Selected topics on QCD evolution

Jian Zhou
Nikhef, VU Amsterdam \& ShanDong University

Based on: Phys.Rev. D92; 074016; ZJ
arXiv:1603.0742; ZJ

Outline:

$>$ The scale dependence of the Burkardt sum rule
$>$ The evolution of the small x gluon TMD
$>$ Summary

Sum rule

Longitudinal momentum conservation:

$$
\sum_{q+\bar{q}+g} \int_{g} x f\left(x, \mu^{2}\right) d x=1
$$

The scale dependence?

$$
\frac{\partial \sum_{q+\bar{q}+g} \int_{g} x f\left(x, \mu^{2}\right) d x}{\partial \ln \mu^{2}}=?
$$

DGLAP evolution equation:

$$
\frac{\partial f\left(x, \mu^{2}\right)}{\partial \ln \mu^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d x_{1}}{x_{1}}\left[\frac{1+z^{2}}{(1-z)_{+}}-\frac{3}{2} \delta(1-z)\right] f\left(x_{1}, \mu^{2}\right)
$$

Computing all channels:

$$
\begin{aligned}
& \text { quark ----> quark } \\
& \text { quark ----> gluon } \\
& \text { gluon ----> quark, antiquark } \\
& \text { antiquark ----> antiquark } \\
& \text { antiquark ----> gluon }
\end{aligned}
$$

One finds:

$$
\frac{\partial \sum_{q+\bar{q}+g} \int_{g} x f\left(x, \mu^{2}\right) d x}{\partial \ln \mu^{2}}=0
$$

■ The sum rule is stable under QCD scale evolution.

Parton transverse motion inside a nucleon

$\Phi\left(x, k_{T}\right)$

1982-1983, Collins and Soper

$$
\Phi\left(x, k_{T}\right)=\int \frac{d y}{4 \pi} \frac{d^{2} y_{T}}{(2 \pi)^{2}} e^{-i x p^{+} y^{-}+i k_{T} y_{T}}\langle P| \bar{\psi}\left(y^{-}, y_{T}\right) \not \hbar L L^{+} \psi\left(0^{-}, 0_{T}\right)|P\rangle
$$

For an unpolarized target,

$$
\int d^{2} k_{T} \Phi\left(x, k_{T}\right) \vec{k}_{T}=0
$$

Parton distribution inside a transversely polarized target

parameterized as,

$$
\Phi\left(x, k_{T}, S_{T}\right)=f\left(x, k_{T}^{2}\right)-\frac{1}{M} \varepsilon_{T i j} S_{T}^{i} k_{T}^{j} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)
$$

$p(\uparrow)+\boldsymbol{p} \rightarrow \pi+\boldsymbol{X}$

Average transverse momentum:

$$
\int d x d^{2} k_{T} \Phi\left(x, k_{T}, S_{T}\right) \vec{k}_{T}^{\alpha} \propto \hat{S}_{T}^{\alpha} \int d x d^{2} k_{T} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) k_{T}^{2} \neq 0
$$

Transverse momentum conservation

Sum over all flavors

$$
\sum_{q+\bar{q}+g} \int_{0}^{1} d x \int d^{2} k_{T} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) k_{T}^{2}=0
$$

The Burkardt sum rule, 2004, Burkardt
Alternative proof, 2015, Lorce
The relations between the Sivers functions and twist-3 correlations, 2003, Boer, Mulders and Pijlman
$\int d^{2} k_{T} f_{1 T}^{\perp, q}\left(x, k_{T}^{2}\right) k_{T}^{2} \propto T_{F}^{q}(x, x) \quad \int d^{2} k_{T} f_{1 T}^{\perp, g}\left(x, k_{T}^{2}\right) k_{T}^{2} \propto T_{G}^{(+)}(x, x)$
The sum rule is re-expressed as,

$$
\int_{0}^{1} d x T_{G}^{(+)}(x, x)+\int_{0}^{1} d x T_{F}^{q+\bar{q}}(x, x)=0
$$

Operator definition of the twist-3 correlation functions

$$
T_{F}\left(x, x, \mu^{2}\right)=\varepsilon_{T}^{S_{T} \sigma} \int \frac{d y_{1}^{-}}{2 \pi} \int d y_{2}^{-} e^{i x P^{+} y_{1}^{-}}\langle P| \bar{\psi}(0) \frac{h h}{2} F_{\sigma}^{+}\left(y_{2}^{-}\right) \psi\left(y_{1}^{-}\right)|P\rangle
$$

Qiu-Sterman function
1991, Qiu and Sterman

Tri-gluon function
1992, X. D. Ji; 2010, Beppu, Koike, Tanaka and Yoshida

Twist-3 functions and SSAs, see Koike's talk

The scale dependence of the Burkardt sum rule

$$
\sum_{q+\bar{q}+g}\left\langle\vec{k}_{T}\right\rangle\left(\mu^{2}\right)=\int_{0}^{1} d x T_{G}^{(+)}\left(x, x, \mu^{2}\right)+\int_{0}^{1} d x T_{F}^{q+\bar{q}}\left(x, x, \mu^{2}\right)=0
$$

Is the sum rule stable under QCD corrections?

$$
\frac{\partial \sum_{q+\bar{q}+g}\left\langle\vec{k}_{T}\right\rangle\left(\mu^{2}\right)}{\partial \ln \mu^{2}}
$$

See also Teryaev's talk

DGLAP evolution of the twist-3 functions

Diagams contributing to the evolution kernel of the Qiu-Sterman function:

(a)

(b)

$$
\left.\frac{\partial T_{F}^{q}\left(\xi, \xi, \mu^{2}\right)}{\partial \ln \mu^{2}}\right|_{q, \bar{q} \rightarrow q}=\frac{\alpha_{s}}{2 \pi} \int_{\xi} \frac{d x}{x}\left[C_{F}\left\{\frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2} \delta(1-z)\right\} T_{F}^{q}(x, x)\right.
$$

$$
+\frac{C_{A}}{2}\left\{\frac{1+z}{1-z} T_{F}^{q}(\xi, x)-\frac{1+z^{2}}{1-z} T_{F}^{q}(x, x)-2 \delta(1-z) T_{F}^{q}(x, x)\right\}
$$

$$
\left.-\frac{N_{c}}{2} \tilde{T}_{F}^{q}(\xi, x)+\frac{1}{2 N_{c}}(1-2 z) T_{F}^{q}(\xi, \xi-x)-\frac{1}{2 N_{c}} \tilde{T}_{F}^{q}(\xi, \xi-x)\right]
$$

2009, Kang and Qiu
2009, JZ, Yuan and Liang 2009, Vogelsang and Yuan 2011, Ma and Sang

2012, Schafer and JZ 2012, Ma and Wang 2012, Kang and Qiu 2013, Sun and Yuan

Computing all channels

quark+antiquark--->gluon

$$
\begin{aligned}
& \left.\frac{\partial T_{G}^{(+)}\left(\xi, \xi, \mu^{2}\right)}{\partial \ln \mu^{2}}\right|_{q, \bar{q} \rightarrow g}=\frac{\alpha_{s}}{2 \pi} \sum_{q, \bar{q}} \int_{\xi} \frac{d x}{x} \frac{C_{A}}{2}\left\{\frac{1+(1-z)^{2}}{z}\left[T_{F}^{q}(x, x)+T_{F}^{\bar{q}}(x, x)\right]\right. \\
& \left.-\frac{2-z}{z}\left[T_{F}^{q}(x, x-\xi)+T_{F}^{\bar{q}}(x, x-\xi)\right]+\left[\tilde{T}_{F}^{q}(x-\xi, x)+\tilde{T}_{F}^{\bar{q}}(x-\xi, x)\right]\right\}
\end{aligned}
$$

gluon--->quark(or antiquark)

$$
\left.\frac{\partial T_{F}^{q}\left(\xi, \xi, \mu^{2}\right)}{\partial \ln \mu_{F}^{2}}\right|_{g \rightarrow q}=\frac{\alpha_{s}}{2 \pi} \int_{\xi} \frac{d x}{x} \frac{1}{2}\left[z^{2}+(1-z)^{2}\right] T_{G}^{(+)}(x, x) \quad \text { 2009, Kang and Qiu }
$$

gluon--->gluon

$$
\begin{aligned}
\left.\frac{\partial\left[\frac{N(\xi, \xi)-N(\xi, 0)}{\xi}\right]}{\partial \ln \mu_{F}^{2}}\right|_{g \rightarrow g}= & \frac{\alpha_{s}}{2 \pi} C_{A} \int_{\xi}^{1} \frac{d x}{x^{2}}\left\{\frac{\left(z^{2}-z+1\right)^{2}}{z(1-z)_{+}}[N(x, x)-N(x, 0)]+\frac{1+z^{2}}{2 z(1-z)_{+}} N(\xi, x)-\frac{1+(1-z)^{2}}{2 z(1-z)_{+}} N(x, x-\xi)\right. \\
& \left.-\frac{z^{2}+(1-z)^{2}}{2 z(1-z)_{+}} N(\xi, \xi-x)-\delta(1-z)[N(x, x)-N(x, 0)]\right\}+\frac{\alpha_{s}}{2 \pi}\left(C_{A} \frac{11}{6}-\frac{n_{f}}{3}\right)[N(\xi, \xi)-N(\xi, 0)] \\
\frac{x}{2 \pi} T_{G}^{(+)}(x, x)=-4 M_{N}[N(x, x)-N(x, 0)] \quad & \text { 2009, Kang and Qiu }
\end{aligned} \quad \begin{array}{ll}
\text { 2009, Braun, Manashov and Pirnay }
\end{array}
$$

We now agree on all other evolution equations except for the tri-gluon one.

2009, Kang and Qiu
2009, Braun, Manashov and Pirnay
2013, Schafer and JZ

> Here we use the one derived by the third group.

$$
\begin{aligned}
\left.\frac{\partial\left[\frac{N(\xi, \xi)-N(\xi, 0)}{\xi}\right]}{\partial \ln \mu_{F}^{2}}\right|_{g \rightarrow g}= & \frac{\alpha_{s}}{2 \pi} C_{A} \int_{\xi}^{1} \frac{d x}{x^{2}}\left\{\frac{\left(z^{2}-z+1\right)^{2}}{z(1-z)_{+}}[N(x, x)-N(x, 0)]+\frac{1+z^{2}}{2 z(1-z)_{+}} N(\xi, x)-\frac{1+(1-z)^{2}}{2 z(1-z)_{+}} N(x, x-\xi)\right. \\
& \left.-\frac{z^{2}+(1-z)^{2}}{2 z(1-z)_{+}} N(\xi, \xi-x)-\delta(1-z)[N(x, x)-N(x, 0)]\right\}+\frac{\alpha_{s}}{2 \pi}\left(C_{A} \frac{11}{6}-\frac{n_{f}}{3}\right)[N(\xi, \xi)-N(\xi, 0)]
\end{aligned}
$$

Beppu et.al.'s parametrization for the tri-gluon correlation used in our calculation.

Collecting all results:

$$
\frac{\partial \sum_{q+\bar{q}+g}\left\langle\vec{k}_{T}\right\rangle\left(\mu^{2}\right)}{\partial \ln \mu^{2}}=-\frac{\alpha_{s}}{2 \pi} C_{A} \sum_{q+\bar{q}+g}\left\langle\vec{k}_{T}\right\rangle\left(\mu^{2}\right)
$$

Solution:

$$
\sum_{q+\bar{q}+g}\left\langle\vec{k}_{T}\right\rangle\left(Q^{2}\right)=e^{-\frac{C_{A}}{2 \pi} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}\left(\mu^{2}\right)} \sum_{q+\bar{q}+g}\left\langle\vec{k}_{T}\right\rangle\left(Q_{0}^{2}\right)
$$

The evolution of the small x gluon TMD

See also Balitsky's talk

Extraction of small x gluon TMDs
Pisano's talk, Lansberg's talk, Yajin's talk and Mukherjee's talk

Gluon initiated Drell-Yan process

Inclusive process: Collinear factorization;
large logarithm $\ln \frac{M^{2}}{\mu^{2}}$ resummed by DGLAP equation
Semi-inclusive process:
$>\mathrm{M}^{2} \gg \mathrm{p}_{\mathrm{T}}{ }^{2}$, TMD factorization, $\ln \frac{M^{2}}{p_{T}^{2}}$ resummed by Collins-Soper equation
$>S \gg \mathrm{M}^{2}$, Kt factorization, $\ln \frac{S}{M^{2}}$ resummed by BFKL equation
1991, Catani, Ciafaloni and Hautmann
1991, Collins and Ellis

The overlap region

$S \gg M^{2} \gg p_{T}^{2}$
 Both the TMD and Kt factorization apply.

An explicit NLO cross section calculation shows that both the large logarithm appear.

$$
\ln \frac{S}{M^{2}} \quad \ln \frac{M^{2}}{p_{T}^{2}}
$$

Such joint resummation has been also disscussed in other literatures.

```
2015, Balitsky and Tarasov; 2015, Kovchegov and Sievert; 2015 Marzani
```

Our method is closer to Mueller, Xiao and Yuan's formulation.

Our starting point

$x G\left(x, l_{\perp}, x \zeta\right)=\int \frac{d y^{-} d^{2} y_{\perp}}{(2 \pi)^{3} P^{+}} e^{-i x P^{+} y^{-}+i l_{\perp} \cdot y_{\perp}}\langle P| F_{\mu}^{+}\left(y^{-}, y_{\perp}\right) \mathcal{L}_{\tilde{n}}^{\dagger}\left(y^{-}, y_{\perp}\right) \mathcal{L}_{\tilde{n}}\left(0,0_{\perp}\right) F^{\mu+}(0)|P\rangle$
Gloun---->gloun splitting kernel;

$$
\mathcal{P}_{g g}(z)=2 C_{A} \frac{\left(z^{2}-z+1\right)^{2}}{z(1-z)}
$$

When $z($ or $x)$--->0, large logarithm $\ln \frac{1}{x}$ summed by BFKL
When z--->1, light cone divergence, introduce ζ to regularize
large logarithm $\ln \frac{x^{2} \varsigma^{2}}{k_{T}^{2}}$ summed by CS

$$
\ln \frac{1}{x} \longleftrightarrow \ln \frac{S}{M^{2}} \quad \ln \frac{x^{2} \varsigma^{2}}{k_{T}^{2}} \longmapsto \ln \frac{M^{2}}{p_{T}^{2}}
$$

The main strategy

In a simple quark model, at tree level:

> both large logarithms are absent at LO; how is it dressed by quantum corrections at NLO?

Real graphs

Sample diagrams:

(d)

> Fig.a is the only diagram contributing to both the CS and the BFKL evolution kernel
> Calculation formulated in the Ji-Ma-Yuan scheme.
>Other regularization schemes, Collins 2011, SCET, EIS

One remark

In the infinite momentum frame P^{+}--> ∞

BFKL
 rapidity divergence

$$
\int_{0}^{\infty} \frac{d k^{+}}{k^{+}}=\int_{0}^{l^{+}} \frac{d k^{+}}{k^{+}}+\int_{l^{+}}^{\infty} \frac{d k^{+}}{k^{+}}
$$

Collins-Soper
rapidity divergence

Real corrections:

$$
\begin{aligned}
\left.x G\left(x, l_{\perp}, x \zeta\right)_{R e l}\right|_{x \rightarrow 0}= & \mathcal{C} \int d^{2} k_{\perp} \frac{1}{\left(k_{\perp}+l_{\perp}\right)^{2}\left[k_{\perp}^{2}+l_{\perp}^{4} / x^{2} \zeta^{2}\right]} \ln \frac{k_{\perp}^{2}\left(k_{\perp}^{2}+x^{2} \zeta^{2}\right)}{\left(k_{\perp}^{2}+l_{\perp}^{2}\right)^{2}} \\
& +2 \mathcal{C} \ln \frac{1}{x} \int_{0} \frac{d^{2} k_{\perp}}{\left(k_{\perp}+l_{\perp}\right)^{2} k_{\perp}^{2}}
\end{aligned}
$$

Using $x G\left(x, k_{\perp}+l_{\perp}\right)_{L O}=\frac{\alpha_{s} C_{F}}{\pi^{2}} \frac{1}{\left(k_{\perp}+l_{\perp}\right)^{2}} \quad$ reexpressed as,

$$
\left.x G\left(x, l_{\perp}, x \zeta\right)_{R e l}\right|_{x \rightarrow 0}=\frac{\alpha_{s} N_{c}}{\pi^{2}} \int d^{2} k_{\perp}\left\{\frac{\ln \frac{1}{x}}{k_{\perp}^{2}}+\frac{\ln \frac{k_{\perp}^{2}\left(k_{\perp}^{2}+x^{2} \zeta^{2}\right)}{\left(k_{\perp}^{2}+l_{\perp}^{2}\right)^{2}}}{2\left[k_{\perp}^{2}+l_{\perp}^{4} / x^{2} \zeta^{2}\right]}\right\} x G_{L O}\left(x, k_{\perp}+l_{\perp}, x \zeta\right)
$$

Virtual graphs

Fig.a \& Fig.b
Fig.c

BFKL kernel
CS kernel

Final result(in the leading logarithm approximation),

$$
\begin{aligned}
x G\left(x, l_{\perp}, x \zeta\right)_{N L O} & =x G\left(x, l_{\perp}, x \zeta\right)_{L O} \\
& +\frac{\alpha_{s} N_{c}}{\pi^{2}} \ln \frac{1}{x} \int \frac{d^{2} k_{\perp}}{k_{\perp}^{2}}\left[x G_{L O}\left(x, k_{\perp}+l_{\perp}, x \zeta\right)-\frac{l_{\perp}^{2}}{2\left(l_{\perp}+k_{\perp}\right)^{2}} x G_{L O}\left(x, l_{\perp}, x \zeta\right)\right] \\
& +\frac{\alpha_{s} N_{c}}{2 \pi}\left[\ln \frac{x^{2} \zeta^{2}}{l_{\perp}^{2}}-\frac{1}{2} \ln \frac{x^{2} \zeta^{2}}{\mu^{2}}-\left(\ln \frac{x^{2} \zeta^{2}}{l_{\perp}^{2}}\right)^{2}\right] x G_{L O}\left(x, l_{\perp}, x \zeta\right) \\
& +\frac{\alpha_{s} N_{c}}{\pi^{2}} \int \frac{d^{2} k_{\perp}}{2\left[k_{\perp}^{2}+l_{\perp}^{4} / x^{2} \zeta^{2}\right]} \ln \frac{k_{\perp}^{2}\left(k_{\perp}^{2}+x^{2} \zeta^{2}\right)}{\left(k_{\perp}^{2}+l_{\perp}^{2}\right)^{2}} x G_{L O}\left(x, k_{\perp}+l_{\perp}, x \zeta\right)
\end{aligned}
$$

- renormalization scale dependence is not yet taken into account.

The resulting gluon TMD indeed simultaneously satisfies the both

BFKL equation:
$\frac{\partial\left[x G\left(x, l_{\perp}, x \zeta\right)\right]}{\partial \ln (1 / x)}=\frac{\alpha_{s} N_{c}}{\pi^{2}} \int \frac{d^{2} k_{\perp}}{k_{\perp}^{2}}\left\{x G\left(x, k_{\perp}+l_{\perp}, x \zeta\right)-\frac{l_{\perp}^{2}}{2\left(l_{\perp}+k_{\perp}\right)^{2}} x G\left(x, l_{\perp}, x \zeta\right)\right\}$

CS equation:

$$
\frac{\partial\left[G\left(x, b_{\perp}, x \zeta\right)\right]}{\partial \ln \zeta}=-\frac{\alpha_{s} N_{c}}{\pi} \ln \left[\frac{x^{2} \zeta^{2} b_{\perp}^{2}}{4} e^{2 \gamma_{E}-\frac{1}{2}}\right] G\left(x, b_{\perp}, x \zeta\right)
$$

slightly different from Ji-Ma-Yuan's result

Propose a new matching procedure

> At moderate/large x , matching procedure:

$$
\begin{aligned}
& G\left(x, k_{\perp}, x \xi\right) \propto H(\left.k_{\perp}, x / z\right) \otimes G\left(z, \mu^{2}\right) \\
& \quad \text { Logarithm } \ln \frac{\mu^{2}}{Q^{2}} \text { is important }
\end{aligned}
$$

> At small x , matching procedure:

$$
\begin{array}{r}
x G\left(x, k_{\perp}, x \xi\right) \propto H\left(x, k_{\perp}, p_{\perp}\right) \otimes x G\left(x, p_{\perp}\right) \\
\quad \text { Logarithm } \ln \frac{1}{x} \text { is more important }
\end{array}
$$

Work in progress with Xiao and Yuan

Summary

$>$ Transverse momentum conservation is preserved under QCD scale evolution.
> Unified picture: TMD factorization V.S. kt factorization.

Thank you for your attention!

