)wi — mﬂ/}z’lﬁl — §trF,“,FH

o fermionic fields ¢; with sums over flavor species i = 1,..., Ny
o SU(N.) gauge fields A, with field strength tensor F,,,

@ gluons are not dynamical in two dimensions

@ gauge coupling g has dimension of mass

@ non-trivial, interacting theory, cannot be solved exactly

@ spectrum of excitations known for N. — oo with g2 N, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 141 dimension
_ , _ 1 5
¥ = —’(/)i’)/ﬂ(au — quH)z/)i — mz’i/)ﬂ/h — 1 FHVF”
@ geometric confinement

o U(1) charge related to string tension ¢ = v/20

o for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

1 1
S = /d%\/g{ - §g“ DDy — §M2¢2

maqe”
I s (2\/E¢+9)}

@ Schwinger bosons are dipoles ¢ ~ )

@ scalar mass related to U(1) charge by M = q/\/7 = /20 /7
@ massless Schwinger model m = 0 leads to free bosonic theory
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Ezxpanding string solution 1

external quark-anti-quark pair on trajectories z = +t¢
e coordinates: Bjorken time 7 = v/t? — 22, rapidity = arctanh(z/t)
o metric ds? = —dr? + 7%dn?

@ symmetry with respect to longitudinal boosts n — 1 + An
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Ezpanding string solution 2
@ Schwinger boson field depends only on 7
¢ =o(7)
@ equation of motion

1. - _
2p + ~0rd+ M?¢ =0.

o Gauss law: electric field £ = q¢//7 must approach the U(1) charge of
the external quarks £ — ¢ for 7 — 04

- ™
O
@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = Y8 gy a7)
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Gaussian states

o theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

d(x) = ($()), 7(x) = (r(x))

and connected two-point correlation functions, e. g.

(B(2)8®))e = ($(2)(y)) — d(2)$(y)

o if p is Gaussian, also reduced density matrix pa is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA = %TI’A {Dln(DQ)}

@ operator trace over region A only
@ matrix of correlation functions

C(—ib@r@))e  iB@)d))e
Di@,y) = (—i<w<x>w<y>>c i<w<x>¢<y>>c)

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy S
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Local density matriz and temperature in expanding string

[Berges, Floerchinger, Venugopalan, Thermal excitation spectrum from entanglement in an
expanding quantum string, PLB778, 442 (2018)]

—— 1=const
————— n = const
----- region A

region B

z

o Bjorken time 7 = /12 — 22, rapidity = arctanh(z/t)
o local density matrix thermal at early times as result of entanglement

h
T(t)=—
(7) 27T
o Hawking-Unruh temperature in Rindler space T'(z) = 7=
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Physics picture

@ coherent state at early time contains entangled pairs of quasi-particles
with opposite wave numbers

@ on finite rapidity interval (—An/2,An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits An — oo and M7 — 0 do not commute

e An — oo for any finite Mt gives pure state
o Mt — 0 for any finite A7 gives thermal state with T' = 1/(277)
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Testing the picture

o explicit calculations in non-equilibrium QFT

@ experimental tests with high-energy collisions

@ explicit calculations in holography

e explicit calculations in small dimensions with tensor networks
@ quantum simulations with universal quantum computers

@ quantum simulation with ultracold atoms
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Entropic uncertainty relations
Heisenberg / Robertson uncertainty relation [Robertson (1929)]

1
a(X)o(2) = S [(WIIX, Z]I¥)|
Entropic uncertainty relations [Maassen & Uffink (1988), Frank & Lieb (2012)]

H(X) + H(Z) > ln% +S(p)

@ Shannon information entropy for measurement outcome

Zp ) Inp(z

@ von-Neumann entropy
S(p) = =Tr{plnp}

@ maximal overlap between basis states
¢ = max |(z]2)|*
z

Z,
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Entanglement and entropic uncertainty relations

[Berta et al. (2010)]

side information from entanglement with system B

1
H(Xa|X5) + H(Za|Z5) 2 In - + S(A|B)

use measurement on B to infer outcome on A

quantum conditional entropy can be negative for positive coherent
information

S(AIB) = S(p) = S(pB) = —ILays

experiments with cold atoms [with M. Girttner and M. Oberthaler]
towards test of local dissipation = quantum entanglement generation
towards test of entanglement in horizon physics

more applications in nuclear and high energy physics to be explored
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Conclusions

@ new perspectives on relativistic fluids from quantum information theory

o relative entanglement entropy useful to describe local thermalization

@ quantum field theoretic description of relativistic fluid dynamics with two
density matrices

e true density matrix p evolves unitary
o fluid model o agrees locally but evolves non-unitary

@ local thermalization without collisions possible

@ excitations in expanding QCD strings locally thermal at early times
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