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Transverse-momentum
distribution of a quark
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ransverse momentum broadening

INn a medium can be
described by a
fictitious' dipole:
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ransverse momentum broadening

Dipole probes the distribution of the
gluon fields in the medium

Assume independent scattering TOI < §
centers (weakly coupled QGP) é é
Glauber resummation (MV model) 0 I
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Beyond leading order: radiative corrections
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Transverse and longitudinal
dynamics of the gluon are

related due to the medium
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Constraints on the gluon's
ifetime define phase space
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An Hamiltonian for high-energy evolution
lancu, E., JHEP 10 (2014) 095
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In-medium propagator + Operators generate soft
gluon emission/absorption




An Hamiltonian for high-energy evolution
lancu, E., JHEP 10 (2014) 095
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In-medium propagator +- Operators generate soft
/ gluon emission/absorption
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X1

Large Nc limit

In the large Nc limit, the evolution equation can be formulated in
terms of dipoles = in-medium/non-eikonal analogue of BK
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Large Nc limit

In the large Nc limit, the evolution equation can be formulated in
terms of dipoles = in-medium/non-eikonal analogue of BK
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DLA: single scattering approximation

o] | § The evolution equation can
be solved to double

L logarithmic accuracy in the
B2 L approximation of a single
TR scattering
0 L

Gluon tluctuation should be small enough for single
scattering to dominate: k3 > g7

...but still large enough to be distinct 1

from parent dipole: ki < 5 ™ Qs
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Phase space for the DLA

More natural to
describe in terms of
ifetime and energy
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Renormalization of the jet quenching
parameter in DLA

In the DLA, one finds:
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... which can be solved iteratively:
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The radiative corrections are absorbed into the
renormalization of the jet quenching parameter
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Implications of the

DLA

From the more 'systematic’' point of view of the full
evolution equation, we confirm earlier results that
were obtained in the spirit of BDMPS-Z
Liou, Mueller & Wu, Nucl. Phys. A916 (2013) 102

Conseqguences for the initial condition of the
standard BK equation: (pA collision)
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Medium enhancement may explain a semi-hard
initial value for Qg
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Seyond the double logarithmic
approximation”?

- Single leading logarithmic
- corrections stem from both
- single & multiple scattering
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To single logarithmic accuracy, the evolution
eqguation remains non-linear

The first iteration of the single logarithmic correction is
obtained by Mueller et al.: the full resummation is
encoded in our evolution equation -> how to extract it?

Liou, Mueller & Wu, Nucl. Phys. A916 (2013) 102
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Conclusions & Outlook

A non-eikonal generalization of the JIMWLK Hamiltonian
was constructed

We applied it to study the nonlinear high-energy
evolution of the jet quenching parameter, for tfluctuations
deep inside the medium

The evolution equation was solved in the double
logarithmic approximation, resulting in a renormalization
of the jet quenching parameter

The extraction and the resummation of the single
logarithmic contributions proves a much more difficult
task -- work In progress

14



Backup: the unitarization line

In contrast to the shockwave case, the unitarization line in
the medium is strongly dependent on the gluon's lifetime «:
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Backup: target point of view

In-medium gluon overlap function:

47.‘.3 dN 47‘(‘3 1 1 dN
k) = — f (k7. k) ~
o (7, k) N2 — 1 drd2bd2k f (k ’k) - N2-1 7TR124 L dk+d?k

drasng

k2

... at leading order: fo (k_,kL) >~

1 OéQN 0
~ O k’2 _ 2 N st'C
fO a 1 Qs L.—

2
aZN.ng 1
Q7 ~ —=——"— ~ j— ~ T

16



Backup: in-medium evolution of the dipole

We need to understand the behavior of the non-eikonal

(anti)quark-gluon dipoles, that live deeply in the medium,
with a finite litetime 7 < L
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Full high-energy evolution equation:
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