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Transverse momentum broadening

Transverse-momentum 
distribution of a quark 
in a medium can be 
described by a 
'fictitious' dipole:
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Transverse momentum broadening
Dipole probes the distribution of the 
gluon fields in the medium

Brownian motion in 
transverse plane
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Saturation/unitarization scale:
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Glauber resummation (MV model)
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Assume independent scattering 
centers (weakly coupled QGP)

Multiple scattering important when exponent of order one
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Beyond leading order: radiative corrections
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Evolution!

Transverse and longitudinal 
dynamics of the gluon are 
related due to the medium
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Constraints on the gluon's 
lifetime define phase space
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An Hamiltonian for high-energy evolution
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Operators generate soft 
gluon emission/absorption

In-medium propagator

Iancu, E., JHEP 10 (2014) 095
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An Hamiltonian for high-energy evolution
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In-medium propagator
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In the large Nc limit, the evolution equation can be formulated in 
terms of dipoles = in-medium/non-eikonal analogue of BK
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Large Nc limit
In the large Nc limit, the evolution equation can be formulated in 

terms of dipoles = in-medium/non-eikonal analogue of BK
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DLA: single scattering approximation

Gluon fluctuation should be small enough for single 
scattering to dominate:

...but still large enough to be distinct 
from parent dipole:
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The evolution equation can 
be solved to double 

logarithmic accuracy in the 
approximation of a single 
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Phase space for the DLA
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Renormalization of the jet quenching 
parameter in DLA
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In the DLA, one finds:

The radiative corrections are absorbed into the 
renormalization of the jet quenching parameter
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Implications of the DLA

Consequences for the initial condition of the 
standard BK equation: (pA collision)

From the more 'systematic' point of view of the full 
evolution equation, we confirm earlier results that 

were obtained in the spirit of BDMPS-Z
Liou, Mueller & Wu, Nucl. Phys. A916 (2013) 102

Medium enhancement may explain a semi-hard 
initial value for Q2
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Beyond the double logarithmic 
approximation?
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Single leading logarithmic 
corrections stem from both 
single & multiple scattering

To single logarithmic accuracy, the evolution 
equation remains non-linear

The first iteration of the single logarithmic correction is 
obtained by Mueller et al.: the full resummation is 
encoded in our evolution equation -> how to extract it?
Liou, Mueller & Wu, Nucl. Phys. A916 (2013) 102
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Conclusions & Outlook
A non-eikonal generalization of the JIMWLK Hamiltonian 
was constructed

We applied it to study the nonlinear high-energy 
evolution of the jet quenching parameter, for fluctuations 
deep inside the medium

The evolution equation was solved in the double 
logarithmic approximation, resulting in a renormalization 
of the jet quenching parameter

The extraction and the resummation of the single 
logarithmic contributions proves a much more difficult 
task -- work in progress



r0

0 L

1

Backup: the unitarization line
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In contrast to the shockwave case, the unitarization line in 
the medium is strongly dependent on the gluon's lifetime 𝛕:
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Backup: target point of view
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Backup: in-medium evolution of the dipole 
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We need to understand the behavior of the non-eikonal 
(anti)quark-gluon dipoles, that live deeply in the medium, 
with a finite lifetime

Full high-energy evolution equation:
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