Gluon TMDs in the small-x limit

Tom van Daal

Collaborators: D. Boer, S. Cotogno, P.J. Mulders, A. Signori, Y. Zhou

Outline

- Introduction
- Gluon TMDs for various target polarizations
- Gluon TMDs in the small-x limit
- Conclusion

What is a TMD?

- A hadron correlator is parametrized in terms of transverse momentum dependent (TMD) parton distribution functions [PDFs), also called TMDs.
- A TMD is a density function in the longitudinal momentum fraction x and the transverse momentum \boldsymbol{k}_{T}, encoding the 3D internal structure of hadrons.

parton momentum:
$k^{\mu}=x P^{\mu}+k_{T}^{\mu}+\sigma n^{\mu}$

Vector and tensor polarized targets

Density matrix for spin-1 targets:

Parametrizing TMD distribution correlators

extracted parton

		quark	gluon
	unpolarized	\checkmark	\checkmark
	vector polarized	\checkmark	\checkmark
	tensor polarized	\checkmark	X

[Tangerman, Mulders 1994; Boer, Mulders 1997;
Bacchetta, Mulders 2000; Mulders, Rodrigues 2001]

The gluon-gluon TMD correlator

- Parametrization in terms of Lorentz structures
- Respecting hermiticity and invariance under parity
- T-odd functions are allowed

The gluon-gluon TMD correlator

selecting leading contributions with n

- Parametrization in terms of Lorentz structures
- Respecting hermiticity and invariance under parity
- T-odd functions are allowed
gluon pol.

	Gluons	$-g_{T}^{i j}$	$i \epsilon_{T}^{i j}$	$k_{T}^{i}, k_{T}^{i j}$, etc.
	U	f_{1}		h_{1}^{\perp}
	L		g_{1}	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$
	LL	$f_{1 L L}$		$h_{1 L L}^{\perp}$
	LT	$f_{1 L T}$	$g_{1 L T}$	$h_{1 L T}, h_{1 L T}^{\perp}$
	TT	$f_{1 T T}$	$g_{1 T T}$	$\mathbf{h}_{\mathbf{1 T T}}, h_{1 T T}^{\perp}, h_{1 T T}^{\perp}$

Definite rank gluon TMDs

Lorentz expansion in terms of (leading twist) definite rank gluon TMDs:

$$
\left.\begin{array}{rl}
\Gamma_{U}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2} & {\left[-g_{T}^{i j} f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]} \\
\Gamma_{L}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[i \epsilon_{T}^{i j} S_{L} g_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{\epsilon_{T}\{i}{} k_{T}^{j\} \alpha} S_{L}\right. \\
2 M^{2}
\end{array} h_{1 L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right], \quad \begin{aligned}
\Gamma_{T}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2} & {\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right.} \\
& \left.-\frac{\epsilon_{T}^{k_{T}\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j j \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]
\end{aligned}
$$

$$
\Gamma_{L L}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-g_{T}^{i j} S_{L L} f_{1 L L}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j} S_{L L}}{M^{2}} h_{1 L L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right],
$$

$$
\Gamma_{L T}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{L T}}{M} f_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \epsilon_{T}^{S_{L T} k_{T}}}{M} g_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right.
$$

$$
\left.+\frac{S_{L T}^{\{i} k_{T}^{j\}}}{M} h_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j \alpha} S_{L T \alpha}}{M^{3}} h_{1 L T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]
$$

$$
\begin{aligned}
& \Gamma_{T T}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} k_{T}^{\alpha \beta} S_{T T \alpha \beta}}{M^{2}} f_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \epsilon_{T \gamma}^{\beta} k_{T}^{\gamma \alpha} S_{T T \alpha \beta}}{M^{2}} g_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. \\
&\left.+S_{T T}^{i j} h_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{S_{T T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} h_{1 T T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j \alpha \beta} S_{T T \alpha \beta}}{M^{4}} h_{1 T T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]
\end{aligned}
$$

Constant tensors:

- $\left.g_{T}^{\mu \nu} \equiv g^{\mu \nu}-P^{\{\mu} n^{\nu}\right\}$
- $\epsilon_{T}^{\mu \nu} \equiv \epsilon^{P n \mu \nu}$

Symmetric traceless tensors:

$$
\begin{aligned}
k_{T}^{i j} & \equiv k_{T}^{i} k_{T}^{j}+\frac{1}{2} \boldsymbol{k}_{T}^{2} g_{T}^{i j}, \\
k_{T}^{i j k} & \equiv k_{T}^{i} k_{T}^{j} k_{T}^{k}+\frac{1}{4} \boldsymbol{k}_{T}^{2}\left(g_{T}^{i j} k_{T}^{k}+g_{T}^{i k} k_{T}^{j}+g_{T}^{j k} k_{T}^{i}\right)
\end{aligned}
$$

... only 2 independent components:

$$
k_{T}^{i_{1} \ldots i_{n}} \quad \longleftrightarrow \quad\left|\boldsymbol{k}_{T}\right|^{n} e^{i n \varphi}
$$

Advantage of definite rank TMDs:

- One-to-one mapping between TMDs in $\boldsymbol{k}_{\mathrm{T}}$ and $\boldsymbol{b}_{\mathrm{T}}$ space [relevant for evolution)

Definite rank gluon TMDs

Lorentz expansion in terms of (leading twist) definite rank gluon TMDs:

$$
\begin{aligned}
& \Gamma_{U}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-g_{T}^{i j} f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \\
& \Gamma_{L}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[i \epsilon_{T}^{i j} S_{L} g_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{\epsilon_{T}^{\{i} k_{T}^{j\} \alpha} S_{L}}{2 M^{2}} h_{1 L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \\
& \Gamma_{T}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. \\
&\left.-\frac{\epsilon_{T}^{k_{T}\left\{{ }^{2}\right.} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)-\frac{\epsilon_{T}^{\{i} k^{j} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]
\end{aligned}
$$

$$
\Gamma_{L L}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-g_{T}^{i j} S_{L L} f_{1 L L}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j} S_{L L}}{M^{2}} h_{1 L L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right],
$$

$$
\Gamma_{L T}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{L T}}{M} f_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \epsilon_{T}^{S_{L T} k_{T}}}{M} g_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right.
$$

$$
\left.+\frac{S_{L T}^{\{i} k_{T}^{j\}}}{M} h_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j \alpha} S_{L T \alpha}}{M^{3}} h_{1 L T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]
$$

$\Gamma_{T T}^{i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} k_{T}^{\alpha \beta} S_{T T} \alpha \beta}{M^{2} \underline{1}} f_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \epsilon_{T \gamma}^{\beta} k_{T}^{\gamma \alpha} S_{T T \alpha \beta}}{M^{2}} g_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right.$

$$
\left.+S_{T T}^{i j} h_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{S_{T T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} h_{1 T T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j \alpha \beta} S_{T T \alpha \beta}}{M^{4}} h_{1 T T}^{\perp \perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right]
$$

Constant tensors:

- $\left.\quad g_{T}^{\mu \nu} \equiv g^{\mu \nu}-P^{\{\mu} n^{\nu}\right\}$
- $\epsilon_{T}^{\mu \nu} \equiv \epsilon^{P n \mu \nu}$

Symmetric traceless tensors:

$$
\begin{aligned}
k_{T}^{i j} & \equiv k_{T}^{i} k_{T}^{j}+\frac{1}{2} \boldsymbol{k}_{T}^{2} g_{T}^{i j}, \\
k_{T}^{i j k} & \equiv k_{T}^{i} k_{T}^{j} k_{T}^{k}+\frac{1}{4} \boldsymbol{k}_{T}^{2}\left(g_{T}^{i j} k_{T}^{k}+g_{T}^{i k} k_{T}^{j}+g_{T}^{j k} k_{T}^{i}\right)
\end{aligned}
$$

... only 2 independent components:

$$
k_{T}^{i_{1} \ldots i_{n}} \quad \longleftrightarrow \quad\left|\boldsymbol{k}_{T}\right|^{n} e^{i n \varphi}
$$

Advantage of definite rank TMDs:

- One-to-one mapping between TMDs in $\boldsymbol{k}_{\mathrm{T}}$ and $\boldsymbol{b}_{\mathrm{T}}$ space (relevant for evolution)

Gluon vs. quark PDFs

[NNPDF Collaboration, 2012]

- Gluons dominate over quarks at small x
- What happens to the gluon TMDs as $x \rightarrow 0$?

The gluon-gluon correlator at $\mathbf{x}=\mathbf{0}$

$$
\begin{aligned}
\Gamma^{[+,-] i j}\left(0, k_{T}\right) & \left.\equiv \int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P| F^{n i}(0) U_{[0, \xi]}^{[+]} F^{n j}(\xi) U_{[\xi, 0]}^{[-]}|P\rangle\right|_{\xi \cdot n=k \cdot n=0} \quad \text { [a "dipole-type" operator] } \\
& =\left.\frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \int \frac{d^{2} \xi_{T}}{(2 \pi)^{2}} e^{i k_{T} \cdot \xi_{T}}\langle P|\left(U^{[\square]}-I\right)|P\rangle\right|_{\xi \cdot n=0} \\
& \equiv \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right) \quad \text { [the Wilson loop correlator, satisfying } \int d^{2} k_{T} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right)=0 \text {] }
\end{aligned}
$$

longitudinal dimension of the Wilson loop:

$$
L \equiv \int d \xi \cdot P=2 \pi \delta(0)
$$

Conclusion: $\Gamma^{[+,--] i j}\left(x, \boldsymbol{k}_{T}\right)$	$\xrightarrow{x \rightarrow 0}$	$\frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right)$
\downarrow		
parameterizable	parameterizable	
in terms of	in terms of	
f,g,h-type TMDs	e-type TMDs	

parne f,g,h-type TMDs e-type TMDs

Wilson loop: $\quad U^{[\square]} \equiv U_{[0, \xi]}^{[+]} U_{[\xi, 0]}^{[-]}$

[credit: M. Buffing]

How to match $\mathrm{f}, \mathrm{g}, \mathrm{h}$-type with e-type TMDs?

$$
\begin{aligned}
& \frac{\Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right) \equiv \int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P| F^{n i}(0) U_{[0, \xi]}^{[+]} F^{n j}}{\Gamma_{U}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-g_{T}^{i j} f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right],} \\
& \Gamma_{L}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[i \epsilon_{T}^{i j} S_{L} g_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha} S_{L}}{2 M^{2}} h_{1 L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right], \\
& \Gamma_{T}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. \\
& \left.-\frac{\epsilon_{T}^{k_{T}\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)-\frac{\epsilon_{T}^{\{i}{ }_{\alpha} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right], \\
& \left.\Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right) \equiv \int \frac{d^{2} \xi_{T}}{(2 \pi)^{2}} e^{i k_{T} \cdot \xi_{T}}\langle P|\left(U^{[\square]}-I\right)|P\rangle\right|_{\xi \cdot n=0} \\
& \Gamma_{0 U}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{\pi L}{M^{2}} e\left(\boldsymbol{k}_{T}^{2}\right), \\
& \Gamma_{0 L}^{[\square]}\left(\boldsymbol{k}_{T}\right)=0, \\
& \Gamma_{0 T}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{\pi L}{M^{2}} \frac{\epsilon_{T}^{S_{T} k_{T}}}{M} e_{T}\left(\boldsymbol{k}_{T}^{2}\right), \\
& \Gamma_{L L}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-g_{T}^{i j} S_{L L} f_{1 L L}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j} S_{L L}}{M^{2}} h_{1 L L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right], \\
& \Gamma_{L T}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{L T}}{M} f_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \epsilon_{T}^{S_{L T} k_{T}}}{M} g_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. \\
& +\frac{S_{L T}^{\{i} k_{T}^{j\}}}{M} h_{1 L T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{\left.{k_{T}^{i j \alpha} S_{L T \alpha}}_{M^{3}} h_{1 L T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right], ~, ~, ~, ~}{} \\
& \Gamma_{T T}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{x}{2}\left[-\frac{g_{T}^{i j} k_{T}^{\alpha \beta} S_{T T \alpha \beta}}{M^{2}} f_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \epsilon_{T \gamma}^{\beta} k_{T}^{\gamma \alpha} S_{T T \alpha \beta}}{M^{2}} g_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. \\
& \left.+S_{T T}^{i j} h_{1 T T}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{S_{T T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} h_{1 T T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j \alpha \beta} S_{T T \alpha \beta}}{M^{4}} h_{1 T T}^{\perp \perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \\
& \Gamma_{0 L L}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{\pi L}{M^{2}} S_{L L} e_{L L}\left(\boldsymbol{k}_{T}^{2}\right), \\
& \Gamma_{0 L T}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{\pi L}{M^{2}} \frac{\boldsymbol{k}_{T} \cdot \boldsymbol{S}_{L T}}{M} e_{L T}\left(\boldsymbol{k}_{T}^{2}\right), \\
& \Gamma_{0 T T}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{\pi L}{M^{2}} \frac{k_{T}^{\alpha \beta} S_{T T \alpha \beta}}{M^{2}} e_{T T}\left(\boldsymbol{k}_{T}^{2}\right)
\end{aligned}
$$

Unpolarized gluon TMDs at $\mathrm{x}=\mathbf{0}$

$$
\Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right) \quad \xrightarrow{x \rightarrow 0} \quad \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right)
$$

$$
\begin{aligned}
\frac{1}{x} \Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right) & =\frac{1}{x} \frac{x}{2}\left[-g_{T}^{i j} f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \\
& \xrightarrow{x \rightarrow 0} \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L x} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{k_{T}^{i} k_{T}^{j}}{2 \pi L x}\left[\frac{\pi L}{M^{2}} e\left(\boldsymbol{k}_{T}^{2}\right)\right] \\
& =\frac{1}{2}\left[-g_{T}^{i j} \frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} \frac{e\left(\boldsymbol{k}_{T}^{2}\right)}{x}+\frac{k_{T}^{i j}}{M^{2}} \frac{e\left(\boldsymbol{k}_{T}^{2}\right)}{x}\right]
\end{aligned}
$$

Unpolarized gluon TMDs at $\mathrm{x}=0$

$$
\begin{aligned}
& \Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right) \xrightarrow{x \rightarrow 0} \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right) \\
& \frac{1}{x} \Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{1}{2}\left[-g_{T}^{i j} f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \\
& \xrightarrow{x \rightarrow 0} \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L x} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{k_{T}^{i} k_{T}^{j}}{2 x M^{2}} e\left(\boldsymbol{k}_{T}^{2}\right) \\
&=\frac{1}{2}\left[-g_{T}^{i j} \frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} \frac{e\left(\boldsymbol{k}_{T}^{2}\right)}{x}+\frac{k_{T}^{i j}}{M^{2}} \frac{e\left(\boldsymbol{k}_{T}^{2}\right)}{x}\right]
\end{aligned}
$$

Conclusion: $\quad f_{1}=\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} h_{1}^{\perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{2 x M^{2}} e\left(\boldsymbol{k}_{T}^{2}\right)$

$$
\begin{aligned}
& \int d k_{T}^{2} e\left(\boldsymbol{k}_{T}^{2}\right)=0 \\
& \int d k_{T}^{2} \boldsymbol{k}_{T}^{2} e\left(\boldsymbol{k}_{T}^{2}\right) \neq 0 \\
& \Rightarrow e\left(\boldsymbol{k}_{T}^{2}\right) \text { has a node in } \boldsymbol{k}_{T}^{2}
\end{aligned}
$$

Transversely polarized gluon TMDs at $\mathrm{x}=0$

$$
\begin{aligned}
& \Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right) \stackrel{x \rightarrow 0}{\longrightarrow} \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right) \\
& \frac{1}{x} \Gamma_{T}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)= \frac{1}{x} \frac{x}{2}\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \boldsymbol{k}_{T} \cdot S_{T}}{M} g_{1 T}\left(x, k_{T}^{2}\right)\right. \\
&\left.-\frac{\epsilon_{T}^{k_{T}\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, k_{T}^{2}\right)-\frac{\epsilon_{T}^{\{i} \alpha_{T} k_{T}^{j\}} \alpha_{T}}{2 M S^{3}} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right)\right] \\
& \xrightarrow{x \rightarrow 0} \quad \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L x} \Gamma_{0 T}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{k_{T}^{i} k_{T}^{j}}{2 \pi L x}\left[\frac{\pi L}{M^{2}} \frac{\epsilon_{T}^{S_{T} k_{T}}}{M} e_{T}\left(\boldsymbol{k}_{T}^{2}\right)\right] \\
&=\quad \frac{1}{2}\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} \frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} \frac{e_{T}\left(\boldsymbol{k}_{T}^{2}\right)}{x}\right. \\
&\left.-\frac{\epsilon_{T}^{k_{T}\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} \frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} \frac{e_{T}\left(\boldsymbol{k}_{T}^{2}\right)}{x}-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}}\left(-\frac{e_{T}\left(\boldsymbol{k}_{T}^{2}\right)}{x}\right)\right]
\end{aligned}
$$

Transversely polarized gluon TMDs at $\mathrm{x}=0$

$$
\begin{aligned}
& \Gamma^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right) \quad \xrightarrow{x \rightarrow 0} \quad \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L} \Gamma_{0}^{[\square]}\left(\boldsymbol{k}_{T}\right) \\
& \frac{1}{x} \Gamma_{T}^{[+,-] i j}\left(x, \boldsymbol{k}_{T}\right)=\frac{1}{2}\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \epsilon_{T}^{i j} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right. \\
& \left.-\frac{\epsilon_{T}^{k_{T}\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \\
& \xrightarrow{x \rightarrow 0} \quad \frac{k_{T}^{i} k_{T}^{j}}{2 \pi L x} \Gamma_{0 T}^{[\square]}\left(\boldsymbol{k}_{T}\right)=\frac{k_{T}^{i} k_{T}^{j}}{2 x M^{2}} \frac{\epsilon_{T}^{S_{T} k_{T}}}{M} e_{T}\left(\boldsymbol{k}_{T}^{2}\right) \\
& =\frac{1}{2}\left[-\frac{g_{T}^{i j} \epsilon_{T}^{S_{T} k_{T}}}{M} \frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} \frac{e_{T}\left(\boldsymbol{k}_{T}^{2}\right)}{x}\right. \\
& \left.-\frac{\epsilon_{T}^{k_{T}\{i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} \frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} \frac{e_{T}\left(\boldsymbol{k}_{T}^{2}\right)}{x}-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}}\left(-\frac{e_{T}\left(\boldsymbol{k}_{T}^{2}\right)}{x}\right)\right]
\end{aligned}
$$

Conclusion: $\quad f_{1 T}^{\perp}=h_{1}=-\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} h_{1 T}^{\perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{2 x M^{2}} e_{T}\left(\boldsymbol{k}_{T}^{2}\right), \quad g_{1 T}=0$

Shows up in $\Gamma_{0}^{[\square]}-\Gamma_{0}^{\left[\square^{\dagger}\right]}$, in agreement with the results in [Boer, G. Echevarría, Mulders, Zhou 2015]

Gluon TMDs at $\mathrm{x}=0$

U	$f_{1}=\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} h_{1}^{\perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{2 x M^{2}} e$
L	$g_{1}=h_{1 L}^{\perp}=0$
T	$f_{1 T}^{\perp}=h_{1}=-\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} h_{1 T}^{\perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{2 x M^{2}} e_{T}, \quad g_{1 T}=0$
LL	$f_{1 L L}=\frac{\boldsymbol{k}_{T}^{2}}{2 M^{2}} h_{1 L L}^{\perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{2 x M^{2}} e_{L L}$
LT	$f_{1 L T}=h_{1 L T}=-\frac{\boldsymbol{k}_{T}^{2}}{4 M^{2}} h_{1 L T}^{\perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{4 x M^{2}} e_{L T}, \quad g_{1 L T}=0$
TT	$f_{1 T T}=\frac{2 M^{2}}{3 \boldsymbol{k}_{T}^{2}} h_{1 T T}=-\frac{1}{2} h_{1 T T}^{\perp}=\frac{\boldsymbol{k}_{T}^{2}}{6 M^{2}} h_{1 T T}^{\perp \perp} \rightarrow \frac{\boldsymbol{k}_{T}^{2}}{6 x M^{2}} e_{T T}, \quad g_{1 T T}=0$

In the small-x limit we see that

- ... the gluon TMDs either vanish or become equal.
- ... the (non-vanishing) gluon TMDs are proportional to $1 / x$ (up to resummed logs).

Summary

- New gluon TMDs for tensor polarized targets have been introduced.

Summary

- New gluon TMDs for tensor polarized targets have been introduced.

- The gluon-gluon correlator at $\mathrm{x}=\mathrm{O}$ reduces to the F.T. of a Wilson loop.
- Also the Wilson loop correlator can be parametrized in terms of TMDs.
- In the small-x limit the picture of gluon TMDs becomes very simple: they either vanish or become equal.

Backup slides

The quark-quark TMD correlator

$$
\left.\Phi_{i j}\left(x, \boldsymbol{k}_{T}\right) \equiv \int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi \cdot n=0}
$$

process-dependent gauge link: $U_{[0, \xi]} \equiv \mathcal{P} \exp \left(-i g \int_{0}^{\xi} d \eta^{\mu} A_{\mu}(\eta)\right)$

- Parametrization in terms of Dirac structures
- 18 TMDs/ 4 collinear PDFs
$\Phi_{U}\left(x, \boldsymbol{k}_{T}\right)=\left[f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{i \not \kappa_{T}}{M} h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \frac{\not P}{2}$,
$\Phi_{L}\left(x, \boldsymbol{k}_{T}\right)=\left[\gamma^{5} S_{L} g_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{\gamma^{5} k_{T} S_{L}}{M} h_{1 L}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \frac{\not p}{2}$,
$\Phi_{T}\left(x, \boldsymbol{k}_{T}\right)=\left[\frac{\epsilon_{T}^{S_{T} k_{T}}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)+\frac{\gamma^{5} \boldsymbol{k}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right)\right.$

$$
\left.+\gamma^{5} \$_{T} h_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)-\frac{\gamma^{5} \gamma_{\nu} k_{T}^{\nu \rho} S_{T \rho}}{M^{2}} h_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right)\right] \frac{\not p}{2}
$$

$\Phi_{L L}\left(x, \boldsymbol{k}_{T}\right)=\ldots$

> quark pol.

	Quarks	γ^{+}	$\gamma^{+} \gamma^{5}$	$i \sigma^{i+} \gamma^{5}$
	U	f_{1}		h_{1}^{\perp}
	L		g_{1}	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$\boldsymbol{h}_{\mathbf{1}}, h_{1 T}^{\perp}$
	LL	$f_{1 L L}$		$h_{1 L L}^{\perp}$
	LT	$f_{1 L T}$	$g_{1 L T}$	$h_{1 L T}, h_{1 L T}^{\perp}$
	TT	$f_{1 T T}$	$g_{1 T T}$	$h_{1 T T}, h_{1 T T}^{\perp}$

[Tangerman, Mulders 1994; Boer, Mulders 1997; Bacchetta, Mulders 2000]

Comparing the quark and gluon TMDs

Quarks	γ^{+}	$\gamma^{+} \gamma^{5}$	$i \sigma^{i+} \gamma^{5}$
U	$\boldsymbol{f}_{\mathbf{1}}$		h_{1}^{\perp}
L		$\boldsymbol{g}_{\mathbf{1}}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$\boldsymbol{h}_{\mathbf{1}}, h_{1 T}^{\perp}$
LL	$\boldsymbol{f}_{\mathbf{1 L L}}$		$h_{1 L L}^{\perp}$
LT	$f_{1 L T}$	$g_{1 L T}$	$h_{1 L T}, h_{1 L T}^{\perp}$
TT	$f_{1 T T}$	$g_{1 T T}$	$h_{1 T T}, h_{1 T T}^{\perp}$

Gluons	$-g_{T}^{i j}$	$i \epsilon_{T}^{i j}$	$k_{T}^{i}, k_{T}^{i j}$, etc.
U	$\boldsymbol{f}_{\mathbf{1}}$		h_{1}^{\perp}
L		$\boldsymbol{g}_{\mathbf{1}}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$
LL	$\boldsymbol{f}_{\mathbf{1 L L}}$		$h_{1 L L}^{\perp}$
LT	$f_{1 L T}$	$g_{1 L T}$	$h_{1 L T}, h_{1 L T}^{\perp}$
TT	$f_{1 T T}$	$g_{1 T T}$	$\boldsymbol{h}_{\mathbf{1 T T}}, h_{1 T T}^{\perp}, h_{1 T T}^{\perp}$

