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SCET Fields for various Modes

�S , Aµ
S

dominant contributions from particular 
regions of momentum space

•

use subtractions rather than sharp 
boundaries to preserve symmetry

•
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mode fields pµ momentum scaling physical objects type
na-collinear �na , Aµ

na
(na · p, n̄a · p, p�a) � Q(�2, 1,�) collinear initial state jet a onshell

nb-collinear �nb , Aµ
nb

(nb · p, n̄b · p, p�b) � Q(�2, 1,�) collinear initial state jet b onshell
nj-collinear �nj , Aµ

nj
(nj · p, n̄j · p, p�j) � Q(�2, 1,�) collinear final state jet in n̂j onshell

soft �S, Aµ
S pµ � Q(�, �, �) soft virtual/real radiation onshell

ultrasoft �us, Aµ
us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell

Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell
hard – p2 � Q2 hard scattering o�shell

Relevant Modes Infrared Structure of Amplitudes (Landau eqtns, CSS, …)
Method of Regions (Beneke & Smirnov)

�� 1 large Q

J1

2

3

−

+

J

J

p

p

na

nb

n1

n2

n3

n2
i = 0

n̄2
i = 0

ni · n̄i = 2

14

close to a collinear direction n̂j , where nµ
j = (1, n̂j), and directions for di↵erent collinear fields are

distinct, ni · nj � �2.

All hard o↵shell modes are integrated out of the e↵ective theory, leading to operators OK that

describe hard scattering processes. These operators get inserted only once for each amplitude,

but more than one operator may contribute for a given physical process. The Glauber modes in

Table I are also o↵shell modes since the scaling of their momenta forbits p+p� = ~p 2
?, but they are

o↵shell at the scale of the p2? ⇠ �2 momentum rather than at the hard scale ⇠ �0. These o↵shell

glauber modes are still integrated out of the e↵ective theory at the hard scale, much like potential

modes in NRQCD [35], since the simulaneous requirements of gauge invariance and homogeneous

order-by-order power counting can otherwise not be satisfied.2 Since the Glauber operators yield a

leading order potential there is no power counting restriction on how many times they may appear

in the amplitude or cross section for a given process.

In a general notation the leading power hard scattering operators OK for some desired SCETI

process, and the leading power Lagrangian for any SCETI process, can be written as

Lhardscatter
SCETI

=
X

K

CK ⌦OK({⇠ni , Ani}, us, Aus) , (5)

L(0)

SCETI
=

h

L(0)
us

�

 us, Aus
�

+
X

ni

L(0)
ni

�

⇠ni , Ani , ni ·Aus
�

i

+
n

LI(0)
G

�{⇠ni , Ani}, S, AS
�

+ L(0)
S ( S, AS)

o

.

Here CK are hard Wilson coe�cients that depend on large momenta n̄i · p of collinear gauge

invariant products of collinear fields. (Note that ultrasoft gauge fields can appear in the leading

order hard scattering operator in Eq. (5) for some SCETI processes. Although this is usually

not the case for collider physics with massless hard scattering producing jets, it is well known in

inclusive B-meson decays where the HQET b-quark field is ultrasoft or soft.) The hard scattering

operator and two terms in square brackets in Eq. (5) are what we refer to as classic SCETI, and

are the terms usually considered in the SCET literature. We will discuss OK further in Sec. IVB.

Glauber operators are contained in LI(0)
G which we discuss in Sec. VA, and must be included when

writing down the full SCETI Lagrangian. A leading power soft Lagrangian L(0)
S also appears in

SCETI along with LI(0)
G since it is necessary (for example) to reproduce the vacuum polarization

of the Glauber gluon shown in Fig. 3. Recall that both L(0)
us ( us, Aus) and L(0)

S ( S, AS) are each

identical to copies of the standard full QCD Lagrangian. Also recall that dropping the coupling to

ultrasoft gluons, L(0)
n (⇠n, An, 0) just involves collinear fields in a single sector and is again equivalent

2 In this EFT there is a tradeo↵ between 3 things, 1) having locality at an infrared scale, since the 1/~k 2
? Glauber

potential is non-local, 2) implementing gauge invariance and 3) maintaining a homogeneous power counting in �.

Since for many calculations and analyses we need to treat our operators non-perturbatively in ↵s, we choose in

favor of maintaining the latter two principals while giving up locality. This is the same choice made for NRQCD

in the vNRQCD [35, 48–52] or pNRQCD [53–55] formalisms. It is also the same choice made for SCETII, where

the soft Wilson lines are non-local at a scale p+ ⇠ p? ⇠ �. (Without Glauber operators SCETI maintains locality

at infrared scales.)

pµ = n̄i · p
nµ

i

2
+ ni · p

n̄µ
i

2
+ pµ

�

Integrate out 
these modes
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Hard-collinear factorization

C �O

µS

µH : Wilson coe�cients for SCET Hard Scattering Operators
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Principles used for Soft-Collinear Effective Theory

QCD & SCET must agree at long distances• Matching

• Power Counting

• Symmetry

short distance encoded by coefficients, C

Carried out at level of the Lagrangian

Power counting theorems

Gauge symmetry within sectors

Lorentz & Reparameterization symmetries

for fields,  states 16

Next we repeat the above discussion for SCETII. Here there are no ultrasoft fields, and soft

fields contribute even in the classic SCET framework in both real and virtual diagrams. In a

general notation the leading power hard scattering operators OII
K for some desired SCETII process,

and the leading power Lagrangian for any SCETII process, can be written as

Lhardscatter
SCETII

=
X

K

CII
K ⌦OII

K({⇠ni , Ani}, S , AS) , (10)

L(0)

SCETII
=

h

L(0)
S

�

 S, AS
�

+
X

ni

L(0)
ni

�

⇠ni , Ani

�

i

+ LII(0)
G

�{⇠ni , Ani}, S, AS
�

.

Here CII
K are hard Wilson coe�cients that depend on the large momenta n̄i · p of collinear gauge

invariant products of collinear fields, and on momenta ni · p of soft gauge invariant products of

soft fields.3 The hard scattering operator and the two terms in square brackets are what we refer

to as classic SCETII. We will discuss OII
K further in Sec. IVB. Glauber operators are contained

in LII(0)
G and must be included when writing down the full SCETII Lagrangian. In this language

the assumption of ignoring Glauber gluons in SCETII means dropping LII(0)
G . In Eq. (10) the soft

Lagrangian L(0)
S is again just the standard QCD Lagrangian for these fields, and since there are

no ultrasoft fields each collinear Lagrangian L(0)
n is equivalent to a copy of full QCD, as discussed

above for SCETI. In the leading order classic SCETII Lagrangian there is no couplings between

the soft and collinear sectors. So all the couplings between sectors come either from the hard

interaction operators or LII(0)
G . It is enough to prove that net e↵ect of LII(0)

G interactions vanishs

for a hard scattering observable to prove the decoupling of Glauber gluon e↵ects, and then one can

use the standard SCETII tools to attempt to prove factorization theorems.

We will discuss the Glauber operators appearing in LII(0)
G and LI(0)

G in Sec. VA.

B. SCET Operator Building Blocks

In this section we discuss gauge invariant operator building blocks for quark and gluon operators

in SCET [16, 17, 19]. At any order in the power counting the most general building blocks for

n-collinear components of SCET operators for QCD (other than the leading power kinetic term)

contain three terms [56]

�n , Bµ
n? , Pµ

n? . (11)

The full expressions for �n and Bµ
n? given below carry global color indices, but are gauge invariant

under local collinear gauge transformations due to the presence of collinear Wilson lines. When

expanded these quark and gluon building block fields contain the physical quark and gluon compo-

nents, �n = ⇠n + . . . and Bµ
n? = Aµ

n? � (Pµ
?/P̄)n̄ ·An + . . .. To reduce operators down to the three

3 The dependence on ni · p can be thought of as arising from integrating out hard-collinear propagators in a SCETI

theory, where the hard-collinear fields have an o↵shellness of size n̄i · p ni · p [47]. Following this construction we

can generate the final SCETII theory by the matching sequence QCD! SCETI ! SCETII.

these Lagrangians factorize 
at leading power

L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani) Glauber operators that 

can spoil factorization
6
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Hard-collinear factorization

O = (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)

µS

“quark jet”
“gluon jet” Wn = P exp

�
ig

� 0

��
ds n̄ · An(x + n̄s)

��n = (W †
n�n)

Bµ
n� = [W †

niDµ
�Wn]

Wilson lines generated by 
integrating out offshell modes

Operators are built of building block fields:

g



Soft-collinear factorization

Soft radiation knows only about 
bulk properties of jet radiation

(SnaSnbSn1Sn2Sn3) Soft Wilson Lines

µS

Exploit field redefinitions in Lagrangians

8



J1

2

3

−

+

J

J

p

p

Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

Particle Physics: Physics at Shortest Distances

u
d

u

m 110510101015 10�5 10�10 10�15

LHC

Frank Tackmann (MIT) Better Theory Predictions for the LHC 2010-11-22 1 / 34

time

Hard Scattering Factorization:

SCET
µJ , µB

µH

µp

E
QCD

Idea of how factorization arises in SCET:

factorized Lagrangian:

factorized Hard Ops:

L(0)
SCETII,S,{ni} = L(0)

S

�
�S , AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

�

C � (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)(SnaSnbSn1Sn2Sn3)

factorized squared matrix elements defining jet, soft, … functions

µS

L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani)

9
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Introduction More Introduction Fixed Order Resummation Monte Carlo Summary

Particle Physics: Physics at Shortest Distances
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u
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LHC

Frank Tackmann (MIT) Better Theory Predictions for the LHC 2010-11-22 1 / 34

time

Hard Scattering Factorization:

d� = fafb � �̂ � F
hadronization

Nonperturbative:

eg. Perturbative:

µB µH µJ µS
hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S Used to Sum 
Logs

µp � �QCD

µS

µJ , µB

µH

µp

E
QCD

SCET

Universal Functions: 

µB � pT

µS � Esoft

µJ � mJ

µH � mHiggs

µp � �QCD

(In some cases by Operators,
 or is power suppressed)
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dd

usoft particles

n-collinear 
       jet

n-collinear 
       jet

Examples of Factorization:
pp� Higgs + anything

d� =
�

dY
�

i,j

�
d�a

�a

d�b

�b
fi(�a, µ)fj(�b, µ) H incl

ij

�mHeY

Ecm�a
,
mHe�Y

Ecm�b
,mH , µ

�
• Inclusive Higgs production

• Dijet production e
+
e
−

→ 2 jets

= �0H(Q,µ) Q

�
d� d�� JT

�
Q2� �Q�, µ

�
ST (�� ��, µ)F (��)

hard
function

jet functions perturbative
soft function

non-perturbative
soft function

d�

d�

� � 1thrust

(PDFs contribute,  No Glaubers,  No Softs)

(No PDFs,  No Glaubers,  Softs contribute)

(Collins, Soper, Sterman)
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dd

usoft particles

n-collinear 
       jet

n-collinear 
       jet

Examples of Factorization:
pp� Higgs + anything

d� =
�

dY
�

i,j

�
d�a

�a

d�b

�b
fi(�a, µ)fj(�b, µ) H incl

ij

�mHeY

Ecm�a
,
mHe�Y

Ecm�b
,mH , µ

�
• Inclusive Higgs production

• Dijet production e
+
e
−

→ 2 jets

thrust

(PDFs contribute,  No Glaubers,  No Softs)
(Collins, Soper, Sterman)

26

order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ

dσ

dτ

τ

0.300.10 0.15 0.20 0.25
0.0

0.4

0.3

0.2

0.1

Fit at N LL3 ’

theory scan error

DELPHI

ALEPH

OPAL

L3

SLD

for & �

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

Two parameter fit:

{�s(mZ),�1}

�2

dof

=

440

485

= 0.91

N3LL� + O(�3
s)

Abbate, Fickinger, 
  Hoang, Mateu, IS
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• Higgs with a Jet Veto

Higgs With and Without Jets

Resummation for pjet
T .

0-jet cross section in SCET for pjet

T < pcut

T

(valid for R2⌧1 and pcut

T ⌧mH )

�
0

(pcut

T )=Hgg(mH)⇥[Bg(mH , pcut

T , R)]2

⇥Sgg(p
cut

T , R)

Soft

Jet Jet

V

V

p p

RGE running now happens in 2 dimensions: virtuality µ and rapidity ⌫

BgSggµS⇠pcut
T

⌫ RGE

µ RGE

⌫⌫B⇠mH⌫S ⇠ pcut
T

µB⇠pcut
T

µ
Hgg

|µH|⇠mH
2 ln2

pcut

T

mH

= 2 ln2

mH

µ

+ 4 ln
pcut

T

µ
ln

⌫

mH

+ 2 ln
pcut

T

µ
ln

µpcut

T

⌫2

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-25 17 / 32

veto anti-kT jets here

V= �, W , or Z

Higgs With and Without Jets

Resummation for pjet
T .

0-jet cross section in SCET for pjet

T < pcut

T

(valid for R2⌧1 and pcut

T ⌧mH )

�
0

(pcut

T )=Hgg(mH)⇥[Bg(mH , pcut

T , R)]2

⇥Sgg(p
cut

T , R)

Soft

Jet Jet

V

V

p p

RGE running now happens in 2 dimensions: virtuality µ and rapidity ⌫

BgSggµS⇠pcut
T

⌫ RGE

µ RGE

⌫⌫B⇠mH⌫S ⇠ pcut
T

µB⇠pcut
T

µ
Hgg

|µH|⇠mH
2 ln2

pcut

T

mH

= 2 ln2

mH

µ

+ 4 ln
pcut

T

µ
ln

⌫

mH

+ 2 ln
pcut

T

µ
ln

µpcut

T

⌫2

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-25 17 / 32

Bg = Igj(mH , pcut
T , R)� fj

pjet
T � pcut

T � mH

�QCD � pcut
T

(PDFs and Softs contribute,  Glaubers?)

(anti-kT jets, radius R)
I.S., Tackmann, Walsh, Zuberi
Becher & Neubert

Berger, Marcantonini, IS
   Tackmann, Waalewijn
Banfi, Salam, Zanderighi

Higgs With and Without Jets

Results for Higgs + 0-jet Bin.
0 jets: �

0

(pcut

T )

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

�
0
(p

cu
t

T
)
[p
b
]

mH =125.4GeV

gg ! H (8 TeV)

R = 0.4, mt EFT

NNLL0
pT
+NNLO

NLL0
pT
+NLO

NLLpT

STWZ, µH =�imH

�1 jets: ��1

(pcut

T )

0
0

5

10

10

15

20

20

25

30 40 50 60 70 80

pcut
T [GeV]

mH =125.4GeV

�
�
1
(p

cu
t

T
)
[p
b
]

gg ! H (8 TeV)

R = 0.4, mt EFT

NNLL0
pT
+NNLO

NLL0
pT
+NLO

NLLpT

STWZ, µH =�imH

[Stewart, FT, Walsh, Zuberi]

Resummation yields much improved precision: small uncertainties and
good convergence

I Most precise predictions to date
I Jet clustering uncertainties are not included but appear to be under control

[Alioli, Walsh; Dasgupta et al.]
I PDF+↵s uncertainties are not shown (become relevant now)

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-25 18 / 32

I.S., Tackmann, Walsh, Zuberi

pp� H+ 0-jets
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�� 1 large Q

Glaubers are offshell and must be integrated out (despite having              ) 

Integrate out 
these modes

p2 � �2

Otherwise one has problems with simultaneously having 
gauge invariant operators and homogeneous power counting

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

Modes:
can do calculations with back-to-back collinear particles, then generalize
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Modes: �� 1 large Q

Integrate out
Need 3-types of Glauber momenta:

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

19
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=
n

n

n

n

FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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�� 1 large Q

Integrate out
Need 3-types of Glauber momenta:

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell
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n (p2) etc, for simplicity.
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the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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Glauber Exchange could
violate factorization: 122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by
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couples n-collinear,
n-collinear, and 

soft modes

Glauber’s dominate 
Forward Scattering:

19

a)

q
n

n

n

n

q
n

n

n

n
q

n

n

n

n

q
n

n

n

n

n

n

n

n
=

n

n

n

n

n

n

n

n
=

n

n

n

n

b)

n

n

n

n
=

n

n

n

n
n n
n n

=
n

n

n

n

FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is
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ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,
BK/BJMWLK, …)
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“Factorization Violation”

• Measurement doesn’t factor:  no simple factorization with universal 
functions.  (eg. Jade algorithm)

Phrase is used in different ways.  

Factorization formula is invalid. 

Reasons Factorization could fail:

• Divergent convolutions, not controlled by ones regulation procedures.  
(Requires more careful definition of functions.) � 1

0

dx

x2
��(x, µ)

Interactions that couple other modes and  spoil factorization. •

cancel in proof for Drell-Yan
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )
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Glauber exchange
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Violation of Cross Section factorization, for example PDFs entangled 

•

• (Del Duca, Falcioni, Magnea, 
Vernazza; Glover, Duhr)

Glauber Related Examples of Factorization Violation

•

Violation of Collinear Amplitude Factorization

Violation of Regge Amplitude Factorization

(Catani,de Florian,Rodrigo)
(Forshaw, Seymour, Siodmok)

As anticipated at the beginning of this section, the one-loop factorization formula (21)
and the explicit results in Eqs. (28) and (29) (or, equivalently, the one-loop splitting am-
plitudes in Refs. [23]–[25]) are valid in the case of the TL collinear limit (see Eq. (17)). At
the tree level, the TL and SL collinear limits are related by exploiting crossing symmetry,
and the corresponding splitting matrix Sp(0)(p1, p2; P̃ ) is simply obtained by applying the
(wave function) crossing relations mentioned at the end of Sect. 2. At the one-loop level,
we have to deal with the splitting matrix Sp(1)(p1, p2; P̃ ) in Eq. (28), and we can try to
proceed in an analogous way. Using crossing symmetry, the treatment of the one-loop
contribution Sp

(1)
H (p1, p2; P̃ ) is straightforward; Sp(1)

H (p1, p2; P̃ ) contains (i) wave function
factors, which are treated by the corresponding crossing relations, and (ii) rational func-
tions of the collinear momenta, which are invariant under crossing. The one-loop troubles
originate from the factor IC(p1, p2; P̃ ), since it contains f(ϵ; z1) and f(ϵ; z2).

The function f(ϵ; x) (see Eq. (24)) has a branch-cut singularity if the variable x is real
and negative. The branch-cut singularity arises from the corresponding singularity of the
hypergeometric function 2F1(1,−ϵ; 1 − ϵ; 1 − 1/x). In the case of the TL collinear limit,
z1 and z2 are both positive (see Eq. (17) and recall that z1 + z2 = 1), and the functions
f(ϵ; z1) and f(ϵ; z2) are both well-defined. In the case of the SL collinear limit, one of the
two variables z1 and z2 necessarily has a negative value (see Eq. (17)); therefore, one of
the two functions, either f(ϵ; z1) or f(ϵ; z2), in Eq. (29) is necessarily evaluated along its
branch-cut singularity and, hence, it is ill-defined.

In summary, the issue of the TL vs. SL collinear limits is as follows. The results in
Eqs. (21), (28) and (29) cannot be extended from the TL to the SL collinear limit by using
crossing symmetry, since this leads to ill-defined results (mathematical expressions). As
shown in the next section, the solution of the issue involves not only the (mathematical)
definition of the function f(ϵ; x) along (or, more precisely, in the vicinity of) its branch-cut
singularity, but also the introduction of new physical effects.

4 One-loop amplitudes: general (including space-like)
collinear limit

4.1 Generalized factorization and violation of strict collinear fac-
torization

The extension of the colour-space collinear formula in Eq. (21) to general kinematical
configurations∗∗, which include the two-parton collinear limit in the SL region, is

|M(1)(p1, p2, . . . , pn)⟩ ≃ Sp(1)(p1, p2; P̃ ; p3, . . . , pn) |M(0)(P̃ , . . . , pn)⟩
+ Sp(0)(p1, p2; P̃ ) |M(1)(P̃ , . . . , pn)⟩ . (33)

The essential difference with respect to Eq. (21) is that the one-loop splitting matrix Sp(1)

on the right-hand side of Eq. (33) depends not only on the collinear partons but also on the

∗∗In Appendix A, we illustrate the SL collinear limit of colour subamplitudes for the specific case of pure
multigluon matrix elements at the one-loop level.
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for space-like collinear limits (collinear incoming/outgoing particles)

as described in Eq. (1.2), applies only to the exchange of the octet representation in the t

channel. Choosing therefore a t-channel exchange basis, we can generalize Eq. (1.2) as
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where, as before, the indices r, s label the parton species (quark or gluon), and the Regge

trajectory appears in the combinations
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with 
gg

= 
qg

= 0, while 
qq

= (4 � N2

c

)/N2

c

. In Eq. (3.1) we have also introduced a

non-factorizing remainder function R
rs

, which is expected to receive contributions starting

at NNLL and which will be discussed in detail in what follows. Finally, H(0)[8]

rs

represents

the tree-level amplitude, which depends on the process, and includes the factor s/t which

appeared explicitly in Eq. (1.2).

In order to accurately match Eq. (2.5) with Eq. (3.1), the presence of the ‘Coulomb

phase’ factor proportional to C
tot

in Eq. (2.5) is crucial. Indeed, using the relation
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it is possible to combine the Coulomb phase in Eq. (2.5) with the matrix eZ to define a new

infrared matrix
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Factorizing the matrix Z in terms of eZ
S

and Z
1,R, it is easy to realise that the coe�cient

of T2

t

in Eq. (3.5) correctly reproduces not only the energy logarithms, ln(s/(�t)), but

also the correct symmetry properties under s $ u exchange, that is to say the correct

signature of the amplitude (hence the label S attributed to the new infrared matrix eZ
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This becomes more evident by rewriting eZ
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⌘
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, which is expected to receive contributions starting

at NNLL and which will be discussed in detail in what follows. Finally, H(0)[8]

rs

represents
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violated at NNLL by
(i�)2 �2

s

�2

|pp�, not |p�|p�

s� |t|

(Collins, Soper, Sterman;  Bodwin;  Bodwin, Brodsky, Lepage)

•

pT dependent

Collinear Wilson Line universality fails.   
examples studied by Collins, Qiu, Mulders, Rogers, … H1 + H2 � H3 + H4 + X

back-to-back�H2,H3
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SCET Glauber Lagrangian

L(0)
SCETII

=
�
L(0)

S

�
�S, AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

��
+ LII(0)

G

�
{�ni , Ani},�S, AS

�

classic SCETII

�

If          does not contribute L(0)
G

can derive usual types of
  Factorization Formulae

L(k�1)
G(Power suppressed            alone do not spoil factorization since they

    are only inserted a finite number of times.)



Goals for treating Glauber Operator in EFT:

•

•

•

•

•

      style renormalization for rapidity divergences 
(counterterms, renormalization group equations, …)

MS

Hard Scattering and Forward Scattering in single framework

•

Sum Large Logs:   

Factorization violating interactions may also have factorization formulae

Distinct Infrared Modes in 
  Feyn. Graphs + Power Counting 

Valid to all orders in       &  clear path to study subleading power 
  amplitudes with Glauber effects (subleading ops & Lagrangians)

•

Framework to (re)derive factorization theorems via

derive when eikonal 
approximation is relevant

�s

(could predict things about UE, etc.)

ln(x),ln
�Q2

m2

�

L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani)

22
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Full Leading Power Glauber Lagrangian:

LII(0)
G =

�

n,n̄

�

i,j=q,g

OiB
n

1
P2
�
OBC

s
1
P2
�
OjC

n̄ +
�

n

�

i,j=q,g

OiB
n

1
P2
�
OjnB

s

sum pairwise 
on all collinears

sum on all
collinears 

(2 rapidity sectors)(3 rapidity sectors)

Interactions with more sectors are given by T-products•
No Wilson coefficients ie. no new structures at loop level. •

Uses SCET building blocks:

n-collinear components of SCET operators for QCD (other than the leading power kinetic term)

contain three terms [83]

�n , Bµ
n? , Pµ

n? . (4.8)

The full expressions for �n and Bµ
n? are given below in Eqs. (4.10) and (4.15) and carry global

fundamental and adjoint color indices (also discussed below), but are gauge invariant under local

collinear gauge transformations due to the presence of collinear Wilson lines. When expanded

these quark and gluon building block fields contain the physical quark and gluon components,

�n = ⇠n + . . . and Bµ
n? = Aµ

n? � (Pµ
?/P̄)n̄ · An + . . .. To reduce operators down to the three

objects in Eq. (4.8) we rewrite all n̄ ·An’s as Wn Wilson lines, and absorb dependence on n̄ ·P into

Wilson coe�cients. We also use the equations of motion to remove in · @ �n, in · @ Bn?, P̄ n · Bµ
n,

in · @ n · Bn, and use operator identities to remove [iDµ
n?, iD

⌫
n?] and [iDµ

n?, in · Dn] [83]. Here

g n · Bn =
⇥

W †
nin ·DnWn

⇤

. Using the scaling of the fields deduced from their kinetic terms, the

power counting for these collinear building blocks is �n ⇠ �, Bµ
n? ⇠ �, and Pµ

n? ⇠ �.

We will find it useful to also use the following building blocks for soft fields

 n
s , Bnµ

S? . (4.9)

Here the n superscript denotes the soft gauge field component n ·As appearing in the soft Wilson

lines in these operators. For an analysis involving back-to-back n-collinear and n̄-collinear sectors

we will see that  n
s ,  

n̄
s , Bnµ

S?, and Bn̄µ
S? all appear. Using the scaling of the fields deduced from

their kinetic terms, the power counting for these soft building block fields is  n
s ⇠  n̄

s ⇠ �3/2 and

Bnµ
S? ⇠ Bn̄µ

S? ⇠ �.

The collinear and soft building blocks that have a single quark field at lowest order in the

coupling are

�n = W †
n⇠n , Wn = FT Wn[n̄ ·An] = FT P exp

✓

ig

Z

0

�1
ds n̄ ·An(x+ n̄s)

◆

,

�n̄ = W †
n̄⇠n̄ , Wn̄ = FT Wn̄[n ·An̄] = FT P exp

✓

ig

Z

0

�1
ds n ·An̄(x+ ns)

◆

,

 n
s = S†

n s ,  n̄
s = S†

n̄ s , Sn = FT Sn[n ·AS ] = FT P exp

✓

ig

Z

0

�1
ds n ·AS(x+ ns)

◆

,

(4.10)

where FT is for Fourier transform, and P stands for path ordering. The Fourier transform

is often written out in momentum space which enables making explicit the notation for the

multipole expansion (the lines remain local in the coordinate corresponding to residual momenta,

even though they are extended for the larger momentum associated with the s coordinate shown

here). Under a collinear gauge transformation ⇠n ! Un⇠n, Wn ! UnWn, so �n is invariant,
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The collinear and soft building blocks that involve a single gluon field at lowest order in the

coupling are

Bµ
n? =

1

g

⇥

W †
niD

µ
n?Wn

⇤

=
1

g

1

n̄ · P W †
n

⇥

in̄ ·Dn , iD
µ
n?

⇤

Wn ,

Bµ
n̄? =

1

g

⇥

W †
n̄iD

µ
n̄?Wn̄

⇤

=
1

g

1

n · P W †
n̄

⇥

in ·Dn̄ , iD
µ
n̄?

⇤

Wn̄ ,

Bnµ
S? =

1

g

⇥

S†
niD

µ
S?Sn

⇤

=
1

g

1

n̄ · P S†
n

⇥

in̄ ·DS , iDµ
S?

⇤

Sn ,

Bn̄µ
S? =

1

g

⇥

S†
n̄iD

µ
S?Sn̄

⇤

=
1

g

1

n · P S†
n̄

⇥

in ·DS , iDµ
S?

⇤

Sn̄ , (4.15)

where the Wilson lines here are the same as those in the quark building blocks, again with a

direction determined by matching. These gluon operators are in an adjoint representation so we

can write Bµ
n? = BµA

n?T
A etc. The Wilson lines appearing here can be combined into a single

Wilson line in the adjoint representation, for example we have

BAµ
n? =

1

n̄ · P n̄⌫iG
B⌫µ?
n WBA

n , BAµ
n̄? =

1

n · P n⌫iG
B⌫µ?
n̄ WBA

n̄ , (4.16)

with the adjoint collinear Wilson lines WBA
n = WBA

n [n̄ · An] and WBA
n̄ = WBA

n̄ [n · An̄], and

collinear field strengths igGAµ⌫
n TA = [iDµ

n, iD⌫
n]. A useful relation is

W †
niD

µ
n?Wn = Pµ

? + gBµ
n? . (4.17)

To lowest order in the coupling expansion

Bµ
n? = Aµ

n? � kµ?
n̄ · k n̄ ·An,k + . . . . (4.18)

There are analogous expressions for operators in other sectors, including the soft operators. The

Bµ
n? operator is gauge invariant under n-collinear transformations since iDµ

n?Wn ! UniD
µ
n?Wn

and W †
n ! W †

nU
†
n. Again a similar statement holds for the other gluon building block fields with

gauge transformations that have support in each of their respective sectors.

We also will make use of fields that are matrices in the color octet space, which we denote

with a tilde, such as

eBAB
n? = �ifABCBC

n? , eBnAB
S? = �ifABCBnC

S? , eGµ⌫ AB
s = �ifABCGµ⌫ A

s , (4.19)

where the soft field strength igGAµ⌫
s TA = [iDµ

s , iD⌫
s ]. We also have the adjoint relation

WT
n iD

µ
n?Wn = Pµ

? + g eBn? . (4.20)

In the hard scattering operators in both SCET
I

and SCET
II

we often need to specify the

large momenta for the collinear gauge invariant building blocks, �n and Bn?, for which we use
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where the Wilson lines here are the same as those in the quark building blocks, again with a

direction determined by matching. These gluon operators are in an adjoint representation so we

can write Bµ
n? = BµA

n?T
A etc. The Wilson lines appearing here can be combined into a single

Wilson line in the adjoint representation, for example we have

BAµ
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1

n̄ · P n̄⌫iG
B⌫µ?
n WBA

n , BAµ
n̄? =

1
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n̄ WBA
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with the adjoint collinear Wilson lines WBA
n = WBA

n [n̄ · An] and WBA
n̄ = WBA

n̄ [n · An̄], and

collinear field strengths igGAµ⌫
n TA = [iDµ

n, iD⌫
n]. A useful relation is

W †
niD
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n?Wn = Pµ

? + gBµ
n? . (4.17)

To lowest order in the coupling expansion
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n? � kµ?
n̄ · k n̄ ·An,k + . . . . (4.18)

There are analogous expressions for operators in other sectors, including the soft operators. The

Bµ
n? operator is gauge invariant under n-collinear transformations since iDµ

n?Wn ! UniD
µ
n?Wn

and W †
n ! W †

nU
†
n. Again a similar statement holds for the other gluon building block fields with

gauge transformations that have support in each of their respective sectors.

We also will make use of fields that are matrices in the color octet space, which we denote

with a tilde, such as
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where the soft field strength igGAµ⌫
s TA = [iDµ

s , iD⌫
s ]. We also have the adjoint relation

WT
n iD

µ
n?Wn = Pµ

? + g eBn? . (4.20)

In the hard scattering operators in both SCET
I

and SCET
II

we often need to specify the

large momenta for the collinear gauge invariant building blocks, �n and Bn?, for which we use
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Full Leading Power Glauber Lagrangian:

LII(0)
G =

�

n,n̄

�

i,j=q,g

OiB
n

1
P2
�
OBC

s
1
P2
�
OjC

n̄ +
�

n

�

i,j=q,g

OiB
n

1
P2
�
OjnB

s

30

OqB
n = �nT

B n̄/

2
�n OgB

n =
i

2
fBCDBC

n?µ
n̄

2
· (P+P†)BDµ

n?

OqB
n̄ = �n̄T

B n/

2
�n̄ OgB

n̄ =
i

2
fBCDBC

n̄?µ
n

2
· (P+P†)BDµ

n̄?

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ � nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

OqnB
s = 8⇡↵s

⇣

 ̄n
S TB n/

2
 n
S

⌘

OgnB
s = 8⇡↵s

⇣ i

2
fBCDBnC

S?µ
n

2
· (P+P†)BnDµ

S?

⌘

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ
n̄

2
· (P+P†)Bn̄Dµ

S?

⌘

TABLE II. Summary of operators appearing in the leading power Glauber exchange Lagrangian in Eq. (41).

towards the n̄-collinear particles. This type of time ordered product will play an important role in

our calculations later on.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). For future reference

we summarize the operators appearing in Eq. (41) in Table II.

If consider the interactions of soft and collinear particles in SCETI then none of the tree level

calculations that we have done in SCETII change, and hence the Glauber operators are precisely

the same as in SCETII. In this case we are considering SCETI prior to making the ultrasoft field

redefinition, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of couplings between the collinear and ultrasoft fields in L(0)
ni for

SCETI, and the di↵erences between how momentum sectors are separated (via subtraction terms)

the precise behavior of these operators in loop diagrams will in general be di↵erent. We will see

this explicitly when comparing our one-loop matching calculations in Secs. VIIA and VIIC for

SCETII and SCETI respectively.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

sum pairwise 
on all collinears

sum on all
collinears 

(2 rapidity sectors)(3 rapidity sectors)

Interactions with more sectors are given by T-products•
No Wilson coefficients ie. no new structures at loop level. •
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Construction: �� 1 large Q

n n

ss

fwd. scattering n-s

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

n n

ss

n n

ss

n n

ss
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which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ

n̄

2
· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
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⌘ e�ix·P X
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i,j=q,g
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n
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P2
?
OBC
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1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.

interaction between bilinear octet operators

integrated outs� t

�2 =
t

s
� 1

O(�3) :determine

�2 ��2 �3

(2 rapidity sectors)



26

Construction: �� 1 large Q

fwd. scattering 

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

n-n̄

19

a)

q
n

n

n

n

q
n

n

n

n
q

n

n

n

n

q
n

n

n

n

n

n

n

n
=

n

n

n

n

n

n

n

n
=

n

n

n

n

b)

n

n

n

n
=

n

n

n

n
n n
n n

=
n

n

n

n

FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2? = �~q 2
? < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
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ih�8⇡↵s(µ)�BC
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ih
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.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

, (28)

i
h

ifBA3A2gµ2µ3
? n̄ · p2

ih�8⇡↵s(µ)�BC

~q 2
?

ih

v̄n̄
n/

2
TCvn̄

i

,

i
h

ūn
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
? factors, so we adopt the
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which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators
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, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as
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Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.
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arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.

same

analogous

26

which now involve the n̄-collinear bilinear operators in Eq. (31), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ

n̄

2
· (P+P†)Bn̄Dµ

S?
⌘

, (40)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (13) and (17). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1. The lowest order Feynman rules for

n̄-s forward scattering from the operators in Eq. (39) are given by those in Fig. 9 with n $ n̄.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCETII as

LII(0)
G = e�ix·P X

n,n̄

X

i,j=q,g

Oij
nsn̄ + e�ix·P X

n

X

i,j=q,g

Oij
ns

⌘ e�ix·P X

n,n̄

X

i,j=q,g

OiB
n

1

P2
?
OBC

s

1

P2
?
OjC

n̄ + e�ix·P X

n

X

i,j=q,g

OiB
n

1

P2
?
OjnB

s . (41)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sectors

{n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). In SCETI these Glauber

operators are the same as in SCETII, so

LI(0)
G = LII(0)

G . (42)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and IVC.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (43)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 10. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

polarizations, we use Eq. (43) to eliminate the n·A polarization terms in the full theory amplitude.

must allow for soft emission from between the rapidity sectors:

Matching onto the action 18

a)

q
n

n

n

n

q
n

n

n

n
q

n

n

n

n

q
n

n

n

n

n

n

n

n
=

n

n

n

n

n

n

n

n
=

n

n

n

n

b)

n

n

n

n
=

n

n

n

n
n n
n n

=
n

n

n

n

FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p

2

) etc, for simplicity.

We begin our analysis by discussing the SCET
II

operators whose tree level matrix elements

reproduce the results in Eq. (27). The four SCET
II

operators whose matrix elements reproduce

Eq. (27) factorize into collinear and soft operators separated by 1/P2

? factors, so we adopt the

notation:
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On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},
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with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.
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gluon polarization vectors "µ2A2
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) etc, for simplicity.
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reproduce the results in Eq. (27). The four SCET
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? factors, so we adopt the

notation:
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On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},

Operator 
basis:

OBC
s = 8⇡↵sP2

?�
BC + ....

19

while the first and second superscript determine whether we take a quark or gluon operator in the

n-collinear or n̄-collinear sectors. Without soft gluons we have OBC
s = �BCP2

?.

The n-collinear quark and gluon terms, which occur in the first square bracket in each of the

four terms in Eq. (27), are matrix elements of the n-collinear operators

OqB
n = �n,!T

B n̄/

2
�n,! , OgB

n =
i

2
fBCDBC

n?µ,�! n̄ · (P+P†)BDµ
n?,! . (29)

Here the ! momentum labels ensure that the operators only pick out the forward contribution

where the large momentum of the n-collinear fields is conserved within the n-collinear operators,

and for the gluon operator we will always take ! > 0 (which avoids the need to worry about the

symmetry factor obtained when the two Bn?s are swapped). The n̄-collinear quark and gluon

terms appear as the contributions in the last square brackets of the four terms Eq. (27), and are

matrix elements of the operators,

OqB
n̄ = �n̄,!0TB n/

2
�n̄,!0 , OgB

n̄ =
i

2
fBCDBC

n̄?µ,�!0 n · (P+P†)BDµ
n̄?,!0 , (30)

where for the gluon operator we take !0 > 0. From Eqs. (29) and (30) we see that the n-collinear

and n̄-collinear results are the same, just with n $ n̄. These collinear operators are bilinears of the

fundamental quark and gluon gauge invariant building block operators in SCET. Furthermore, both

of these operators are octet combinations of the building blocks. The special condition imposed by

forward scattering kinematics is that these bilinears have a conserved momentum in one component

(we leave this as implicit in our definitions in Eqs. (29) and (30) since further subscripts would

be needed to indicate it explicitly). The tree level matching that yields the proper Wilson line

structure in the operators in Eqs. (29) and (30) is actually non-trivial due to operator mixing, and

is described in detail in Sec. III A.

The middle terms in square brackets in Eq. (27), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.

Accounting for the the 1/P2

? factors in Eq. (28) these operators must reduce to 8⇡↵sP2

? when all

soft fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (31)

Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (14) and

the other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (20). The

adjoint soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n

and n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain

soft gauge invariance. The operator in Eq. (31) is gauge invariant under soft gauge transformations
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a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.
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FIG. 17. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in gluon-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon.

the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation

with the top line replaced by an n-collinear gluon are shown in Fig. 17. The result is

Fig. 17a = i
h

ifA2A1Ag↵�? n̄ · p2
ih

v̄n̄
n/

2
TBvn̄

i

(75)

⇥ 8⇡↵s

~q 2
?~q

02
?

igfABC
h

qµ? + q0µ? � n · q n̄
µ

2
� n̄ · q0n

µ

2
� n̄µ~q 2

?
n̄ · q0 �

nµ~q 02
?

n · q
i

= Fig. 17b ,

where the SCET graph is given by the Feynman rule for Ogq
nsn̄. Here the graph with the 4-gluon

vertex does not contribute at this order in the power expansion (it is suppressed by O(�)) and

hence can be neglected. Once again the same universal soft operator OAB
s is responsible for the

O(�2) :actually

�2 ��2 �2 ��2 �2
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s

basis of           operators allowed by symmetries:

50

total) and gBn
S? · gBn

S? + gBn̄
S? · gBn̄

S? (two Sn lines in the first term, two Sn̄ lines in the sec-

ond term). It also eliminates operators like (gBnµ
S?)(S

T
n̄ Sn)(gBn̄

S?µ) and (gBnµ
S?)(S

T
n̄ Sn)(gBn

S?µ) +

(gBn̄µ
S?)(S

T
n̄ Sn)(gBn̄

S?µ).

Finally we have the operator with a single soft gluon field strength, of which there are two

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄ , O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn , (86)

In principle this operator could be eliminated in terms of Bn
S?, Bbn

S?, P?,  n
S , and  

n̄
S fields using

the soft gluon equations of motion. However doing so would introduce non-local factors of 1/in ·@s
and 1/in̄ · @s which we have not allowed in our construction. Therefore we must keep these two

field strength operators.

All together the 10 operators in Eqs. (80,82,85,86) give a complete basis for the soft operator

OAB
s . Note that the odd and even operators in the basis are related by Oi+1 = Oi

�

�

n$n̄
, and that

this di↵ers from the hermiticity condition in Eq. (78). In the next section we consider the con-

straints obtained by matching with up to two soft external gluons in order to fix the corresponding

coe�cients C1,...,10 in Eq. (76).

D. All Orders Soft Operator by Matching with up to Two Soft Gluons

Here we consider the basis of operators O1,...,10 determined above in Eqs.(80,82,85,86),

O1 = Pµ
?ST

n Sn̄P?µ, O2 = Pµ
?ST

n̄ SnP?µ, (87)

O3 = P? ·(g eBn
S?)(ST

n Sn̄)+(ST
n Sn̄)(g eBn̄

S?)·P?, O4 = P? ·(g eBn̄
S?)(ST

n̄ Sn)+(ST
n̄ Sn)(g eBn

S?)·P?,

O5 = P?
µ (ST

n Sn̄)(g eBn̄µ
S?)+(g eBnµ

S?)(ST
n Sn̄)P?

µ , O6 = P?
µ (ST

n̄ Sn)(g eBnµ
S?)+(g eBn̄µ

S?)(ST
n̄ Sn)P?

µ ,

O7 = (gBnµ
S?)ST

n Sn̄(gBn̄
S?µ), O8 = (gBn̄µ

S?)ST
n̄ Sn(gBn

S?µ),

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄, O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn,

and determine their corresponding Wilson coe�cients through matching calculations involving 0,

1, or 2 soft gluons. For this analysis it su�ces to consider only quarks for the n-collinear and

n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (28), and requires that the

soft operators
P

iCiOi reduce to P2
?�

AB when no gluons are present. Only O1 and O2 have this

property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (88)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 16a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},
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total) and gBn
S? · gBn

S? + gBn̄
S? · gBn̄

S? (two Sn lines in the first term, two Sn̄ lines in the sec-

ond term). It also eliminates operators like (gBnµ
S?)(S

T
n̄ Sn)(gBn̄

S?µ) and (gBnµ
S?)(S

T
n̄ Sn)(gBn

S?µ) +

(gBn̄µ
S?)(S

T
n̄ Sn)(gBn̄

S?µ).

Finally we have the operator with a single soft gluon field strength, of which there are two

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄ , O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn , (86)

In principle this operator could be eliminated in terms of Bn
S?, Bbn

S?, P?,  n
S , and  

n̄
S fields using

the soft gluon equations of motion. However doing so would introduce non-local factors of 1/in ·@s
and 1/in̄ · @s which we have not allowed in our construction. Therefore we must keep these two

field strength operators.

All together the 10 operators in Eqs. (80,82,85,86) give a complete basis for the soft operator

OAB
s . Note that the odd and even operators in the basis are related by Oi+1 = Oi

�

�

n$n̄
, and that

this di↵ers from the hermiticity condition in Eq. (78). In the next section we consider the con-

straints obtained by matching with up to two soft external gluons in order to fix the corresponding

coe�cients C1,...,10 in Eq. (76).

D. All Orders Soft Operator by Matching with up to Two Soft Gluons

Here we consider the basis of operators O1,...,10 determined above in Eqs.(80,82,85,86),

O1 = Pµ
?ST

n Sn̄P?µ, O2 = Pµ
?ST

n̄ SnP?µ, (87)

O3 = P? ·(g eBn
S?)(ST

n Sn̄)+(ST
n Sn̄)(g eBn̄

S?)·P?, O4 = P? ·(g eBn̄
S?)(ST

n̄ Sn)+(ST
n̄ Sn)(g eBn

S?)·P?,

O5 = P?
µ (ST

n Sn̄)(g eBn̄µ
S?)+(g eBnµ

S?)(ST
n Sn̄)P?

µ , O6 = P?
µ (ST

n̄ Sn)(g eBnµ
S?)+(g eBn̄µ

S?)(ST
n̄ Sn)P?

µ ,

O7 = (g eBnµ
S?)ST

n Sn̄(g eBn̄
S?µ), O8 = (g eBn̄µ

S?)ST
n̄ Sn(g eBn

S?µ),

O9 = ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄, O10 = ST

n̄ nµn̄⌫(ig eG
µ⌫
s )Sn,

and determine their corresponding Wilson coe�cients through matching calculations involving 0,

1, or 2 soft gluons. For this analysis it su�ces to consider only quarks for the n-collinear and

n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (28), and requires that the

soft operators
P

iCiOi reduce to P2
?�

AB when no gluons are present. Only O1 and O2 have this

property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (88)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 16a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},

octet Wilson line octet reps

Matching with up to 2 soft gluons fixes all coefficients

O(�2)

OBC
s = 8��s

�

i

CiO
BC
i

Restricted by: Hermiticity
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where to obtain the last line we swapped n $ n̄, q? $ q0?, and A $ B. If we write factors of q?
and q0? using the operator P? then swapping of these momenta is automatically accounted for in

the hermitian conjugation, so we see that hermiticity requires that the soft operators satisfy

O†
i

�

�

n$n̄
= Oi . (78)

Finally note that each term in the Lagrangian conserves ?-momentum, so the total ?-momentum

is zero and we can freely let a P? operator act in either direction, Pµ
? = P†µ

? . We use this freedom

to eliminate all P†
?s. Finally, whenever possible we will use the operator identities

⇥Pµ
?(ST

n Sn̄)
⇤

= �g eBnµ
S?(ST

n Sn̄) + (ST
n Sn̄)g eBn̄µ

S? , (79)

⇥Pµ
?(ST

n̄ Sn)
⇤

= �g eBn̄µ
S?(ST

n̄ Sn) + (ST
n̄ Sn)g eBnµ

S? ,

to eliminate P?s in terms of eBS?s. Here the Pµ
? acts only inside the square brackets.

In addition to the above constraints, we will also impose the restriction that at most one

Sn Wilson line and one Sn̄ Wilson line appear in the soft operators Oi. Note that the non-

local products (ST
n Sn̄) and (ST

n̄ Sn) are dimensionless, have power counting �0, and are soft gauge

invariant (up to the global transformation at 1). If we did not adopt the restriction of having

only one soft line of each type, then it would be possible to insert multiple products of these

two-line structures, and the set of potential operators would be substantially larger. The correct

picture is that the Sn and Sn̄ adjoint Wilson lines are generated by integrating out o↵shell lines

attaching to the color octet n-collinear and n̄-collinear sector operators respectively, at the same

time that we remove propagators associated with Glauber exchange. Therefore the restriction we

impose that only one of each type of soft Wilson line appears is very natural. In standard SCET

applications to hard scattering, the presence of only one soft line for each collinear operator in a

given representation follows immediately from the use of the BPS field redefinition [18] in SCETI,

with subsequent SCETI to SCETII matching by lowering the p2 scale for the collinear fields to that

of the soft fields.9 This direct proof becomes more complicated in the current case, because we

are simultaneously removing o↵shell and Glauber propagators, and when doing the matching we

must consider time order product graphs on the SCET side of the calculation rather than just the

localized operator whose Wilson lines we want to determine.

We decompose the basis into operators with zero, one, or two eBS? fields, or one Gµ⌫
s field, and

consider these classes in turn. Without any eBS? fields the minimal basis satisfying the constraints

discussed above is

O1 = Pµ
?ST

n Sn̄P?µ , O2 = Pµ
?ST

n̄ SnP?µ . (80)

9 For the case at hand this argument is no longer su�cient. This is simple to see since in the case of forward

scattering the SCETI theory contains both soft as well as US fields in the spectrum. Having both types of soft

fields contribute to a physical observable is unusual in SCET, and is more akin to NRQCD as formulated in

Ref. [35] where the soft modes are not radiated but play a crucial role in renormalizing the potentials. In the case

of SCETI forward scattering the softs renormalize the Glauber kernel.

, one Sn, one Sn̄

operator identities:  eg.
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FIG. 16. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in quark-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.
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FIG. 17. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in gluon-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon.

the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation

with the top line replaced by an n-collinear gluon are shown in Fig. 17. The result is

Fig. 17a = i
h

ifA2A1Ag↵�? n̄ · p2
ih

v̄n̄
n/

2
TBvn̄

i

(75)

⇥ 8⇡↵s

~q 2
?~q

02
?

igfABC
h

qµ? + q0µ? � n · q n̄
µ

2
� n̄ · q0n

µ

2
� n̄µ~q 2

?
n̄ · q0 �

nµ~q 02
?

n · q
i

= Fig. 17b ,

where the SCET graph is given by the Feynman rule for Ogq
nsn̄. Here the graph with the 4-gluon

vertex does not contribute at this order in the power expansion (it is suppressed by O(�)) and

hence can be neglected. Once again the same universal soft operator OAB
s is responsible for the
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the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines
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FIG. 18. Two Soft Gluon Matching for the Lipatov Operator. a) Full theory graphs with scaling for external

particles labeled. b) EFT graphs involving the Lipatov Operator and two soft gluons. The first three graphs

are T-products while the last is the direct Lipatov Operator two gluon term.

and if we combine these results with those from Eq. (90) we get

C1 = 1 , C2 = 0 , C3 + C5 = �1 , C4 = �C5 = �C6 , (95)

C7 = �1 , C8 = �0 , C9 + C10 = �1

2
.

Since not all coe�cients are fixed we must proceed to compare additional polarization projections.

NOTE(Should we draw the 2nd and 3rd graphs in Fig.18 as extended to emphasize the

Regge factorization?)

The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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and if we combine these results with those from Eq. (90) we get

C1 = 1 , C2 = 0 , C3 + C5 = �1 , C4 = �C5 = �C6 , (95)

C7 = �1 , C8 = �0 , C9 + C10 = �1
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Since not all coe�cients are fixed we must proceed to compare additional polarization projections.

NOTE(Should we draw the 2nd and 3rd graphs in Fig.18 as extended to emphasize the

Regge factorization?)

The constraints for the n-n̄ polarization choice are little more tricky because there are 11 full

theory diagrams that contribute, and we get contributions from using the equations of motion in

the results for ?-?, n-?, and ?-n̄. Also, there are many more kinematic variables involved and

thus many more constraints, and one must pick a minimal basis of momentum structures after
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structures the four that provide new information come from the structures k1? · k2?fC1AEfC2BE ,

k1? · k2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C9 = �1

2
(96)

C10 = 0 ,

C3 +
1

2
C7 � C9 = �1 ,

�C6 +
1

2
C8 + C10 = 0 .

Combining these results with Eq. (95) yields a unique solution for all the coe�cients, giving our

final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (97)

C1 = �C3 = �C7 = +1 , C9 = �1

2
.

Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
n Sn̄) except O5 have nonzero coe�cients. Putting together these results back into

Eq. (76) the final result is

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (98)

This is precisely the result for OAB
s that we quoted earlier in Eq. (32).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,
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Wilson Lines in the operators are obtained from Matching:
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FIG. 14. a) Full theory graphs for the tree level matching of quark-quark forward scattering with one extra

n-collinear gluon. b) EFT graphs for the tree level matching for the four quark operator with one n-collinear

gluon.

Fig. 14b. There are additional full theory diagram that are not shown, where the kn gluon attaches

to the either of the quarks on the top-line, but these on-shell contributions are exactly reproduced

by gluon attachments to the n-collinear quarks in an Oqq
nsn̄ insertion (also not shown). In contrast

the full theory graphs in Fig. 14a have a gluon with n-collinear scaling that either attaches to

a triple gluon vertex involving one Glauber propagator and one onshell (n-collinear) propagator,

or attaches to the n̄-collinear quark leading to a hard o↵shell propagator. If we consider the kn

external gluon to have ?-polarization for µ, then only the first full theory diagram in Fig. 14a and

the first SCET diagram in Fig. 14b are nonzero. After using the equation of motion relation in

Eq. (43) to eliminate n ·A(kn) in terms of A?(kn) and n̄ ·A(kn), then these two diagrams exactly

match up. This agreement is very analogous to the agreement we saw earlier for the diagrams in

Fig. 10, just with an extra quark line attached to one of the gluons there, and use of the equations

of motion on only one gluon.

When the kn external gluon has n̄µ polarization all the diagrams in Fig. 14 contribute. For this

case the analogy with simply adding a quark line to one of the gluons in Fig. 10 breaks down, since

using the equations of motion on only one gluon line no longer su�ces to achieve agreement. In

this case, the result for the sum of the full theory graphs in Fig. 14a is

Fig. 14a = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2 + 2n·k n̄·k
i

. (71)

The result for the first graph in SCET is

Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

2k? · (q? � k?)
i

. (72)

Using k2 = n·k n̄·k + k2? = 0 and q = q? the di↵erence is

Fig. 14a� Fig. 14b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2? � 2k? · q?
i

SCET

21

Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (15) and the

other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (21). The adjoint

soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n and

n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain soft

gauge invariance. The operator in Eq. (32) is gauge invariant under soft gauge transformations that

vanish at infinity. The fact that we have a non-trivial soft operator OBC
s is related to the existence

of the non-trivial soft sector that sits at rapidities between the n-collinear and n̄-collinear fields.

Here we have been deliberately glib about the multipole expansion for this non-local operator, but

will describe this fully in section Sec. IID 2 below. The directions for these soft Wilson lines are

discussed in Sec. IID 3.

At lowest order the Feynman diagrams for these operators may be denoted as in Fig. 4c. The

alternative notation with an extended red dashed line for these operators, as in Fig. 4b, serves to

remind us that the matrix element of OBC
s is non-local, giving a potential that scales as ��2. In

general the elliptical red Glauber blob indicates an interaction between either three or two rapidity

sectors in this manner,

= or

. (33)

The complete tree level Feynman rule for the quark operator Oqq
nsn̄ is identical to the result used

for the matching in Eq. (28), but this is not the case for the gluon operators since they have terms

from other polarizations. For future use we record the full set of Feynman rules at lowest order in

the coupling expansion in Fig. 5.

There are additional Feynman rules when the operators emit another gluon. For example,

consider Oqq
nsn̄ where q? = p1? � p4? and q0? = p3? � p2? are momentum transfers stemming from

the n and n̄-collinear quarks respectively (following Fig. 1), and k is the incoming momentum of

the gluon. Then the Feynman rules with one additional n-collinear gluon, n̄-collinear gluon, or soft

gluon emitted are shown in Fig. 6.

The Feynman rule with the soft gluon has contributions from all polarizations and reproduces

the Lipatov vertex used in small-x physics [? ]. Our soft operator has terms beyond the Lipatov

vertex from two and more gluon terms which we will discuss and make use of later on. The two

soft gluon Feynman rule is shown in Fig. 7. The result in Eq. (32) is new, it has not appeared

in either the QCD or SCET literature, and gives a completely gauge invariant factorized operator

that reproduces both forward scattering and the Lipatov vertex.

The scaling for the component operators in Eq. (29) are all identical: OiB
n ⇠ �2, OiB

n̄ ⇠ �2, and

Os ⇠ �2. Thus together the operators in Eq. (29) scale overall as Oij ⇠ �2. As we will see below in

Sec. II E, for this type of Glauber operator this scaling yields contributions that are leading order

from W 
Wilson

lines
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Fig. 14b. There are additional full theory diagram that are not shown, where the kn gluon attaches

to the either of the quarks on the top-line, but these on-shell contributions are exactly reproduced

by gluon attachments to the n-collinear quarks in an Oqq
nsn̄ insertion (also not shown). In contrast

the full theory graphs in Fig. 14a have a gluon with n-collinear scaling that either attaches to

a triple gluon vertex involving one Glauber propagator and one onshell (n-collinear) propagator,

or attaches to the n̄-collinear quark leading to a hard o↵shell propagator. If we consider the kn

external gluon to have ?-polarization for µ, then only the first full theory diagram in Fig. 14a and

the first SCET diagram in Fig. 14b are nonzero. After using the equation of motion relation in

Eq. (43) to eliminate n ·A(kn) in terms of A?(kn) and n̄ ·A(kn), then these two diagrams exactly

match up. This agreement is very analogous to the agreement we saw earlier for the diagrams in

Fig. 10, just with an extra quark line attached to one of the gluons there, and use of the equations

of motion on only one gluon.

When the kn external gluon has n̄µ polarization all the diagrams in Fig. 14 contribute. For this

case the analogy with simply adding a quark line to one of the gluons in Fig. 10 breaks down, since

using the equations of motion on only one gluon line no longer su�ces to achieve agreement. In

this case, the result for the sum of the full theory graphs in Fig. 14a is
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FIG. 6. One gluon with incoming momentum k emitted from the Oqq
nSn̄ Glauber operator. The first two

Feynman rules come from Wilson lines in the n-collinear and n̄-collinear part of the operator. The last

Feynman rule comes from the soft component of the operator, and corresponds with the Lipatov vertex.
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FIG. 7. Two Soft Gluon Feynman rule for the Oqq
nsn̄ operator. The terms in {· · · } times (8⇡↵s) are the

universal two soft gluon contribution from OAB
s .

sums agree after using equations of motion
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Feynman Rule examples: 28
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FIG. 9. Lowest order Feynman rules for the Glauber operators Oij
ns for n-s forward scattering. Results for

Oij
n̄s are analogous with n $ n̄.

gluon operators:

OqnB
s = 8⇡↵s

⇣

 ̄n
S TB n/

2
 n
S

⌘

,

OgnB
s = 8⇡↵s

⇣ i

2
fBCDBnC

S?µ

n

2
· (P+P†)BnDµ

S?
⌘

. (38)

Here the soft fields with n superscripts carry Sn Wilson lines and were defined in Eqs. (13) and

(17) above. The appearance of these Wilson lines is necessary to preserve soft gauge invariance,

and we will see in Sec. VIA that they arise from integrating out soft attachments to the n collinear

lines. By convention we group the gauge coupling ↵s with the soft component of the operator.

This is convenient since the running of this ↵s occurs from soft loops.7 Due to our normalization

conventions the total operators in Eq. (37) have Wilson coe�cients that are 1 at tree level. To

derive the scaling of the operators we note that OiB
n ⇠ �2, and OiB

s ⇠ �3, so with the 1/P2
? ⇠ ��2

we have the total scaling Oij
ns ⇠ �3. This is the correct scaling for a mixed n-s Glauber operator

that contributes at leading power in the SCET Lagrangian as shown below in Sec. VC. The lowest

order Feynman rules for n-s forward scattering from the operators in Eq. (37) are shown in Fig. 9.

If there is another collinear sector, such as our n̄, then there will be a set of soft-n̄ scattering

operators analogous to Eq. (37), which we can simply obtain by taking n $ n̄ in the above analysis.

Here the forward scattering conditions are that the n̄ · ps momentum is conserved on the soft line

7 The apparent symmetry between soft and collinear fields in these forward scattering operators is broken by the

fact that the two types of fields have di↵erent 0-bin subtractions.
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Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (15) and the

other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (21). The adjoint

soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n and

n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain soft

gauge invariance. The operator in Eq. (32) is gauge invariant under soft gauge transformations that

vanish at infinity. The fact that we have a non-trivial soft operator OBC
s is related to the existence

of the non-trivial soft sector that sits at rapidities between the n-collinear and n̄-collinear fields.

Here we have been deliberately glib about the multipole expansion for this non-local operator, but

will describe this fully in section Sec. IID 2 below. The directions for these soft Wilson lines are

discussed in Sec. IID 3.

At lowest order the Feynman diagrams for these operators may be denoted as in Fig. 4c. The

alternative notation with an extended red dashed line for these operators, as in Fig. 4b, serves to

remind us that the matrix element of OBC
s is non-local, giving a potential that scales as ��2. In

general the elliptical red Glauber blob indicates an interaction between either three or two rapidity

sectors in this manner,

= or

. (33)

The complete tree level Feynman rule for the quark operator Oqq
nsn̄ is identical to the result used

for the matching in Eq. (28), but this is not the case for the gluon operators since they have terms

from other polarizations. For future use we record the full set of Feynman rules at lowest order in

the coupling expansion in Fig. 5.

There are additional Feynman rules when the operators emit another gluon. For example,

consider Oqq
nsn̄ where q? = p1? � p4? and q0? = p3? � p2? are momentum transfers stemming from

the n and n̄-collinear quarks respectively (following Fig. 1), and k is the incoming momentum of

the gluon. Then the Feynman rules with one additional n-collinear gluon, n̄-collinear gluon, or soft

gluon emitted are shown in Fig. 6.

The Feynman rule with the soft gluon has contributions from all polarizations and reproduces

the Lipatov vertex used in small-x physics [? ]. Our soft operator has terms beyond the Lipatov

vertex from two and more gluon terms which we will discuss and make use of later on. The two

soft gluon Feynman rule is shown in Fig. 7. The result in Eq. (32) is new, it has not appeared

in either the QCD or SCET literature, and gives a completely gauge invariant factorized operator

that reproduces both forward scattering and the Lipatov vertex.

The scaling for the component operators in Eq. (29) are all identical: OiB
n ⇠ �2, OiB

n̄ ⇠ �2, and

Os ⇠ �2. Thus together the operators in Eq. (29) scale overall as Oij ⇠ �2. As we will see below in

Sec. II E, for this type of Glauber operator this scaling yields contributions that are leading order

shorthand
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ūn
n̄/
2T

Aun

ih

n·k0 gµ⌫? � nµ`0⌫? � n⌫k0µ
? +

`0?·k0?nµn⌫

n·k0
i

n

n

n

n

k
μ,B ν,C

A
=

�8⇡↵sfABC

(~̀?�~k?)2
h

n̄·k gµ⌫? � n̄µ`⌫? � n̄⌫kµ
? + `?·k?n̄µn̄⌫

n̄·k
ih

v̄n̄
n/
2 T̄

Avn̄
i

n n
n n

μ,B ν,C

λ,D τ,E
' k'

k =
8⇡i↵sfABCfADE

(~̀?�~k?)2
h

n̄·k gµ⌫? � n̄µ`⌫? � n̄⌫kµ
? + `?·k?n̄µn̄⌫

n̄·k
i

⇥
h

n·k0 g�⌧? � n�`0⌧? � n⌧k0�
? +

`0?·k0?n�n⌧

n·k0
i

FIG. 5. Lowest order Feynman rules for the Glauber operators Oij
nsn̄ for n-n̄ forward scattering.

element of OBC
s is non-local, giving a potential that scales as ��2. The alternate notation collapses

this red dashed line to an elliptical blob to indicate that it has no field dependent dynamics. In

general the elliptical red Glauber blob indicates an interaction between either three or two rapidity

sectors in this manner,

= or

. (33)

The complete tree level Feynman rule for the quark operator Oqq
nsn̄ is identical to the result used

for the matching in Eq. (28), but this is not the case for the gluon operators since they have terms

from other polarizations. For future use we record the full set of Feynman rules at lowest order in

the coupling expansion in Fig. 5.

There are additional Feynman rules when the operators emit another gluon. For example,

consider Oqq
nsn̄ where q? = p1? � p4? and q0? = p3? � p2? are momentum transfers stemming from

the n and n̄-collinear quarks respectively (following Fig. 1), and k is the incoming momentum of

the gluon. Then the Feynman rules with one additional n-collinear gluon, n̄-collinear gluon, or soft

gluon emitted are shown in Fig. 6.

The Feynman rule with the soft gluon has contributions from all polarizations and reproduces

the Lipatov vertex [67] used in small-x physics. Our soft operator has terms beyond the Lipatov

vertex from two and more gluon terms which we will discuss and make use of later on. The two

soft gluon Feynman rule is shown in Fig. 7. The result in Eq. (32) is new, it has not appeared
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Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (15) and the

other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (21). The adjoint

soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n and

n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain soft

gauge invariance. The operator in Eq. (32) is gauge invariant under soft gauge transformations that

vanish at infinity. The fact that we have a non-trivial soft operator OBC
s is related to the existence

of the non-trivial soft sector that sits at rapidities between the n-collinear and n̄-collinear fields.

Here we have been deliberately glib about the multipole expansion for this non-local operator, but

will describe this fully in section Sec. IID 2 below. The directions for these soft Wilson lines are

discussed in Sec. IID 3.

At lowest order the Feynman diagrams for these operators may be denoted as in Fig. 4c. The

alternative notation with an extended red dashed line for these operators, as in Fig. 4b, serves to

remind us that the matrix element of OBC
s is non-local, giving a potential that scales as ��2. In

general the elliptical red Glauber blob indicates an interaction between either three or two rapidity

sectors in this manner,

= or

. (33)

The complete tree level Feynman rule for the quark operator Oqq
nsn̄ is identical to the result used

for the matching in Eq. (28), but this is not the case for the gluon operators since they have terms

from other polarizations. For future use we record the full set of Feynman rules at lowest order in

the coupling expansion in Fig. 5.

There are additional Feynman rules when the operators emit another gluon. For example,

consider Oqq
nsn̄ where q? = p1? � p4? and q0? = p3? � p2? are momentum transfers stemming from

the n and n̄-collinear quarks respectively (following Fig. 1), and k is the incoming momentum of

the gluon. Then the Feynman rules with one additional n-collinear gluon, n̄-collinear gluon, or soft

gluon emitted are shown in Fig. 6.

The Feynman rule with the soft gluon has contributions from all polarizations and reproduces

the Lipatov vertex used in small-x physics [? ]. Our soft operator has terms beyond the Lipatov

vertex from two and more gluon terms which we will discuss and make use of later on. The two

soft gluon Feynman rule is shown in Fig. 7. The result in Eq. (32) is new, it has not appeared

in either the QCD or SCET literature, and gives a completely gauge invariant factorized operator

that reproduces both forward scattering and the Lipatov vertex.

The scaling for the component operators in Eq. (29) are all identical: OiB
n ⇠ �2, OiB

n̄ ⇠ �2, and

Os ⇠ �2. Thus together the operators in Eq. (29) scale overall as Oij ⇠ �2. As we will see below in

Sec. II E, for this type of Glauber operator this scaling yields contributions that are leading order
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FIG. 6. One gluon with incoming momentum k emitted from the Oqq
nSn̄ Glauber operator. The first two

Feynman rules come from Wilson lines in the n-collinear and n̄-collinear part of the operator. The last

Feynman rule comes from the soft component of the operator, and corresponds with the Lipatov vertex.
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FIG. 7. Two Soft Gluon Feynman rule for the Oqq
nsn̄ operator. The terms in {· · · } times (8⇡↵s) are the

universal two soft gluon contribution from OAB
s .
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FIG. 6. One gluon with incoming momentum k emitted from the Oqq
nSn̄ Glauber operator. The first two

Feynman rules come from Wilson lines in the n-collinear and n̄-collinear part of the operator. The last

Feynman rule comes from the soft component of the operator, and corresponds with the Lipatov vertex.
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universal two soft gluon contribution from OAB
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divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of
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for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are
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Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�
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+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w
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2Pz
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+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)

Other source of rapidity divergences are the 
Wilson lines which need to be regulated

32

divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
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for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp
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Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w

�

�

2Pz

⌫

�

�

+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)

(ala Chiu, Jain, Neill, Rothstein)

Glauber contributions. We also discuss zero-bin subtractions [56] from the Glauber region for

soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (5.43)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An n-

collinear gluons respectively [55]. At one-loop rapidity divergences will appear as 1/⌘ poles with

a corresponding logarithmic dependence on the cuto↵ ⌫. Since ⌫ is dimensionful, it technically is

⌫/µ that is associated to the rapidity, but we will still follow the common practice of referring to ⌫

as the rapidity scale. Here w is a book keeping coupling used to calculate anomalous dimensions

through

⌫
@

@⌫
w2(⌫) = �⌘w2(⌫) , lim

⌘!0

w(⌫) = 1 . (5.44)

The powers of ⌘ are fixed to ensure that the rapidity divergences cancel when summing over

sectors. That the correct choice has been made can be seen by regulating the corresponding

full theory diagrams and expanding around the soft and collinear limits. Counterterms will have

both 1/⌘ and 1/✏ poles, and are identified by taking ⌘ ! 0 prior to expanding for ✏ ! 0. The

regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp

⇢ �g

n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(5.45)

Wn =
X

perms

exp

⇢ �g

n̄ · P


w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [55]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since

the exponentiation can be derived by permutations of momenta under which the regulator is

symmetric. An additional complication in the operators we consider is the presence of inverse

factors of n̄ · P and n · P that appear outside of the Wilson lines. Since our operators can be

written in di↵erent equivalent forms, these factors are required for consistency. Examples where

this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s , see for example Eq. (4.15). Here, the inverse

power to that in Eq. (5.43) is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of

– 42 –
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In order that these two momentum routings give the same results, it is important that the rapidity

regulators also are transformed into one another under this change of variable, and of course also

will regulate the singularities in the diagram. Eq. (63) with the in · @ and in̄ · @ factors satisfies

both these criteria. In particular for the loop integrals in the two routings we have

Fig. 13a :

Z

d�dk d�d` |2kz|�2⌘|2`z|�⌘ Na(`, k?, q?)G0(k?)G0(k?+`?)G0(k?+`?�q?)G0(k?�q?)
h

k++p+2 � (~k?+~p2?+~̀?)2

p�2
+i0

ih

�k�+p�1 � (~k?�~p1?)2
p+1

+i0
i

⇥

`2+i0
⇤

,

Fig. 13b :

Z

d�dk d�d` |k+1 +k�2 |�2⌘|k�1 +k�2 �k+1 �k+2 |�⌘ Nb(k
�
1 , k

+
2 , k1?, k2?, q?)

h

k+1 +p+2 � (~k1?+~p2?)2

p�2
+i0

ih

�k�2 +p�1 � (~k2?+~p1?)2

p+1
+i0

i

⇥

k+2 k
�
1 �(~k1?+~k2?)2+i0

⇤

⇥G0(k1?)G0(k2?)G0(k1?�q?)G0(k2?+q?), (66)

where for this equation only, G0(k?) = (ig2)/~k 2
?. Here Na and Nb are functions that are each

obtained from the contraction of two Lipatov vertices from Fig. 6. For the two routings the factors

of |2kz|�2⌘ and |k+1 + k�2 |�2⌘ are each obtained from the |in ·  @ + in̄ · ~@|�⌘ regulator in Eq. (63).

This regulates the dk+dk� integrations in the Fig. 13a routing, and the dk+1 dk
�
2 integrations in

the Fig. 13b routing. The other regulator factors |2`z|�⌘ and |k�1 + k�2 � k+1 � k+2 |�⌘ are generated

by the regulator in the soft Wilson lines in OAB
s , and hence only the depend on the soft gluons

momentum in each case. They regulate eikonal factors that appear inside Na and Nb. Noting that

Nb ! Na under the transformation in Eq. (65), it is easy to see that the two results in Eq. (66)

are exactly equivalent under this transformation.

The SCET graphs also have zero-bin subtractions [42] which are necessary to avoid double

counting between contributions from the various infrared modes. For SCETII the overlapping

modes are Glauber, soft, and collinear. The structure of these subtractions for one-loop soft

graphs S and one-loop n-collinear graphs Cn is

S = S̃ � S(G) , Cn = C̃n � C(S)
n � C(G)

n + C(GS)
n , (67)

where the superscript indicates the momentum region that the subtraction comes from, and G for

the soft subtraction can be any one of the three Glauber momentum scalings (+,�,?) ⇠ (�2,�2,�)

or (�2,�,�) or (�,�2,�), while the G subtraction for the n-collinear case only indicates one of the

first two. The result for Cn̄ is analogous, obtained by taking n ! n̄ in Cn. If we start with the

naive soft loop graph S̃ with loop momentum k, then the Glauber subtraction S(G) is obtained

from scaling the S̃ integrand into the region k+k� ⌧ ~k 2
? and keeping only terms that are the same

order in the � power counting as the original integrand. If we have a naive n-collinear loop graph

C̃n with loop momentum `, then there is a soft subtraction from the region `µ ⇠ �, and a Glauber

subtraction from the region `+`� ⌧ ~̀2?, plus a term that adds back the soft-Glauber overlap

region so that it is not over subtracted. Note that when we consider the scaling limits to construct

the 0-bin subtractions that we do not change the form of the rapidity regulator (the original and

subtraction integrals must share the same regulators for the subtraction to properly remove any

(ala Manohar & IS)
eg. 1-loop SCETII graphs:
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In order that these two momentum routings give the same results, it is important that the rapidity

regulators also are transformed into one another under this change of variable, and of course also

will regulate the singularities in the diagram. Eq. (63) with the in · @ and in̄ · @ factors satisfies

both these criteria. In particular for the loop integrals in the two routings we have
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where for this equation only, G0(k?) = (ig2)/~k 2
?. Here Na and Nb are functions that are each

obtained from the contraction of two Lipatov vertices from Fig. 6. For the two routings the factors

of |2kz|�2⌘ and |k+1 + k�2 |�2⌘ are each obtained from the |in ·  @ + in̄ · ~@|�⌘ regulator in Eq. (63).

This regulates the dk+dk� integrations in the Fig. 13a routing, and the dk+1 dk
�
2 integrations in

the Fig. 13b routing. The other regulator factors |2`z|�⌘ and |k�1 + k�2 � k+1 � k+2 |�⌘ are generated

by the regulator in the soft Wilson lines in OAB
s , and hence only the depend on the soft gluons

momentum in each case. They regulate eikonal factors that appear inside Na and Nb. Noting that

Nb ! Na under the transformation in Eq. (65), it is easy to see that the two results in Eq. (66)

are exactly equivalent under this transformation.

The SCET graphs also have zero-bin subtractions [42] which are necessary to avoid double

counting between contributions from the various infrared modes. For SCETII the overlapping

modes are Glauber, soft, and collinear. The structure of these subtractions for one-loop soft

graphs S and one-loop n-collinear graphs Cn is

S = S̃ � S(G) , Cn = C̃n � C(S)
n � C(G)

n + C(GS)
n , (67)

where the superscript indicates the momentum region that the subtraction comes from, and G for

the soft subtraction can be any one of the three Glauber momentum scalings (+,�,?) ⇠ (�2,�2,�)

or (�2,�,�) or (�,�2,�), while the G subtraction for the n-collinear case only indicates one of the

first two. The result for Cn̄ is analogous, obtained by taking n ! n̄ in Cn. If we start with the

naive soft loop graph S̃ with loop momentum k, then the Glauber subtraction S(G) is obtained

from scaling the S̃ integrand into the region k+k� ⌧ ~k 2
? and keeping only terms that are the same

order in the � power counting as the original integrand. If we have a naive n-collinear loop graph

C̃n with loop momentum `, then there is a soft subtraction from the region `µ ⇠ �, and a Glauber

subtraction from the region `+`� ⌧ ~̀2?, plus a term that adds back the soft-Glauber overlap

region so that it is not over subtracted. Note that when we consider the scaling limits to construct

the 0-bin subtractions that we do not change the form of the rapidity regulator (the original and

subtraction integrals must share the same regulators for the subtraction to properly remove any
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄

1

⇣�i

4⇡

⌘

Z

d�d�2k? (�i⇡)

[~k 2
? +m2][(~k?+~q?)2 +m2]

=
i↵2

s

t
Snn̄
1



8i⇡ ln
⇣�t

m2

⌘

�

. (108)

Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

eq. One Loop       scatteringqq̄

Leading Power EFT graphs (Glauber, Soft,  & Collinear Loops)

21

Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (15) and the

other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (21). The adjoint

soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n and

n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain soft

gauge invariance. The operator in Eq. (32) is gauge invariant under soft gauge transformations that

vanish at infinity. The fact that we have a non-trivial soft operator OBC
s is related to the existence

of the non-trivial soft sector that sits at rapidities between the n-collinear and n̄-collinear fields.

Here we have been deliberately glib about the multipole expansion for this non-local operator, but

will describe this fully in section Sec. IID 2 below. The directions for these soft Wilson lines are

discussed in Sec. IID 3.

At lowest order the Feynman diagrams for these operators may be denoted as in Fig. 4c. The

alternative notation with an extended red dashed line for these operators, as in Fig. 4b, serves to

remind us that the matrix element of OBC
s is non-local, giving a potential that scales as ��2. In

general the elliptical red Glauber blob indicates an interaction between either three or two rapidity

sectors in this manner,

= or

. (33)

The complete tree level Feynman rule for the quark operator Oqq
nsn̄ is identical to the result used

for the matching in Eq. (28), but this is not the case for the gluon operators since they have terms

from other polarizations. For future use we record the full set of Feynman rules at lowest order in

the coupling expansion in Fig. 5.

There are additional Feynman rules when the operators emit another gluon. For example,

consider Oqq
nsn̄ where q? = p1? � p4? and q0? = p3? � p2? are momentum transfers stemming from

the n and n̄-collinear quarks respectively (following Fig. 1), and k is the incoming momentum of

the gluon. Then the Feynman rules with one additional n-collinear gluon, n̄-collinear gluon, or soft

gluon emitted are shown in Fig. 6.

The Feynman rule with the soft gluon has contributions from all polarizations and reproduces

the Lipatov vertex used in small-x physics [? ]. Our soft operator has terms beyond the Lipatov

vertex from two and more gluon terms which we will discuss and make use of later on. The two

soft gluon Feynman rule is shown in Fig. 7. The result in Eq. (32) is new, it has not appeared

in either the QCD or SCET literature, and gives a completely gauge invariant factorized operator

that reproduces both forward scattering and the Lipatov vertex.

The scaling for the component operators in Eq. (29) are all identical: OiB
n ⇠ �2, OiB

n̄ ⇠ �2, and

Os ⇠ �2. Thus together the operators in Eq. (29) scale overall as Oij ⇠ �2. As we will see below in

Sec. II E, for this type of Glauber operator this scaling yields contributions that are leading order

shorthand
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄

1

⇣�i

4⇡

⌘
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d�d�2k? (�i⇡)
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=
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s

t
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
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⌘

�

. (108)

Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

IGbox =
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

IGcbox =
�

d�d�2k� d�k0 d�kz |kz|�2� (�/2)2�

(�k 2
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�
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= 0
k0 poles on same side
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To regulate the integrals in Eq. (48) for the nonabelian case we will use the rapidity regulator

w2|2qz|�⌘⌫⌘ of Ref. [31], where w = w(⌫) is a renormalized coupling used to derive RG equations,

and in the limit ⌘ ! 0 we set w(⌫) = 1. In terms of light-cone momenta qz = (q� � q+)/2,

and results and counterterms are identified by taking ⌘ ! 0 prior to expanding for ✏ ! 0. The

parameter ⌫ introduces an extra cuto↵ parameter that behaves in a similar way to µ of the MS

scheme in dimensional regularization. To regulate multiple iterations of these Glauber potentials we

will have one factor of w|2qz|�⌘⌫⌘ for each Glauber potential carrying momentum q. We will refer

to this as the ⌘-regulator.8 In the next section we formulate this regulator for Glauber potentials

at the level of the Glauber Lagrangian, and also discuss the regulation of rapidity divergences from

soft and collinear loop graphs. In this section the coupling w(⌫) will play no role (since as we will

see, the graphs do not have 1/⌘ poles), so we will from the start set w(⌫) = 1 below.

For the Glauber loop momentum in Fig. 12, qz = kz ⇠ �2, so we have a factor of |kz|�⌘(⌫/2)⌘

for each of the two potential insertions in these graphs. The presence of the |kz|�⌘ factor means

that the Glauber exchange is no longer static in longitudinal distance. We will recover the static

nature of the exchange in this direction only when ⌘ ! 0. With this regulator the loop integrals

become well defined because we are forced to consider the contour integral in the analytic variable

k0, rather than using any time slice that involves some amount of kz. With this regulator the

Glauber cross-box integral becomes

IGcbox =

Z

d�d�2k? d�k0 d�kz |kz|�2⌘ (⌫/2)2⌘

(~k 2
?)(~k?+~q?)2

⇣

k0� kz+p+3 �(~k?+ ~q?
2 )2/p�2 +i0

⌘⇣

k0+ kz+p�1 �(~k?+ ~q?
2 )2/p+1 +i0

⌘

= 0 , (49)
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where the kz integral is evaluated in Eq. (C2). Here 2� =(~k?+~q?/2) 2/p+1+(~k?+~q?/2) 2/p�2�p�4�p+3
and the ⌘ dependent term evaluates to (�i⇡) as ⌘ ! 0 for any value of this �. This extra (�i) is

the factor that causes the Glauber potential to exponentiate into a phase. The result in Eq. (50)

8 Including an ⌘-regulator for each Glauber potential goes beyond the definition in Ref. [31], where it was used for

group momenta in soft and collinear Wilson lines.
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄
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⇣�i
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�
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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polarization, we will refer to it as a “soft eye” graph. For this “soft eye” diagram we find

Fig. 20c =
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3 ◆✏µ2✏
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⌘
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. (112)

Here inside the integral the denominators in square brackets have a +i0, the factor of (d � 2) =

gµ⌫? g?µ⌫ , and the rapidity divergence comes only from the first term in curly brackets. The factor

of 1/2 in the first line is a symmetry factor. The function multiplying the 1/⌘ rapidity divergence

for the result in Eq. (112) is

g(✏, µ2/t) = e✏�E
⇣µ2

�t

⌘✏
cos(⇡✏)�(�✏)�(1 + 2✏) . (113)

For the result in Eq. (112), it is interesting to note that the full 11CA/3✏ factor needed for the

1-loop �-function for the strong coupling has been generated from a graph only involving gluons,

without a ghost contribution. This arises due to the form of the soft gauge invariance of the gluon

operator in the EFT. Only the rapidity divergent integral in Eq. (112) is non-standard, and we

carry it out in App. C.

The choice of ±i0 factors in the (n̄ · k ± i0) and (n · k ± i0) denominators of Eq. (112) does

not change the result for this integral, due to the Glauber 0-bin subtraction that must be carried

out for this soft graph. The easiest way to see this is to carry out the k0 integration by contours.

If the eikonal propagators are (n̄ · k + i0)(n · k + i0) or (n̄ · k � i0)(n · k � i0) then we can close

the k0 contour to only pick the poles from the propagators [k2 �m2 + i0][(k + q)2 �m2 + i0], and

doing the integral gives the result quoted in Eq. (112). In this case the naive soft integral is the

full result, S = S̃, and the Glauber 0-bin subtraction is zero, because these propagators become

[k2?�m2+i0][(k?+q?)2�m2+i0] in the Glauber limit, and the k0 poles in the eikonal propagators

are on the same side. The vanishing of this Glauber 0-bin subtraction occurs for the same reason as

the vanishing of the Glauber cross-box. On the other hand if the eikonal propagators are taken to

have opposite sign i0s, (n̄ ·k+i0)(n ·k�i0) or (n̄ ·k�i0)(n ·k+i0), then when we calculate the naive

soft loop S̃ by closing the k0 contour, and relative to the above we have to include an additional

additive contribution from an eikonal pole. When we pick this pole, we either set n · k = 0 or

n̄ · k = 0 in the other propagators, so the relativistic propagators are exactly reduced to their form

in the Glauber limit. Therefore, in this case this extra contribution in S̃ is exactly canceled by the

graphs non-zero Glauber 0-bin subtraction, S(G),

S(G)(Fig. 20c) =
4g4

t2
Snn̄
3 ◆✏µ2✏

Z

d�dk |kz|�⌘ ⌫⌘

[k2? �m2][(k? + q?)2 �m2]

4[k? · (k? + q?)]2

(n̄ · k ± i0)(n · k ⌥ i0)
. (114)
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operator in the EFT. Only the rapidity divergent integral in Eq. (112) is non-standard, and we

carry it out in App. C.
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[k2?�m2+i0][(k?+q?)2�m2+i0] in the Glauber limit, and the k0 poles in the eikonal propagators

are on the same side. The vanishing of this Glauber 0-bin subtraction occurs for the same reason as

the vanishing of the Glauber cross-box. On the other hand if the eikonal propagators are taken to

have opposite sign i0s, (n̄ ·k+i0)(n ·k�i0) or (n̄ ·k�i0)(n ·k+i0), then when we calculate the naive

soft loop S̃ by closing the k0 contour, and relative to the above we have to include an additional

additive contribution from an eikonal pole. When we pick this pole, we either set n · k = 0 or

n̄ · k = 0 in the other propagators, so the relativistic propagators are exactly reduced to their form

in the Glauber limit. Therefore, in this case this extra contribution in S̃ is exactly canceled by the

graphs non-zero Glauber 0-bin subtraction, S(G),
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and

Glauber Loops = Fig. 20a

= (�4g4) Snn̄
1 IGbox = (�4g4) Snn̄
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

63

two graphs after doing the integrals we find

Figs. 20f + 20k (122)
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Here the factors of ln(s) appear from adding the two diagrams and using ln(n̄ ·p3)+ln(n ·p4) = ln s.

For the collinear loop integral in Eq. (121) we must consider the soft and Glauber 0-bin sub-

tractions, C = C̃ � C(S) � C(G) + C(SG), but here the subtractions give vanishing contributions.

In the soft limit kµ ⇠ �, so in Eq. (121) the denominator (k + p3)2 ! (n · k n̄ · p3). Only the

rapidity divergent term gives an integral scaling as �0, whereas all the remaining terms in the curly

brackets give integrals scaling as O(�) that are dropped. The contribution for the soft subtraction

is therefore

C(S)(Fig. 20f) = �g4

2t
Snn̄
3

Z

d�dk
(◆✏µ2✏|n̄ · k/2|�⌘⌫⌘)

[k2 �m2][(k + q)2 �m2](n · k + i0)

8k? ·(k?+q?)
n̄ · k . (123)

This integral can be performed by contours in k+ = n · k. Since q is purely transverse the poles in

the two relativistic propagators are on the same side for either k� > 0 or k� < 0, so the full result

is obtained from the k� < 0 region by closing about the n · k = �i0 pole. This leaves a vanishing

scaleless integral in k�,
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so the soft subtraction C(S)(Fig. 20f) = 0. The remaining subtractions come from the Glauber

limit, and soft+Glauber limit, and are considered together. Again power counting implies that

only the rapidity divergent term must be considered and we find
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In the di↵erence we have two poles on the same side in the n·k contour integral, so the contributions

from the subtractions in Eq. (125) vanish. Thus, with our regulators all the 0-bin subtractions

vanish for the collinear graph and result for the n-collinear V-graph loop in Eq. (121) is simply

obtained from the naive integral, C = C̃. The situation is identical for the 0-bin subtractions for

the n̄-collinear V-graph.

Next we consider the collinear Wilson line graphs in Fig. 20h,i,m,n. Using the Feynman rules

from Fig. 6, we see that the contractions with the incoming or outgoing collinear quark give the

+

opposite sign for this 
rapidity divergence

rapidity divergent
µ2 � �2 � �t

µ2 � �t

�2 � s

eg. Rapidity divergences from Wilson lines

(contribution to impact factors)
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Note that the 1/✏2 and ln(µ2/⌫2)/✏ terms have canceled in this result, leaving only the 1/⌘ rapidity

divergences and 1/✏ UV divergences. Since the bare soft operator OAB
s has a factor of ↵bare

s

multiplying the fields, there is also Z↵ coupling counterterm contribution in the operator Feynman

rule. It gives the contribution

soft ↵s counterterm =
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This result exactly cancels the 1/✏ terms in Eq. (118), so with the counterterm the total sum of

all soft loop graphs is given by
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Thus the sum of graphs in the soft sector only has rapidity divergences. The logarithms from these

soft loops are minimized for µ ⇠ ⌫ ⇠ p
t which is consistent with our power counting.

Finally we consider the remaining collinear diagrams, in Fig. 20f,g,h,k,l,m. The two V-graphs

in Fig. 20f,k give related contributions, and are induced by the Glauber operator involving n-

collinear gluons, mixing back into n-collinear quarks (and likewise for the n̄-collinear loop). The

Ogq
nsn̄ Glauber operator only produces An? and n̄ · An gluons, so for the n-collinear V-graph we

have
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Only the first term in curly braces has a rapidity divergence, and we give the result for this

integral in App. C. All the other loop integrals are standard. The result for the n̄-collinear V-

graph in Fig. 20k is the same as the final answer with p3 ! p4. Combining the results for these
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The sum of all the collinear graphs from Eqs. (109,122,C7) gives

Collinear Loops = Figs. 20f -o

=
i↵2

s

t
Snn̄
3

⇢

8

⌘
h
⇣

✏,
µ2

m2

⌘

+
8

⌘
g
⇣

✏,
µ2

�t

⌘

+ 4 ln
⇣⌫2

s

⌘

ln
⇣�t

m2

⌘

+ 2 ln2
⇣m2

�t

⌘

+4+
4⇡2

3

�

+
i↵2

s

t
Snn̄
2



� 4 ln2
⇣m2

�t

⌘

� 12 ln
⇣m2

�t

⌘

� 14

�

. (129)

Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).
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and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find

Total SCET = Figs. 20a-o+ Z↵ c.t.

=
i↵2

s

t
Snn̄
1



8i⇡ ln
⇣�t

m2

⌘

�

+
i↵2

s

t
Snn̄
2



� 4 ln2
⇣m2

�t

⌘

� 12 ln
⇣m2

�t

⌘

� 14

�

+
i↵2

s

t
Snn̄
3

⇢

� 4 ln
⇣ s

�t

⌘

ln
⇣�t

m2

⌘

+
22

3
ln

µ2

�t
+

170

9
+

2⇡2

3

�

+
i↵2

s

t
Snn̄
4



� 8

3
ln

⇣µ2

�t

⌘

� 40

9

�

. (130)

This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.

a) b)

n n

nn

n n

n n

nn

nn

n n
n

n n

nn

n nn
n n

nn

n n

nn n

nn

n n

nn
n
nn

FIG. 21. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which vanish. b)

Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that
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FIG. 20. SCETII graphs for the matching calculation of quark-quark forward scattering at one-loop. The

first two graphs involve the Glauber potential. The next three graphs involve soft gluon or soft quark loops.

The second and third rows involve collinear loops with either the quark-gluon Glauber scattering operators

or the quark-quark Glauber scattering operator.
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Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute to the

matching calculation since they vanish due to their soft zero-bin subtractions.

The two graphs with an iteration of the Glauber operator, Fig. 20a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 20b vanishes (with or without

the mass IR regulator), and
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Thus we already see that iterated Glauber exchange reproduces the full Snn̄
1 piece of Eq. (107).

Next we consider the SCET graphs contributing to the CFTA ⌦ TA color structure, ie. that

no 1/� poles

m = gluon mass IR regulator

(after coupling
renormalization)
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FIG. 20. Full theory graphs for the matching calculation of quark-antiquark forward scattering at one-loop.

the appropriate 0-bin subtractions for soft and collinear one-loop graphs are given in Eq. (68). In

the SCETII theory we are considering here, there are no 0-bin subtractions for the Glauber loop

graphs.

1. Full Theory Graphs

Consider first the full QCD graphs shown in Fig. 20 which we number from a) to j). These

graphs are computed exactly, and then the results are expanded in the EFT limit with t ⌧ s.

There are two additional box-type graphs obtained by rotating Fig. 20a,b by 90�, but neither of

these graphs contributes at leading power in this limit. The proper cut structure is obtained with

s = s + i0 and t = t + i0, where we note that for our kinematics s > 0 and t < 0. The i0 will be

implied in the rest of the paper. For brevity when giving our results below, we quote the original

QCD integrand and then the final expanded result for each graph. The group theory and spinor

factors come in one of four combinations which we denote
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ūnT
A n̄/

2
un

ih

v̄n̄T̄
An/

2
vn̄

i

. (99)

Since the techniques for carrying out one-loop integrals are standard, we will only quote the result

for the graphs at the integrand level, and then the final result. For the full theory box graph we

have
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= Total QCD (s� t)

IR divergences reproduced, 
no hard matching
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The sum of all the collinear graphs from Eqs. (109,122,C7) gives
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Again there are cancellations that have occurred for the sum of graphs, the ln(⌫2/s)/✏ terms have

canceled, as have all the 1/✏ terms. (This is also true separately for the n-collinear graphs and

n̄-collinear graphs.) Thus the collinear graphs also only have rapidity divergences. The logarithms

from these collinear loops are minimized with µ ⇠ p
t and ⌫ ⇠ n̄ · p3 ⇠ n · p4 ⇠ p

s. Once again

this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (108,120,129).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale to avoid having

large logs which are ratios of rapidity scales. Note that the rapidity divergences from the soft

and collinear Wilson line graphs cancel, h(✏, µ2/m2)/⌘ � h(✏, µ2/m2)/⌘, independent from the

rapidity divergence cancellation that occurs between the soft eye-graph and collinear V-graphs,

g(✏, µ2/(�t))/⌘ � g(✏, µ2/(�t))/⌘. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (107) for all color

structures, all logs, and all constant terms. Since all IR divergences are correctly reproduced this

provides a non-trivial test of our EFT framework. The ln µ2

�t dependence is proportional to the

one-loop beta function, and hence exactly corresponds with the µ dependence in the ↵s(µ) of the

tree level Glauber exchange diagram. This logarithm shows that the scale µ2 ' �t > 0 is the

preferred value for this potential. The various ln m2

�t are infrared in origin. Finally, since s � �t

there is one large logarithm, ln s
�t , which is generated by the separation of rapidity singularites

in the soft and collinear diagrams (as opposed to invariant mass singularities). The resummation

of these logarithms leads to gluon Reggeization in the EFT operators, which we discuss in more

detail in the next section.

Finally, the fact that the SCET result in Eq. (130) agrees exactly with the full theory result in

Eq. (107) implies that there are no hard matching corrections to the Glauber operator at the scale
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This result exactly cancels the 1/✏ terms in Eq. (7.21), so with the counterterm the total sum of

all soft loop graphs is given by
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Thus in SCET
II

the sum of graphs in the soft sector only has rapidity divergences. The logarithms

from these soft loops are minimized for µ ⇠ ⌫ ⇠ p�t which is consistent with our power counting.

It is interesting to note that the full two-loop cusp anomalous dimension, which is determined by

K = (67/18�⇡2/6)CA� 10nfTF /9, appears as the constant term for our one-loop soft exchange

result9 in Eq. (7.23),
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(7.24)

It would be interesting to investigate in detail the reason for this correspondence.

Finally we consider the remaining collinear diagrams, in Fig. 21f,g,h,k,l,m. The two V-graphs

in Fig. 21f,k give related contributions, and are induced by the Glauber operator involving n-

collinear gluons, mixing back into n-collinear quarks (and likewise for the n̄-collinear loop). The

Ogq
nsn̄ Glauber operator only produces An? and n̄ · An gluons, so for the n-collinear V-graph we

9We thank Hua-Xing Zhu for discussions about this.
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between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (140)

Eqs. (135) and (138) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (141)

These results can also be derived starting only with Eq. (139) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (141) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (139), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (142)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Eqs. (141) and (142) also hold, simply replacing n ! n̄. Therefore we also define �n̄⌫ ⌘ �qqn̄⌫+�gqn̄⌫ =

�ggn̄⌫ + �qgn̄⌫ , and �sn̄⌫ ⌘ �qqsn̄⌫ + �gqsn̄⌫ = �ggsn̄⌫ + �qgsn̄⌫ .

At one-loop there is also no overall µ dependence for the n-soft scattering operator

µ
d

dµ

X

ij=q,g

Oij
ns = µ

d

dµ
(OqA

n +OgA
n )

1

P2
?
(OqnA

s +OgnA
s ) = 0 . (143)

At one-loop this relation is ensured by the fact that there is no µ dependence for the individual

soft and collinear sectors,

µ
d

dµ
(OqA

n +OgA
n ) = 0 , µ

d

dµ
(OqnA

s +OgnA
s ) = 0 , (144)

which implies even simpler relations for the µ anomalous dimensions,

�nµ ⌘ �qqnµ + �gqnµ = �ggnµ + �qgnµ = 0 , �snµ ⌘ �qqsnµ + �gqsnµ = �ggsnµ + �qgsnµ = 0 . (145)

Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of
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the coupling w by using (⌫d/d⌫)w2 = �⌘w2 (then setting the renormalized w = 1), we have
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For the µ anomalous dimensions at one-loop we have �ijnµ = �(µd/dµ)�V ij
n . Noting that the

combinations ↵s(µ)g(✏, µ2/(�t)) and ↵s(µ)h(✏, µ2/m2) are µ-independent, and recalling that

(µd/dµ)↵s(µ) = �2✏↵s(µ) +O(↵2
s) we find
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.

Note that these results satisfy the necessary condition for the paths in ⌫ and µ space to be in-

dependent [36], (⌫d/d⌫)�ijnµ = (µd/dµ)�ijn⌫ . From these results we can immediately check that

we reproduce the first relation in each of Eq. (141) and Eq. (145), �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ and

�qqnµ + �gqnµ = �ggnµ + �qgnµ = 0. Thus there is no overall µ anomalous dimension for the relevant

combination of operators, (OqA
n + OgA

n ), as anticipated. It is interesting to note that this occurs

due to a cancellation of terms between the anomalous dimensions generated by the two individual

operators. We also obtain the relevant rapidity anomalous dimension for (OqA
n +OgA

n ) which is

�n⌫ =
↵sCA

2⇡
ln
⇣�t

m2

⌘

. (161)

Again mixing plays a key role in obtaining this result. In particular, the graph that contributes

the ln(�t) in the anomalous dimension for OqA
n is initiated by gluons, and enters through �gqn⌫ .

Next we turn to the soft anomalous dimensions. For the operators OqnA
s and OgnA

s the con-

tributing diagrams are very similar to our analysis of the n-collinear operators above. For this

reason we do not bother to give a detailed discussion of the various diagrams. The key di↵erence

is that for the soft graphs the rapidity regulator appears as |n̄ · k � n · k|�⌘ rather than |n̄ · k|�⌘,

which reverses the sign of the 1/⌘ poles. For this reason, the final rapidity anomalous dimension

for the relevant combination of single color index soft operators, (OqnA
s +OgnA

s ) has the opposite

sign to the n-collinear case,

�sn⌫ = �↵sCA

2⇡
ln
⇣�t

m2
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. (162)
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Again there are analogous results with n ! n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors when there

is another rapidity sector in between, namely n-n̄ scattering. In this case multiple insertions of

(IR divergent)

virtual anom.dim. is Regge exponent for gluon

obtain the relation between the renormalized collinear operators evaluated at two di↵erent rapid-

ity scales ⌫:
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) =
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n )(⌫
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) . (7.78)

Taking ⌫
1

=
p�t and ⌫

0

=
p
s we can now connect the collinear operator to the scale ⌫ =

p
s

where logarithms in its amplitude are minimized,
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For OjA
n̄ we have the same rapidity anomalous dimension equation with �n̄⌫ = �n⌫ , and hence

the same resummed result, namely
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p�t) =

⇣ s

�t

⌘��n⌫/2
(OqA

n̄ +OgA
n̄ )(⌫ =

p
s) . (7.80)

Putting these results together the leading logs are summed in the operator Oij
nsn̄ by,

X

i,j=q,g

Oij
nsn̄(⌫ =

p�t) (7.81)

= (OqA
n +OgA

n )(⌫ =
p�t)

1

P2

?
OAB

s (⌫ =
p�t)

1

P2

?
(OqB

n̄ +OgB
n̄ )(⌫ =

p�t)

=
⇣ s

�t

⌘��n⌫

(OqA
n +OgA

n )(⌫ =
p
s)

1

P2

?
OAB

s (⌫ =
p�t)

1

P2

?
(OqB

n̄ +OgB
n̄ )(⌫ =

p
s) .

For the renormalized operators on the right-hand side there are no large logarithms in their

matrix elements, since they are evaluated at the scales ⌫ which minimize their respective rapidity

logarithms. (If we had instead started the evolution at ⌫ =
p
s then there would be no evolution

for the collinear operators, and the soft operator’s evolution would generate this same result.)

The factor of ( s
�t)

��n⌫ in Eq. (7.81) is the standard Reggeized gluon result, where ↵g = ��n⌫

is the gluon Regge exponent. At the leading logarithmic resummed order we have this same factor

for quarks and gluon channels. At higher order there are distinctions between the channels, see

for example [50], in particular factors of ( st )
��n⌫ also appear. Since ( st )

��n⌫ = ( s
�t)

��n⌫ei⇡�nµ the

two factors di↵er only at next-to-leading logarithmic order.

7.3 One Loop Matching in SCET
I

In this section we repeat the matching calculation carried out in Sec. 7.1, but in the theory SCET
I

.

Although our focus in the majority of this paper is on SCET
II

, we mentioned in Sec. 5.1 that,

prior to the BPS field redefinition, the Glauber Lagrangian for SCET
I

is identical in form to that

for SCET
II

, and only di↵ers in the form of its 0-bin subtractions. This section will serve to check

at one-loop that we have the proper form of the Glauber Lagrangian for SCET
I

, and highlight
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gives:



42

Forward Scattering & BFKL

Expand time evolution,  do soft-collinear factorization term by term:

Consider (linearized) forward scattering with one Glauber exchange, 
    but all orders in other interactions (eg. leading logs):
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Written as a path integral the full time evolution operator in SCET is

U(a, b;T ) =

Z

⇥D�
⇤

exp
h

i

Z T

�T
d4x

�L(0)
nn̄s(x) + LII(0)

G (x)
�

i

, (192)

where L(0)
nn̄s = L(0)

n +L(0)
n̄ +L(0)

s is the non-Glauber parts of the SCET Lagrangian, a, b indicate the

field boundary conditions at time t = �T,+T , and [D�] is a short hand to indicate the functional

integral over all relevant SCET soft and collinear fields. We will only be interested in the large T

limit, T ! 1(1� i0). All these Lagrangian terms are leading order in the power counting. Using

Eq. (55) we can expand the Glauber part of the time evolution operator as

T exp i

Z

d4xLII(0)
G (x) =



1 + i

Z

d4y1 LII(0)
G (y1) +

i2

2!

Z

d4y1 d
4y2 LII(0)

G (y1)LII(0)
G (y2) + . . .

�

(193)

= 1 + T
1
X

k=1

1
X

k0=1

 k
Y

i=1

Z

[dx±i ]
Z

d2q?i

q2?i

⇥OqAi
n (q?i) +OgAi

n (q?i)
⇤

(xi)

�

⇥
 k0
Y

i0=1

Z

[dx±i0 ]
Z

d2q?i0

q2?i0

⇥OqBi0
n̄ (q?i0) +OgBi0

n̄ (q?i0)
⇤

(xi0)

�

⇥O
A1·Ak,B1···Bk0
s(k,k0) (q?1, . . . , q?k0)(x1, . . . , xk0)

⌘ 1 +
1
X

k=1

1
X

k0=1

U(k,k0) ,

where here T is the time-ordering operation. For simplicity we have suppressed the presence of the

rapidity regulator for the Glauber exchanges. In the last equality of Eq. (193) we have organized

the expansion according to the number k of n-collinear operators, and number k0 of n̄-collinear

operators, rather than according to the number of insertions of the Glauber Lagrangian. Any

symmetry factors like 1/k! are included in the definition of O
A1·Ak,B1···Bk0
s(k,k0) .

For example, the first nontrivial term with k = k0 = 1 is

U(1,1) = i

Z

[dx±][dx0±]
X

k±

Z

d2q?
q2?

d2q0?
q02?

⇥OqA
n,k�(q?) +OgA

n,k�(q?)
⇤

(x̃)
⇥OqB

n̄,k+
(q0?) +OgB

n̄,k+
(q0?)

⇤

(x̃0)

⇥OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) . (194)

Here the soft operator includes both a direct contribution from the two index soft operator OAB
s

from a single insertion of LII(0)
G , as well as a T-product term from the product OinA

s Ojn̄B
s that

comes from two insertions of LII(0)
G :

OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (195)

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T
X

i,j=q,g

OinA
s,�k�(q?)(x̃) Ojn̄B

s,�k+
(�q0?)(x̃

0) .

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T eix̃
0·P̂ X

i,j=q,g

OinA
s,�k�(q?)(x̃�x̃0) Ojn̄B

s,�k+
(�q0?)(0)e

�ix̃0·P̂ .
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Here �2(x̃� x̃0) = 2�(x+ � x0+)�(x� � x0�). Note that we have flipped the q0? sign when defining

OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) so that both q? and q0? are incoming. For the collinear operators in Eq. (194)

the O(�) soft momenta k± are residual to the respective large collinear momenta, but show us how

these soft momenta are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by having a

single U(1,1) on each side of the cut. We take color singlet initial states hpp0|, such as proton-

proton or quarkonia-quarkonia scattering, where one hadron is n-collinear and n̄-collinear. The

corresponding non-trivial transition matrix is

T(1,1) =
1

V4

X

X

⌦

pp0
�

�U †
(1,1)

�

�X
↵⌦

X
�

�U(1,1)

�

�pp0
↵

, (196)

where the volume factor V4 = (2⇡)4�4(0) must be removed since each of these matrix elements

gives a momentum conserving �-function. Since we are working order by order in the Glauber

Lagrangian these matrix elements can be factorized into soft and collinear components. For the

n-collinear matrix element inside hX|U(1,1)|pp0i we have

⌦

Xn

�

�OiA
n,k�(q?)(x̃)

�

�p
↵

= �(x+)
⌦

Xn

�

�

⇥OiA
n (x�)�0,n̄·P†+k��(q? � P†

?)
⇤

�

�p
↵

= �(x+)�(q? � p?Xn
)�(p� � p�Xn

)
⌦

Xn

�

�OiA
n (x�)

�

�p
↵

. (197)

Since the n-collinear matrix element has O(�0) p�-momenta, there is no dependence on the residual

momenta k� ⇠ �, or p�r ⇠ �2, which gives rise to the �(x+). The momentum dependent �-functions

arise from the conservation of momenta in the matrix element. Since �(p� � p�Xn
)�(p� � p�Xn

) =

�(0)�(p� � p�Xn
), one part of the volume factor, V1 = 2⇡�(0), will appear in the squared collinear

matrix element. Therefore

1

V1

X

Xn

D

p
�

�

�

X

j=q,g

OjA0

n,k0�(q
00
?)(x̃

00)
�

�

�

Xn

ED

Xn

�

�

�

X

i=q,g

OiA
n,k�(q?)(x̃)

�

�

�

p
E

= �AA0
2�(x+)�(x00+)�2(q? � q00?)Cn(q?, p�, x�, x00�) ,

1

V1

X

Xn̄

D

p0
�

�

�

X

j=q,g

OjB0

n̄,k0+(q
000
?)(x̃

000)
�

�

�

Xn̄

ED

Xn̄

�

�

�

X

i=q,g

OiB
n̄,k+(q

0
?)(x̃

0)
�

�

�

p0
E

= �BB0
2�(x000�)�(x0�)�2(q0? � q000?)Cn̄(q

0
?, p

0+, x0+, x000+) , (198)

where we’ve introduced the functions Cn and Cn̄ to encode the nontrivial dependencies. We see

that the matrix elements of the collinear operators gives only one combination of the color indices.

Since the soft state |Xsi has zero residual O(�2) momenta, using Eq. (195) the matrix element

of OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) is only a function of x̃ � x̃0. The soft fields only depend on x̃ and x̃0 to

conserve the residual O(�2) momenta, and not otherwise through any of the soft Feynman rules.
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Therefore the dependence in this matrix element is only in a �-function, and

⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0)
�

�0
↵

=
⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃� x̃0)

�

�0
↵ / �2(x̃� x̃0) , (199)

⌦

0
�

�O
†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00, x̃000)
�

�Xs

↵

=
⌦

0
�

�O†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00 � x̃000)
�

�0
↵ / �2(x̃00 � x̃000) .

Combining these �-functions and the four present in Eq. (198) removes all the x-integrals in T(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore

OAB
s(1,1)(q?, q

0
?) ⌘ 2

X

k±

Z

[dx±][dx0±]�(x+)�(x0�)OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (200)

= (2⇡)2 OAB
s (q?,�q0?)(x̃ = 0)

+
i

2
(2⇡)2

Z

dx�dx0+ T e
i
2x

0+·P̂ X

i,j=q,g

OinA
s (q?)

⇣n

2
x�� n̄

2
x0+

⌘

Ojn̄B
s (�q0?)(0)e

� i
2x

0+·P̂ .

Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by

1

V2

1

q2?q
02
?q

002
? q0002?

X

Xs

⌦

0
�

�O†A0B0

s(1,1) (q
00
?, q

000
?)

�

�Xs

↵⌦

Xs

�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= SAA0BB0
G (q?, q0?, q

00
?, q

000
?) ,

(201)

where V2 = (2⇡)2�2(0) includes the remaining part of the volume factor. The contraction of color

indices and ? �-functions from the collinear sectors in Eq. (198) allows us to reduce the form of

the required soft function further to

SG(q?, q0?) =
Z

d2q00?d
2q000? �AA0

�BB0
�2(q?�q00?)�

2(q0?�q000?)S
AA0BB0
G (q?, q0?, q

00
?, q

000
?)

=
1

V2

�AA0
�BB0

(~q 2
? ~q 0 2

? )2

X

X

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�X
↵⌦

X
�

�O†A0B0

s(1,1) (q?, q
0
?)

�

�0
↵

. (202)

The �AA0
�BB0

contraction in Eq. (202) implies that the combined Glauber exchanges on either side

of the cut are in a color singlet state. In some applications one may be required to consider a

color-octet configuration and/or a ?-momentum configuration with q? 6= q̃? and q0? 6= q̃0?, but we

will not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in the Glauber

exchange is given by

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�)SG(q?, q0?)Cn̄(q
0
?, p

0+) , (203)

Here Cn(q?, p�) = Cn(q?, p�, 0, 0) and Cn̄(q0?, p
0+) = Cn̄(q0?, p

0+, 0, 0) in terms of the matrix

elements in Eq. (198). Finally, we note that conjugation relation in Eq. (78) implies

OAB
s(1,1)(q?, q

0
?) = OBA

s(1,1)(q
0
?, q?)

�

�

�

n$n̄
. (204)

= . . .
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are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= �i 8⇡↵s(µ) �
AB ~q 2

? (2⇡)2�2(~q? + ~q 0
?) . (208)

Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q

q'
= S(0)

G (q?, q0?) ⌘
1

V

1

(~q 2
? ~q 0 2

? )2
⌦

0
�

�OAB
s(1,1)

�

�0
↵⌦

0
�

�OAB†
s(1,1)

�

�0
↵

(209)

=
⇣8⇡↵s

~q 2
?

⌘2
�AA (2⇡)2�2(~q?+ ~q 0

?).

Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is

1

V

1

(~q 2
? ~q 0 2

? )2
⌦

0
�

�OAB
s(1,1)

�

�g(k)
↵⌦

g(k)
�

�OAB†
s(1,1)

�

�0
↵

(210)

= �(8⇡↵s)2(4⇡↵s)
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? ~q 0 2
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qµ?�q0µ?�n · q n̄
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2
+n̄ · q0n

µ

2
�nµ ~q 0 2

?
n · q +

n̄µ ~q 2
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n̄ · q0
◆2

(2⇡)2�2(~k?�~q?�~q 0
?)
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CA�
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� n · q n̄ · q0 + (~q? + ~q 0
?)

2 � 4~q 0 2
? ~q 2

?
n · q n̄ · q0

◆

(2⇡)2�2(~k?�~q?�~q 0
?)

=
(8⇡↵s)2

(~q 2
? ~q 0 2

? )

(16⇡↵s)

(~q? + ~q 0
?)2

CA�
AA(2⇡)2�2(~k?�~q?�~q 0

?) ,

where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace

q� q�

q�� q��

after rapidity renormalization:
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Since we integrate over soft ±-momenta to define SG(q?, q0?) it only has the trivial n · n̄ = 2

dependence on the collinear directions that show up in the soft operator Wilson lines, and hence

its definition implies that it is a symmetric function

SG(q?, q0?) = SG(q
0
?, q?) . (205)

The result in Eq. (203) gives a factorized form for the forward scattering process at lowest order

in the Glauber exchange operators, but to all orders in the soft and collinear Lagrangians, L(0)
S

and L(0)
n,n̄. Therefore the functions Cn(q?), Cn̄(q0?), and SG(q?, q0?) each have non-trivial series

in ↵s. In the next two sections, Secs. VB and VC we will consider the renormalization of the

lowest order transition amplitude T(1,1), which at leading logarithmic order simply involves the

rapidity renormalization of these soft and collinear functions, and only requires O(↵s) real and

virtual calculations. For the full scattering corrections at this same order in ↵s also occur from a

term with more insertions of the Glauber operators:

T(2,1) + T(1,2) =
1

V

X

X

h

⌦

pp0
�

�U(2,2)

�

�X
↵⌦

X
�

�U †
(1,1)

�

�pp0
↵

+
⌦

pp0
�

�U(1,1)

�

�X
↵⌦

X
�

�U †
(2,2)

�

�pp0
↵

i

. (206)

At this order in ↵s we can either contract both the Oi
nO

i
n and Oj

n̄O
j
n̄ in U(2,2) to give a Glauber

box diagram as in Fig. 11 or we could attach the two forward collinear lines in each of Oi
nO

i
n

and Oj
n̄O

j
n̄ to di↵erent partons in the incoming hpnp0̄n| state. Neither of these contributions has

a logarithmic rapidity divergence, and hence it su�ces to consider just T(1,1) when deriving the

leading-logarithmic renormalization equations.

Introducing the rapidity cuto↵ ⌫ and renormalized collinear and soft functions we have

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)Cn̄(q
0
?, p

0+, ⌫) . (207)

In the next section we derive the leading-logarithmic evolution equation for the soft function

SG(q?, q0?, ⌫) and show that it is the BFKL equation. Then in Sec. VC we will derive the BFKL

equations for Cn(q?, p�, ⌫) and Cn̄(q0?, p
0+⌫) by using renormalization group consistency. We will

further discuss the more general set of matrix elements for the U(k,k0) case, where we allow an

arbitrary number of insertions of the forward scattering operators, in Sec. VD below.

B. BFKL Equation for the Soft Function

In evaluating matrix elements of the forward scattering operator, large logs arise due to the

tension between the collinear modes whose natural rapidity scale is ⌫c ⇠
p
ŝ and the soft mode for

which ⌫s ⇠ p�t. Thus the large logs can not be minimized with a single choice of the rapidity

scale ⌫ in the SCET matrix elements. Since the final result is independent of which ⌫ we choose, we

will take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

n-collinear

n̄-collinear

soft

� 1 + T
��
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��
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Oj�Bi�
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�OA1·Ak,B1···Bk�
s(k,k�) (q�1, . . . , q�k�)

collinear and soft functions

the large T limit, T ! 1(1 � i0). All these Lagrangian terms are leading order in the power

counting. Using Eq. (5.37) we can expand the Glauber part of the time evolution operator as

T exp i

Z

d4xLII(0)

G (x) =



1 + i

Z

d4y
1

LII(0)

G (y
1

) +
i2

2!
T

Z

d4y
1

d4y
2

LII(0)

G (y
1

)LII(0)

G (y
2

) + . . .

�

= 1 + T
1
X

k=1

1
X

k0=1

 k
Y

i=1

Z

[dx±i ]
Z

d2q?i

q2?i

⇥OqAi
n (q?i) +OgAi

n (q?i)
⇤

(xi)

�

⇥
 k0
Y

i0=1

Z

[dx±i0 ]
Z

d2q?i0

q2?i0

⇥OqBi0
n̄ (q?i0) +OgBi0
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1
X
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1
X
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U
(k,k0) , (8.2)

where here T is the time-ordering operation. For simplicity we have suppressed the presence of the

rapidity regulator for the Glauber exchanges. In the last equality of Eq. (8.2) we have organized

the expansion according to the number of n-collinear operators k, and number of n̄-collinear

operators k0, rather than according to the number of insertions of the Glauber Lagrangian. Any

symmetry factors like 1/k! are included in the definition of O
A

1

·Ak,B1

···Bk0
s(k,k0) .

For example, the first nontrivial term with k = k0 = 1 is

U
(1,1) = i

Z

[dx±][dx0±]
X

k±

Z

d2q?
q2?

d2q0?
q02?

⇥OqA
n,k�(q?) +OgA

n,k�(q?)
⇤

(x̃)
⇥OqB

n̄,k+
(q0?) +OgB

n̄,k+
(q0?)

⇤

(x̃0)

⇥OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) . (8.3)

Here the soft operator includes both a direct contribution from the two index soft operator OAB
s

from a single insertion of LII(0)

G , as well as a T-product term from the product OinA
s Ojn̄B

s that

comes from two insertions of LII(0)

G :

OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (8.4)

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T
X

i,j=q,g

OinA
s,�k�(q?)(x̃) Ojn̄B

s,�k+
(�q0?)(x̃

0) .

=
1

(2⇡)2
�2(x̃�x̃0)OAB

s,�k±(q?,�q0?)(x̃) + i T eix̃
0· ˆP X

i,j=q,g

OinA
s,�k�(q?)(x̃�x̃0) Ojn̄B

s,�k+
(�q0?)(0)e

�ix̃0· ˆP .

Here �2(x̃�x̃0) = 2�(x+�x0+)�(x��x0�). Note that we have flipped the q0? sign inOAB
s,�k±(q?,�q0?)

when defining OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) so that both q? and q0? are incoming. For the collinear opera-

tors in Eq. (8.3) the O(�) soft momenta k± are residual to the respective large collinear momenta,

but show us how these soft momenta are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by having a

single U
(1,1) on each side of the cut. Since here the amplitude is linear in the number of Glauber
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87

Therefore the dependence in this matrix element is only in a �-function, and

⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0)
�

�0
↵

=
⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃� x̃0)

�

�0
↵ / �2(x̃� x̃0) , (199)

⌦

0
�

�O
†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00, x̃000)
�

�Xs

↵

=
⌦

0
�

�O†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00 � x̃000)
�

�0
↵ / �2(x̃00 � x̃000) .

Combining these �-functions and the four present in Eq. (198) removes all the x-integrals in T(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore

OAB
s(1,1)(q?, q

0
?) ⌘ 2

X

k±

Z

[dx±][dx0±]�(x+)�(x0�)OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (200)

= (2⇡)2 OAB
s (q?,�q0?)(x̃ = 0)

+
i

2
(2⇡)2

Z

dx�dx0+ T e
i
2x

0+·P̂ X

i,j=q,g

OinA
s (q?)

⇣n

2
x�� n̄

2
x0+

⌘

Ojn̄B
s (�q0?)(0)e

� i
2x

0+·P̂ .

Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by

1

V2

1

q2?q
02
?q

002
? q0002?

X

Xs

⌦

0
�

�O†A0B0

s(1,1) (q
00
?, q

000
?)

�

�Xs

↵⌦

Xs

�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= SAA0BB0
G (q?, q0?, q

00
?, q

000
?) ,

(201)

where V2 = (2⇡)2�2(0) includes the remaining part of the volume factor. The contraction of color

indices and ? �-functions from the collinear sectors in Eq. (198) allows us to reduce the form of

the required soft function further to

SG(q?, q0?) =
Z

d2q00?d
2q000? �AA0

�BB0
�2(q?�q00?)�

2(q0?�q000?)S
AA0BB0
G (q?, q0?, q

00
?, q

000
?)

=
1

V2

�AA0
�BB0

(~q 2
? ~q 0 2

? )2

X

X

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�X
↵⌦

X
�

�O†A0B0

s(1,1) (q?, q
0
?)

�

�0
↵

. (202)

The �AA0
�BB0

contraction in Eq. (202) implies that the combined Glauber exchanges on either side

of the cut are in a color singlet state. In some applications one may be required to consider a

color-octet configuration and/or a ?-momentum configuration with q? 6= q̃? and q0? 6= q̃0?, but we

will not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in the Glauber

exchange is given by

T(1,1) =

Z

d2q?d2q0? Cn(q?, p�)SG(q?, q0?)Cn̄(q
0
?, p

0+) , (203)

Here Cn(q?, p�) = Cn(q?, p�, 0, 0) and Cn̄(q0?, p
0+) = Cn̄(q0?, p

0+, 0, 0) in terms of the matrix

elements in Eq. (198). Finally, we note that conjugation relation in Eq. (78) implies

OAB
s(1,1)(q?, q

0
?) = OBA

s(1,1)(q
0
?, q?)

�

�

�

n$n̄
. (204)

where V
2

= (2⇡)2�2(0) includes the remaining part of the volume factor, and the prefactor

1/(q2?q
02
?) is pulled out for later convenience. The contraction of color indices and ? �-functions

from the collinear sectors in Eq. (8.7) allows us to reduce the form of the required soft function

further to

SG(q?, q0?) =
Z

d2q00?d
2q000? �AA0

�BB0
�2(q?�q00?)�

2(q0?�q000?)S
AA0BB0
G (q?, q0?, q

00
?, q

000
?)

=
1

V
2

�AA0
�BB0

(~q 2

? ~q 0 2
? )

X

X

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�X
↵⌦

X
�

�O†A0B0

s(1,1) (q?, q
0
?)

�

�0
↵

. (8.11)

The �AA0
�BB0

contraction in Eq. (8.11) implies that the combined Glauber exchanges on either

side of the cut are in a color singlet state. This linear approximation with one (Glauber) gluon

exchange on each side of the cut is sometimes referred to as the Low-Nussinov pomeron. In some

applications one may be required to consider a color-octet configuration and/or a ?-momentum

configuration with q? 6= q̃? and q0? 6= q̃ 0
?, but we will not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in the

Glauber exchange is given by

T
(1,1) =

Z

d2q?d2q0? Cn(q?, p�)SG(q?, q0?)Cn̄(q
0
?, p

0+) , (8.12)

Here Cn(q?, p�) = Cn(q?, p�, 0, 0) and Cn̄(q0?, p
0+) = Cn̄(q0?, p

0+, 0, 0) in terms of the matrix

elements in Eq. (8.7). Finally, we note that conjugation relation in Eq. (6.8) implies

OAB
s(1,1)(q?, q

0
?) = OBA

s(1,1)(q
0
?, q?)

�

�

�

n$n̄
. (8.13)

Since we integrate over soft ±-momenta to define SG(q?, q0?) it only has the trivial n · n̄ = 2

dependence on the collinear directions that show up in the soft operator Wilson lines, and hence

its definition implies that it is a symmetric function

SG(q?, q0?) = SG(q
0
?, q?) . (8.14)

Note that here we have not factorized in the scales t and ⇤2

QCD

, so the collinear and soft func-

tions contain both of these scales, with the dependence on t appearing through q? or q0?. The

factorization in Eq. (8.12) for T
(1,1) separates the modes in rapidity, allowing for a resummation

of ln(s/t)’s, but does not include a factorization from expanding in ⇤2

QCD

/t ⌧ 1.

The result in Eq. (8.12) gives a factorized form for the forward scattering process at lowest

order in the Glauber exchange operators, but to all orders in the soft and collinear Lagrangians,

L(0)

S and L(0)

n,n̄. Therefore the functions Cn(q?), Cn̄(q0?), and SG(q?, q0?) each have non-trivial

series in ↵s. In the next two sections, Secs. 8.2 and 8.3 we will consider the renormalization of

the lowest order transition amplitude T
(1,1), which at leading logarithmic order simply involves
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Soft function:

n-collinear function:

Since the n-collinear matrix element has O(�0) p�-momenta, at leading power there is no depen-

dence in momentum space on the residual momenta k� ⇠ �, or p�r ⇠ �2, and in position space

this gives rise to the �(x+). The momentum dependent �-functions arise from the conservation

of momenta in the matrix element. Since �(p�� p�Xn
)�(p�� p�Xn

) = �(0)�(p�� p�Xn
), one part of

the volume factor, V
1

= 2⇡�(0), will appear in the squared collinear matrix element. Therefore

1

V
1

X

Xn

D

p
�

�

�

X

j=q,g

OjA0

n,k0�(q
00
?)(x̃

00)
�

�

�

Xn

ED

Xn

�

�

�

X

i=q,g

OiA
n,k�(q?)(x̃)

�

�

�

p
E

= �AA0
2�(x+)�(x00+)�2(q? � q00?) ~q

2

?Cn(q?, p�, x�, x00�) ,
1

V
1

X

Xn̄

D

p0
�

�

�

X

j=q,g

OjB0

n̄,k0+(q
000
?)(x̃

000)
�

�

�

Xn̄

ED

Xn̄

�

�

�

X

i=q,g

OiB
n̄,k+(q

0
?)(x̃

0)
�

�

�

p0
E

= �BB0
2�(x000�)�(x0�)�2(q0? � q000?) ~q

02
? Cn̄(q

0
?, p

0+, x0+, x000+) , (8.7)

where we’ve introduced the functions Cn and Cn̄ to encode the nontrivial dependencies. By

including the factors of ~q 2

? and ~q 02
? on the right-hand-side we are adopting a normalization where

the collinear functions Cn and Cn̄ include 1/~q 2

? and 1/~q 02
? Glauber exchange potentials. We see

that the matrix elements of the collinear operators gives only one combination of the color indices.

Since the soft state |Xsi has zero residual O(�2) momenta, using Eq. (8.4) the matrix element

of OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) is only a function of x̃ � x̃0. The soft fields only depend on x̃ and x̃0 to

conserve the residual O(�2) momenta, and not otherwise through any of the soft Feynman rules.

Therefore the dependence in this matrix element is only in a �-function, and

⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0)
�

�0
↵

=
⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃� x̃0)

�

�0
↵ / �2(x̃� x̃0) , (8.8)

⌦

0
�

�O
†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00, x̃000)
�

�Xs

↵

=
⌦

0
�

�O†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00 � x̃000)
�

�0
↵ / �2(x̃00 � x̃000) .

Combining these �-functions and the four present in Eq. (8.7) removes all the x-integrals in T
(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore

OAB
s(1,1)(q?, q

0
?) ⌘ 2

X

k±

Z

[dx±][dx0±]�(x+)�(x0�)OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (8.9)

= (2⇡)2 OAB
s (q?,�q0?)(x̃ = 0)

+
i

2
(2⇡)2

Z

dx�dx0+ T e
i
2

x0+· ˆP X

i,j=q,g

OinA
s (q?)

⇣n

2
x�� n̄

2
x0+

⌘

Ojn̄B
s (�q0?)(0)e

� i
2

x0+· ˆP .

Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by

1

V
2

1

q2?q
02
?q

002
? q0002?

X

Xs

⌦

0
�

�O†A0B0

s(1,1) (q
00
?, q

000
?)

�

�Xs

↵⌦

Xs

�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵ ⌘ 1

q2?q
02
?
SAA0BB0
G (q?, q0?, q

00
?, q

000
?) ,

(8.10)
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Since the n-collinear matrix element has O(�0) p�-momenta, at leading power there is no depen-

dence in momentum space on the residual momenta k� ⇠ �, or p�r ⇠ �2, and in position space

this gives rise to the �(x+). The momentum dependent �-functions arise from the conservation

of momenta in the matrix element. Since �(p�� p�Xn
)�(p�� p�Xn

) = �(0)�(p�� p�Xn
), one part of

the volume factor, V
1

= 2⇡�(0), will appear in the squared collinear matrix element. Therefore

1

V
1

X

Xn

D

p
�

�

�

X

j=q,g

OjA0

n,k0�(q
00
?)(x̃

00)
�

�

�

Xn

ED

Xn

�

�

�

X

i=q,g

OiA
n,k�(q?)(x̃)

�

�

�

p
E

= �AA0
2�(x+)�(x00+)�2(q? � q00?) ~q

2

?Cn(q?, p�, x�, x00�) ,
1

V
1

X

Xn̄

D

p0
�

�

�

X

j=q,g

OjB0

n̄,k0+(q
000
?)(x̃

000)
�

�

�

Xn̄

ED

Xn̄

�

�

�

X

i=q,g

OiB
n̄,k+(q

0
?)(x̃

0)
�

�

�

p0
E

= �BB0
2�(x000�)�(x0�)�2(q0? � q000?) ~q

02
? Cn̄(q

0
?, p

0+, x0+, x000+) , (8.7)

where we’ve introduced the functions Cn and Cn̄ to encode the nontrivial dependencies. By

including the factors of ~q 2

? and ~q 02
? on the right-hand-side we are adopting a normalization where

the collinear functions Cn and Cn̄ include 1/~q 2

? and 1/~q 02
? Glauber exchange potentials. We see

that the matrix elements of the collinear operators gives only one combination of the color indices.

Since the soft state |Xsi has zero residual O(�2) momenta, using Eq. (8.4) the matrix element

of OAB
s(1,1)(q?, q

0
?)(x̃, x̃

0) is only a function of x̃ � x̃0. The soft fields only depend on x̃ and x̃0 to

conserve the residual O(�2) momenta, and not otherwise through any of the soft Feynman rules.

Therefore the dependence in this matrix element is only in a �-function, and

⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0)
�

�0
↵

=
⌦

Xs

�

�OAB
s(1,1),�k±(q?, q

0
?)(x̃� x̃0)

�

�0
↵ / �2(x̃� x̃0) , (8.8)

⌦

0
�

�O
†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00, x̃000)
�

�Xs

↵

=
⌦

0
�

�O†A0B0

s(1,1),�k0±(q
00
?, q

000
?)(x̃

00 � x̃000)
�

�0
↵ / �2(x̃00 � x̃000) .

Combining these �-functions and the four present in Eq. (8.7) removes all the x-integrals in T
(1,1),

setting x̃ = x̃0 = x̃00 = x̃000 = 0. The relevant soft operator for this calculation is therefore

OAB
s(1,1)(q?, q

0
?) ⌘ 2

X

k±

Z

[dx±][dx0±]�(x+)�(x0�)OAB
s(1,1),�k±(q?, q

0
?)(x̃, x̃

0) (8.9)

= (2⇡)2 OAB
s (q?,�q0?)(x̃ = 0)

+
i

2
(2⇡)2

Z

dx�dx0+ T e
i
2

x0+· ˆP X

i,j=q,g

OinA
s (q?)

⇣n

2
x�� n̄

2
x0+

⌘

Ojn̄B
s (�q0?)(0)e

� i
2

x0+· ˆP .

Here the soft operators appear without k± labels and therefore are unrestricted in these momenta.

The squared soft matrix element is then given by

1

V
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q2?q
02
?q

002
? q0002?

X

Xs

⌦

0
�

�O†A0B0

s(1,1) (q
00
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000
?)
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�Xs

↵⌦
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�
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00
?, q

000
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(8.10)
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Consider rapidity renormalization for soft function that appears here:

89

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= �i 8⇡↵s(µ) �
AB ~q 2

? (2⇡)2�2(~q? + ~q 0
?) . (208)

Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q

q'
= S(0)

G (q?, q0?) ⌘
1

V

1

(~q 2
? ~q 0 2

? )2
⌦

0
�

�OAB
s(1,1)

�

�0
↵⌦

0
�

�OAB†
s(1,1)

�

�0
↵

(209)

=
⇣8⇡↵s

~q 2
?

⌘2
�AA (2⇡)2�2(~q?+ ~q 0

?).

Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is

1

V

1

(~q 2
? ~q 0 2

? )2
⌦

0
�

�OAB
s(1,1)

�

�g(k)
↵⌦

g(k)
�

�OAB†
s(1,1)

�

�0
↵

(210)

= �(8⇡↵s)2(4⇡↵s)

(~q 2
? ~q 0 2

? )2
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✓

qµ?�q0µ?�n · q n̄
µ

2
+n̄ · q0n

µ

2
�nµ ~q 0 2

?
n · q +

n̄µ ~q 2
?

n̄ · q0
◆2

(2⇡)2�2(~k?�~q?�~q 0
?)

= �(8⇡↵s)2(4⇡↵s)
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? ~q 0 2

? )2
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✓

� n · q n̄ · q0 + (~q? + ~q 0
?)

2 � 4~q 0 2
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◆

(2⇡)2�2(~k?�~q?�~q 0
?)

=
(8⇡↵s)2

(~q 2
? ~q 0 2

? )

(16⇡↵s)

(~q? + ~q 0
?)2

CA�
AA(2⇡)2�2(~k?�~q?�~q 0

?) ,

where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace

89

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�0
↵

= �i 8⇡↵s(µ) �
AB ~q 2

? (2⇡)2�2(~q? + ~q 0
?) . (208)

Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q
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=
⇣8⇡↵s

~q 2
?

⌘2
�AA (2⇡)2�2(~q?+ ~q 0

?).

Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (210) was generated by the soft Wilson lines in

the operator OAB
s (q?, q0?) we must also include appropriate factors of the rapidity regulator, giving

w2|2kz|�⌘⌫⌘. This factor regulates the soft gluons phase space integral, which is
Z
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have
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where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
G from Eq. (325).

For the soft virtual corrections we have contributions from the flower and eye graphs, which we

must incorporate at a level where we have not yet performed the k? loop integration. To obtain

results for
⌦
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soft loop integrands in Sec. IVA in Eqs. (112) and (184) and include a (2⇡)2�(~q? + ~q 0
?). Keeping

only the rapidity divergent terms we have
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(213)
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To obtain the third equality we shifted ~k? ! ~k? � ~q?/2 and then simplified the integrand, and to

obtain the last line we partial fractioned the numerator and dropped integrands that are odd in ~k?
and which vanish in dimensional regularization because they are power law divergent. Similarly,

for the flower graph we have
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Combining Eqs. (213) and (214) we see that the self contraction of Wilson lines in the soft flower

graph cancels one of the terms in the eye-graph, leaving
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The contribution coming from the soft Wilson line and the time ordered product can be combined

to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (325). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.

To derive the canonical form of the BFKL equation we define the soft function with a slightly

evolution 
given by

BFKL equation
(see also work 
by S. Fleming)

take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the

sum of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be

relevant for our RGE analysis.

We will be working in the limit where (�t) � ⇤2

QCD

so that we may treat Glauber exchange

perturbatively, but do not attempt to factorize these two infrared scales in the EFT explicitly.

To sum the logarithms at leading logarithmic order (LL) we only need to consider the k = k0 = 1

term in Eq. (8.2), and this Glauber operator e↵ectively acts like an external current. This term

yielded the factorization formulae in Eq. (8.16).

We label the soft piece of the forward scattering operator in terms of the incoming q? and

q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (8.9), and this lowest order contribution comes from OAB

s (q?,�q0?)

which was defined in Eq. (5.38). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2

c � 1 and the

volume factor V
2

= (2⇡)2�2(0).

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (8.11). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. 5.2.2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing

over polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.

The results up to O(↵s) from Eqs. (8.18,8.21,8.25) can be summarized as yielding the O(↵s)

rapidity divergent correction to the bare soft function,
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm ZSG
(q?, q0?) through the convolution

SG(~q?, ~q 0
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To cancel the 1/⌘ divergence we require
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm ZSG
(q?, q0?) through the convolution
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.

The results up to O(↵s) from Eqs. (8.18,8.21,8.25) can be summarized as yielding the O(↵s)
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm ZSG
(q?, q0?) through the convolution
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,

0 = ⌫
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation
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where the anomalous dimension is given by
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Inserting the one-loop result from Eq. (8.28) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives
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Note that this anomalous dimension is not just a function of the di↵erence q?� q0?, but it is easy

to see from Eq. (8.32) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (8.33)

The anomalous dimension �SG
yields an RGE for SG(q?, q0?, ⌫) which is precisely the leading

logarithmic BFKL equation,

⌫
d

d⌫
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2CA↵s(µ)
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� ~q 2
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The BFKL equation is often [99–101] written in terms of the derivative of a rapidity, Y =

ln(⌫2/µ2) ⇠ ln s. The fact that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on

the right-hand side of Eq. (8.34). Note that in our SCET calculation, the fact that Eq. (8.34) is

obtained for the all orders soft function SG (rather than just the one-loop soft function) follows

immediately from the structure of the e↵ective field theory operators and the multiplicative form

of the rapidity renormalization in Eq. (8.27). In classic derivations of the BFKL equation, this

step is often quite involved.

A derivation of the BFKL equation from an SCET based operator construction with Glaubers

was considered earlier by Fleming in Ref. [40]. Although the idea of carrying out rapidity renor-

malization of a squared matrix element of soft fields is common between our two calculations,

there are also a few di↵erences, both on the conceptual and calculation sides. The scattering

operator considered in [40] is Onn̄
G = (�̄n̄S

†
n̄T

An/
2

Sn̄�n̄)
1

P2

?
(�̄nS

†
nT a n̄/

2

Sn�n), which di↵ers from our

Oqq
nsn̄. In particular, unlike Oqq

nsn̄, the operator Onn̄
G is not soft gauge invariant in SCET

II

due to

the presence of the 1

P2

?
, which does not allow the soft gauge transformation factors from the two

sides to cancel. This distinction also causes di↵erences for the calculations. In the soft part of our

Regge calculation the t-dependence is induced by the time ordered product of two collinear-soft

scattering operators, through the soft eye diagram in Fig. 21c, whereas Oqq
nsn̄ contributes the

additional flower diagram. In [40] the soft part of the Regge result calculated in Feynman gauge

comes solely from Onn̄
G (the collinear calculations, which require both quark and gluon operators,
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Consider rapidity renormalization for soft function that appears here:

89

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the sum

of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be relevant

for our RGE analysis.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

perturbatively. To sum the logarithms at leading logarithmic order (LL) we only need to consider

the k = k0 = 1 term in Eq. (193), and this Glauber operator e↵ectively acts like an external current.

We label the soft piece of the forward scattering operator in terms of the incoming q? and

outgoing q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (200), and this lowest order contribution comes from OAB

s (q?, q0?)

which was defined in Eq. (56). Thus at the level of the amplitude squared

q
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2
c � 1.

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over

polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (202). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. IID 2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing over
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where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q0)2 =

n · q n̄ · q0� (~q?+ ~q 0
?)

2 to eliminate all but the last term in the large round brackets, and to replace
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the product n · q n̄ · q0. Note that this squared matrix element is independent of the longitudinal

gluon momentum. Since the surviving term in Eq. (210) was generated by the soft Wilson lines in

the operator OAB
s (q?, q0?) we must also include appropriate factors of the rapidity regulator, giving

w2|2kz|�⌘⌫⌘. This factor regulates the soft gluons phase space integral, which is
Z

d�dk C(k) w2|2kz|�⌘⌫⌘ =

Z

d�d�1k

2Ek
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�
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=
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Here C(k) = �(k2)✓(k0). Putting these pieces together, and keeping only the 1/⌘ divergent contri-

bution, for the contribution to the O(↵s) correction to SG(q?, q0?) we have

q

q' SS
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where in the second equality we took ~k? ! ~q?�~k?. In the last equality we used d�2k? = d2k?/(2⇡)2

and the tree level S(0)
G from Eq. (325).

For the soft virtual corrections we have contributions from the flower and eye graphs, which we

must incorporate at a level where we have not yet performed the k? loop integration. To obtain

results for
⌦

0
�
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0
?)

�
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↵
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2
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2 from the

soft loop integrands in Sec. IVA in Eqs. (112) and (184) and include a (2⇡)2�(~q? + ~q 0
?). Keeping

only the rapidity divergent terms we have
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(213)
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To obtain the third equality we shifted ~k? ! ~k? � ~q?/2 and then simplified the integrand, and to

obtain the last line we partial fractioned the numerator and dropped integrands that are odd in ~k?
and which vanish in dimensional regularization because they are power law divergent. Similarly,

for the flower graph we have
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Combining Eqs. (213) and (214) we see that the self contraction of Wilson lines in the soft flower

graph cancels one of the terms in the eye-graph, leaving
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The contribution coming from the soft Wilson line and the time ordered product can be combined

to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)
G from Eq. (325). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual loop

appears on either side of the cut.

To derive the canonical form of the BFKL equation we define the soft function with a slightly

evolution 
given by

BFKL equation

take ⌫ = ⌫c so that all the large logs reside in the soft part of the matrix element. These logs

are summed up by running the soft function in rapidity space from ⌫s to ⌫c. For the calculations

in this section we set the IR mass regulator m = 0 since infrared divergences will cancel in the

sum of real and virtual diagrams. We also set d = 4 since only the rapidity divergences will be

relevant for our RGE analysis.

We will be working in the limit where (�t) � ⇤2

QCD

so that we may treat Glauber exchange

perturbatively, but do not attempt to factorize these two infrared scales in the EFT explicitly.

To sum the logarithms at leading logarithmic order (LL) we only need to consider the k = k0 = 1

term in Eq. (8.2), and this Glauber operator e↵ectively acts like an external current. This term

yielded the factorization formulae in Eq. (8.16).

We label the soft piece of the forward scattering operator in terms of the incoming q? and

q0? such that the lowest order Feynman rule is given by
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Here OAB
s(1,1) was defined in Eq. (8.9), and this lowest order contribution comes from OAB

s (q?,�q0?)

which was defined in Eq. (5.38). Thus at the level of the amplitude squared
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Here the solid vertical line denotes the final state cut. The color factor �AA = N2

c � 1 and the

volume factor V
2

= (2⇡)2�2(0).

To renormalize the SG(q?, q0?) matrix element we must consider the O(↵s) real and virtual

corrections. The real radiation correction is calculated using the one-soft gluon Feynman rule of

OAB
s (q?, q0?) (equivalent to the Lipatov vertex) which was given in Eq. (6), and implementing

the prefactors in the definition in Eq. (8.11). We let the outgoing momentum of the soft gluon

be k = q + q0, and note that the multipole expansion for collinear particles restricts the O(�)

momentum flow as discussed in Sec. 5.2.2. This gives n · q = n · k and n̄ · q0 = n̄ · k. Summing

over polarizations in Feynman gauge, the square of the one-gluon Feynman rule is
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to give the full O(↵s) virtual correction to SG(q?, q0?)
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.

The results up to O(↵s) from Eqs. (8.18,8.21,8.25) can be summarized as yielding the O(↵s)

rapidity divergent correction to the bare soft function,
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The rapidity divergence in the soft function is renormalized by a standard SCET soft function

counterterm ZSG
(q?, q0?) through the convolution
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To cancel the 1/⌘ divergence we require
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The rapidity renormalization group (RRG) equation then follows from the ⌫-independence of the

bare soft function,
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft

function obeys the RGE equation
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where in the last line we used d�2k? = d2k?/(2⇡)2 and the tree level S(0)

G from Eq. (8.18). The

factors of 2 next to the graphs appear because we get the same contribution when the virtual

loop appears on either side of the cut.
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Writing out the derivatives of the two terms and inverting, we find that the renormalized soft
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where the anomalous dimension is given by

�SG
(q?, q0?) = �

Z

d2k?ZSG
(q?, k?) ⌫

d

d⌫
Z�1

SG
(k?, q0?) . (8.31)

Inserting the one-loop result from Eq. (8.28) and using (⌫d/d⌫)w2(⌫) = �⌘w2(⌫) then sending

w2(⌫) ! 1 this gives
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Note that this anomalous dimension is not just a function of the di↵erence q?� q0?, but it is easy

to see from Eq. (8.32) that it is symmetric,

�SG
(q?, q0?) = �SG

(q0?, q?) . (8.33)

The anomalous dimension �SG
yields an RGE for SG(q?, q0?, ⌫) which is precisely the leading

logarithmic BFKL equation,
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�
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The BFKL equation is often [99–101] written in terms of the derivative of a rapidity, Y =

ln(⌫2/µ2) ⇠ ln s. The fact that @/@Y = (1/2)⌫d/d⌫ explains our factor of 2 in the prefactor on

the right-hand side of Eq. (8.34). Note that in our SCET calculation, the fact that Eq. (8.34) is

obtained for the all orders soft function SG (rather than just the one-loop soft function) follows

immediately from the structure of the e↵ective field theory operators and the multiplicative form

of the rapidity renormalization in Eq. (8.27). In classic derivations of the BFKL equation, this

step is often quite involved.

A derivation of the BFKL equation from an SCET based operator construction with Glaubers

was considered earlier by Fleming in Ref. [40]. Although the idea of carrying out rapidity renor-

malization of a squared matrix element of soft fields is common between our two calculations,

there are also a few di↵erences, both on the conceptual and calculation sides. The scattering

operator considered in [40] is Onn̄
G = (�̄n̄S

†
n̄T

An/
2

Sn̄�n̄)
1

P2

?
(�̄nS

†
nT a n̄/

2

Sn�n), which di↵ers from our

Oqq
nsn̄. In particular, unlike Oqq

nsn̄, the operator Onn̄
G is not soft gauge invariant in SCET

II

due to

the presence of the 1

P2

?
, which does not allow the soft gauge transformation factors from the two

sides to cancel. This distinction also causes di↵erences for the calculations. In the soft part of our

Regge calculation the t-dependence is induced by the time ordered product of two collinear-soft

scattering operators, through the soft eye diagram in Fig. 21c, whereas Oqq
nsn̄ contributes the

additional flower diagram. In [40] the soft part of the Regge result calculated in Feynman gauge

comes solely from Onn̄
G (the collinear calculations, which require both quark and gluon operators,
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Plugging Eqs. (228) and (229) into Eq. (227) we then have

0 =

Z

d2q?d2q0?d
2k?

h
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0
?, p

0+, ⌫) (230)

+ Cn(q?, p�, ⌫)SG(q?, q0?, ⌫)�C(q
0
?, k?)Cn̄(k?, p0+, ⌫)

+
1

2
Cn(q?, p�, ⌫)�SG
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0
?, p

0+, ⌫)

+
1

2
Cn(q?, p�, ⌫)SG(q?, k?, ⌫)�SG

(k?, q0?)Cn̄(q
0
?, p

0+, ⌫)
i

.

Using our ability to swap around the three integration variables we see that this equation can only

be satisfied for arbitrary Cn, SG, and Cn̄ functions if �C(q?, k?) = �1
2�SG

(k?, q?) and �C(q0?, k?) =

�1
2�SG

(q0?, k?), which implies that �C is also a symmetric function and is given by

�C(q?, q0?) = �1

2
�SG

(q?, q0?) . (231)

Therefore the RGE equations for Cn and Cn̄ are also given by the BFKL equation. Writing this

out explicitly we have

⌫
d
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�

, (232)

with the same form of BFKL equation for Cn̄(q?, ⌫). Note that there is a factor of (�1/2) for

the BFKL equations for the collinear functions as compared to the soft function. The sign comes

from the fact that they run in the opposite direction in rapidity space, from ⌫ ' p� =
p
s down

to ⌫ ' p
t, and the 1/2 comes from the fact that two collinear functions must balance against a

single soft function.

D. Multiple Insertions: Factorization of Glauber Lagrangian Interactions

In this section we consider how multiple insertions of the Glauber Lagrangian impacts renor-

malization and observables. Recall

exp iL(0)II
G =

1
X

k=1

1
X

k0=1

 k
Y

i=1

(OqAi
n +OgAi

n )

� k0
Y

i0=1

(O
qBi0
n̄ +O

gBi0
n̄ )

�

O
A1·Ak,B1···Bk0
s(k,k0) (233)

NOTE(Discuss number of ?-convolutions, and the renormalization of individual soft and

collinear functions. Can ? integrals diverge? It appears that this is a necessary

condition for terms T(k,k0) with di↵erent k, k0 to mix.)

VI. PROPERTIES OF GLAUBER OPERATORS IN LOOP GRAPHS

In this section we consider various properties of Glauber gluons. In Secs. VIA and VIB we

consider Glauber gluon exchange in the context of a hard vertex that either annihilates or scatters

�1
2
(BFKL)
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As anticipated, comparing Eq. (284) to Eq. (278) we see that this is the second term in the

expansion of an exponential.

Next consider the double box diagram. Again performing the contour integrals over the energies,

and then using Eq. (280) we find
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where to obtain the third equality we performed the kz1 and kz2 integrals to get �(x� y + ↵1)�(y �
z + ↵2) and then performed the ↵1 and ↵2 integrals. Again due to the ⌘3 term in the prefactor

only the leading ultraviolet divergent from the dxdydz integral contributes, which comes from the

limit x, y, z ! 0 where the �1 = �1(k1?) and �2 = �2(k2?) dependence drops out. In this

limit we can either do the integral directly to give the 1/3!, or note that we can symmetrize as

✓(z > y > x) ! [✓(z > y > x)+✓(y > z > x)+✓(z > x > y)+✓(x > z > y)+✓(x > y > z)+✓(y >

x > z)]/(3!) = 1/(3!). Everywhere in Eq. (285) the ? integral is contained in
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. (286)

Performing the ? Fourier transform of this integral using Eq. (281) gives
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which is the third term in the expansion of the exponential. This naturally generalizes to the case

of the N -loop box graph with (N + 1)-rungs. Doing the energy integrals by contours and using

Eq. (280) we have
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where to take the final Fourier transform we used Eq. (281) for the integral

I(N)
? (q?) =
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The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2
N (q?) = �2Snn̄

�

G̃(b?)� 1
�

(290)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (292)

While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so

�(b?) = CF g2(µ)

Z

d�2q?
~q 2
? +m2

ei~q?·~b? = �2CF ↵s(µ) ln
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. (293)
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Sum up Glauber Boxes

gives classic eikonal scattering result:
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where to take the final Fourier transform we used Eq. (281) for the integral

I(N)
? (q?) =

Z

d�d�2k1? · · · d�d�2kN? (◆✏µ2✏)N+1

(~k1? + ~q?)2(~k2? � ~k1?)2 · · · (~kN? � ~k(N�1)?)2 ~k 2
N?

. (289)

The final result in Eq. (288) is the (N +1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2
N (q?) = �2Snn̄

�

G̃(b?)� 1
�

(290)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (291)

and where the phase �(b?) defined in Eq. (276) is purely real. The same (ei�(b?) � 1) result is ob-

tained if we consider the sum of box diagrams for the soft-n two parton scattering since the Glauber

light cone momenta will still be parameterically smaller then corresponding soft momentum. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (292)

While the phase �(b?) in Eq. (276) has an infrared divergence, this is simply an overall phase

in the scattering amplitude and hence drops out from the physical forward scattering cross section.

To see this explicitly we project onto the color singlet channel, TA⌦TA ! CF , and switch to using

the (slightly simpler) gluon mass IR regulator setting d = 4, so

�(b?) = CF g2(µ)

Z
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where to take the final Fourier transform we used Eq. (9.9) for the integral

I(N)

? (q?) =
Z

d�d�2k
1? · · · d�d�2kN? (◆✏µ2✏)N+1

(~k
1? + ~q?)2(~k2? � ~k

1?)2 · · · (~kN? � ~k
(N�1)?)2 ~k 2

N?
. (9.17)

The final result in Eq. (9.16) is the (N+1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2

N (q?) =
�

G̃(b?)� 1
�

2Snn̄ (9.18)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (9.19)

and where the the color matrix phase �(b?) defined in Eq. (9.1) is a Hermitian matrix. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (9.20)

In SCET the results for the sum of Glauber boxes given by Eqs. (9.19) and (9.20) are valid

for any color channel, simply taking TA ⌦ T̄A ! TA
1

⌦ TA
2

in �(b?). The same (ei�(b?) � 1)

result is also obtained if we consider the sum of box diagrams for the soft-n two-parton scattering

since the Glauber light cone momenta will still be parametrically smaller then corresponding soft

momentum.

It is interesting to pause to consider physically what the |2kzj |�⌘ factors are doing in the

N -loop box graph in Eq. (9.16). At finite ⌘ this regulator implies that the Glauber exchanges

are not instantaneous in the corresponding longitudinal position. (They are still instantaneous in

time.) Diagrammatic calculations are easy to interpret in position space, where these regulators

were transformed to factors of |xj |�1+⌘. Each of these longitudinal coordinates xj corresponds to

the location of one of the Glauber exchanges. Hence, they spread out with a string of increasing

longitudinal coordinates x
1

< x
2

< . . . < xN+1

, where the ✓-functions inducing these inequalities

are provided by the collinear propagators between the Glauber exchanges. However each position

space regulator also comes with a factor of (⌘⌘/2), and hence only the most divergent part

of the xj-integrals contributes to the final result. This divergent contribution comes from the
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Fourier transform     :

We begin by noting that the argument given in Sec. 5.2.1 for the vanishing of the one-loop

cross box holds for all non-ladder type topologies. Rapidity divergences are regulated by factors

|2kz
1

|�⌘ · · · |2kzN |�⌘, so we can consider the k0i integrals to be done by contours without concern

that the remaining integral might be unregulated. For any diagram with one or more crossed

Glauber exchange lines there is one or more k0i integrals for which the poles are all on the same

side of the real axis (and converge at 1). Thus, all diagrams with crossed Glauber rungs vanish

with our rapidity regulator, and we only need to consider the sum of the ladder graphs.

To show exponentiation we will manipulate an N -Glauber exchange diagram into the product

of single exchanges with a factor of 1/N !. The product form arises when we transform from q?
to the impact parameter space b?. In impact parameter space we will see that the amplitude

from iterated Glauber exchange is simply determined by a phase, given by the Fourier transform

of the 1/q2? potential between particles 1 and 2:
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2

g2(µ)
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2

◆

2✏

.

The result is a matrix in the color space with TA
1

and TA
2

being the color matrix generators that

commute with each other, and act on particle 1 and 2 respectively (for a review of this color

matrix notation see e.g. [87]). Recall that d = 4� 2✏ and that ◆✏ = e✏�E/(4⇡)✏ is our notation for

the factor that enters with each µ2✏ when the coupling is in the MS scheme. The �(�✏) infrared

divergence will be discussed further at the end of this section.

The exponentiation results derived below hold equally well when iterating Glauber exchange

potentials between quark-quark, quark-antiquark, quark-gluon, and gluon-gluon channels, and

for cases where the scattering particles are n-n̄, n-s, or n̄-s. To be definite we consider quark-

antiquark n-n̄ scattering, where

TA
1

⌦TA
2

= TA ⌦ T̄A . (9.2)

For convenience we define the Fourier transform operation as the application of the integral:

=)
F.T.?

=

Z

d�d�2q? ei~q?·~b? . (9.3)

The Fourier transform of one Glauber exchange result is then given in terms of �(b?) by
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where to obtain the third equality we performed the kz
1

and kz
2

integrals to get �(x� y+↵
1

)�(y�
z + ↵

2

) and then performed the ↵
1

and ↵
2

integrals. Again due to the ⌘3 term in the prefactor

only the leading ultraviolet divergent contribution from the dxdydz integral contributes, which

comes from the limit x, y, z ! 0 where the �
1

= �
1

(k
1?) and �

2

= �
2

(k
2?) dependence drops

out. In this limit we can either do the integral directly to give the 1/3!, or note that we can

symmetrize as ✓(z > y > x) ! [✓(z > y > x) + ✓(y > z > x) + ✓(z > x > y) + ✓(x > z >
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Performing the ? Fourier transform of this integral using Eq. (9.9) gives
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which is the third term in the expansion of the exponential.

This naturally generalizes to the case of the N -loop box graph with (N + 1)-rungs. Doing

the energy integrals by contours and using Eq. (9.7) we have

n

n

n

n

q+

pk +

pk -

3

41

1

k -2 k1 kN

pk - 4N

pk + 3N

k1 -k -N kN-1

= �i(2g2)N+1Snn̄
(N+1)

I(N)(q?)
Z

d�kz
1

· · · d�kzN
�

�2kz
1

(2kz
1

�2kz
2

) · · · (2kzN�1

�2kzN )2kzN
�

�

�⌘
⌫N⌘

2N (�kz
1

+�
1

+ i0) · · · (�kzN +�N + i0)

= �2i(g2)N+1(�i)NSnn̄
(N+1)

I(N)(q?)
⇣

⌘
⌘

2

⌘N+1

Z

+1

�1

 N
Y

i=1

d�kzi d↵i ✓(↵i)

�N+1

Y

j=1

dxj |xj |�1+⌘

�

⇥ eik
z
1

x
1

+i(kz
2

�kz
1

)x
2

+...+i(kzN�kzN�1

)xN�ikzNxN+1 exp

 N
X

m=1

i↵m(kzm +�m)

�

= 2(�ig2)N+1Snn̄
(N+1)

I(N)(q?)
⇣

⌘
⌘

2

⌘N+1

Z

+1

�1

N+1

Y

j=1

dxj |xj |�1+⌘

�

– 113 –

⇥ ✓(x
2

�x
1

)✓(x
3

�x
2

) · · · ✓(xN+1

�xN ) exp

 N
X

m=1

i�m(xm+1

� xm)

�

= 2(�ig2)N+1Snn̄
(N+1)

I(N)

? (q?)
1

(N + 1)!

h

1 +O(⌘)
i

=)
F.T.?

1

(N + 1)!

⇥

i�(b?)
⇤N+1

2Snn̄ , (9.16)

where to take the final Fourier transform we used Eq. (9.9) for the integral

I(N)
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The final result in Eq. (9.16) is the (N+1)’th term in the expansion of the exponential. Therefore

the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

Z

d�d�2q? ei~q?·~b?
1
X

N=0

G.Box 2!2

N (q?) =
�

G̃(b?)� 1
�

2Snn̄ (9.18)

where the position space Glauber function is given by

G̃(b?) = ei�(b?) , (9.19)

and where the the color matrix phase �(b?) defined in Eq. (9.1) is a Hermitian matrix. For

convenience we also define the momentum space Glauber function

G(q?) =
Z

d2b? e�i~q?·~b? ei�(b?) . (9.20)

In SCET the results for the sum of Glauber boxes given by Eqs. (9.19) and (9.20) are valid

for any color channel, simply taking TA ⌦ T̄A ! TA
1

⌦ TA
2

in �(b?). The same (ei�(b?) � 1)

result is also obtained if we consider the sum of box diagrams for the soft-n two-parton scattering

since the Glauber light cone momenta will still be parametrically smaller then corresponding soft

momentum.

It is interesting to pause to consider physically what the |2kzj |�⌘ factors are doing in the

N -loop box graph in Eq. (9.16). At finite ⌘ this regulator implies that the Glauber exchanges

are not instantaneous in the corresponding longitudinal position. (They are still instantaneous in

time.) Diagrammatic calculations are easy to interpret in position space, where these regulators

were transformed to factors of |xj |�1+⌘. Each of these longitudinal coordinates xj corresponds to

the location of one of the Glauber exchanges. Hence, they spread out with a string of increasing

longitudinal coordinates x
1

< x
2

< . . . < xN+1

, where the ✓-functions inducing these inequalities

are provided by the collinear propagators between the Glauber exchanges. However each position

space regulator also comes with a factor of (⌘⌘/2), and hence only the most divergent part

of the xj-integrals contributes to the final result. This divergent contribution comes from the
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Figure 25. Graphs with multiple Glauber exchanges that occur at distinct light-cone times vanish,

including the virtual graph a) and real emission graph b). Graphs like c), d), and e) with multiple Glauber

exchanges that can be collapsed to the same time and longitudinal position do not vanish. Graph c)

contributes to an e↵ective form factor leaving a factorized eikonal form. Graphs d) and e) are examples

where the Glauber exchange attaches to di↵erent particles which exist at the same light-cone times. The

second figure in e) is the same graph, but is time ordered.

only for 0 < n̄ · ` < n̄ · p
2

, thus ensuring that all collinear quark propagators have positive large

momenta, n̄ · p
2

> 0 and n̄ · (p
2

� `) > 0, and that the virtual collinear gluon has positive light

cone energy n̄ · ` > 0 and is traveling forward in light-cone time. Hence once again we have two

n ·k dependent n-collinear quark propagators with the same +i0, as in Eq. (9.28), and the dk0dkz

integration vanishes. The collinear gluon vertex in the loop interrupts the Glauber loop in the

same manner as for the collinear radiation graph. Note that in either of Fig. 25a,b, if we had

instead attached the rightmost Glauber exchange to the n-collinear gluon, then the graphs would

again vanish for the same reason.

On the other hand the diagram in Fig. 25c is non-vanishing. Here there is only one pole in

k+ and k� for the Glauber loop, and it gives the same result as for the box diagram in Eq. (9.10).

Indeed, one is free to add any number of Glauber exchanges between the collinear vertices, which

simply builds up the higher order terms in the Glauber function G(q?), so this type of amplitude

can be written as

Fn(q?)
⇥

G(q?)� (2⇡)2�2(q?)
⇤

, (9.29)

where Fn(q?) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing

result the eikonal approximation arises in the same manner as in Sec. 9.1 for the internal collinear

propagators participating in the Glauber loops. The collinear propagators outside the Glauber
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Multi-Glauber properties

an interrupted collapse
gives a vanishing graph

• When do graphs vanish? 
• When do propagators eikonalize? 

can be generated by the soft and collinear loop graphs shown in Fig. 21. The �
0

ln(µ2/ � t)

logarithm associated to the running of the ↵s(µ) that appears in the lowest order �(b?) comes

from the soft sector and must exponentiate in the same manner. For n-n̄ scattering it is actually

clear that the full one-loop soft result in Eq. (7.23) will exponentiate when it is iterated as a kernel

for Glauber loops, because the Glauber loop momenta k±i ⇠ O(�2) are parametrically smaller

than the soft momenta, and hence pass through the soft loops without changing their results. For

these graphs the Glauber loop integrals lead to iN/N ! just as they did for the Glauber potential

box graphs. For the collinear loops, it turns out that the parts associated to rapidity divergences

will also exponentiate in this same manner, as they must do so to insure the cancellation of the

rapidity divergences. It is not clear whether the full contributions from n-collinear loops will

exponentiate since the collinear and Glauber +-momenta are both O(�2), and hence the fact

that Glauber loop momenta pass through the collinear loop integral could change its result.

9.2 Longitudinal Constraints and Eikonalization

Let us now consider how collinear and soft corrections, both real and virtual, a↵ect multiple

Glauber exchange contributions. As we will see below, the possible corrections to Glauber ex-

changes is restricted by a spacetime constraint, causing many corrections to lead to a vanishing

result. We will also determine the general criteria for when a collinear or soft propagator within

a Glauber loop may be treated as eikonal.

To build up the physical picture, we start by considering the diagrams in Fig. 25 which

involve n-n̄ forward scattering with additional collinear loops or radiation. In Fig. 25a we have a

collinear gluon radiated with Glaubers attached both before and after the radiation. Recall that

the Glauber loop momentum scales as (n · k, n̄ · k, k?) ⇠ (�2,�2,�), and hence does not change

the large momenta of the collinear lines. For this real final state emission we have n̄ · p
2

> 0,

n̄ · pg > 0, and n̄ · p
3

= n̄ · (p
2

� pg) > 0. Therefore there are two n-collinear quark propagators

in the Glauber loop, which has the form

Fig. 25a = (pre)

Z

d�dk
(|kz|�2⌘ ⌫2⌘) Num(k?)

~k 2

?
�

~k?�~q?
�

2

⇥

n · k ��
1

+ i0
⇤⇥

n · k ��
2

+ i0
⇤⇥

n̄ · k + �̄0
1

� i0
⇤

= 0 , (9.28)

where the prefactor, (pre), includes the couplings and color structure, and the numerator Num(k?)

and � factors only depend on the k? loop momentum. Here the dk0dkz integration gives a van-

ishing result since there are two n · k propagators with the same +i0, as discussed in detail in

App. B.2.

Next consider a collinear loop which interrupts two Glauber exchanges, as in Fig. 25b. If we

consider carrying out the collinear n · ` integral by contours, we find that the integral is nonzero
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can be generated by the soft and collinear loop graphs shown in Fig. 21. The �
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logarithm associated to the running of the ↵s(µ) that appears in the lowest order �(b?) comes
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exponentiate since the collinear and Glauber +-momenta are both O(�2), and hence the fact

that Glauber loop momenta pass through the collinear loop integral could change its result.

9.2 Longitudinal Constraints and Eikonalization

Let us now consider how collinear and soft corrections, both real and virtual, a↵ect multiple

Glauber exchange contributions. As we will see below, the possible corrections to Glauber ex-

changes is restricted by a spacetime constraint, causing many corrections to lead to a vanishing

result. We will also determine the general criteria for when a collinear or soft propagator within

a Glauber loop may be treated as eikonal.

To build up the physical picture, we start by considering the diagrams in Fig. 25 which

involve n-n̄ forward scattering with additional collinear loops or radiation. In Fig. 25a we have a

collinear gluon radiated with Glaubers attached both before and after the radiation. Recall that

the Glauber loop momentum scales as (n · k, n̄ · k, k?) ⇠ (�2,�2,�), and hence does not change

the large momenta of the collinear lines. For this real final state emission we have n̄ · p
2

> 0,

n̄ · pg > 0, and n̄ · p
3

= n̄ · (p
2

� pg) > 0. Therefore there are two n-collinear quark propagators

in the Glauber loop, which has the form
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where the prefactor, (pre), includes the couplings and color structure, and the numerator Num(k?)

and � factors only depend on the k? loop momentum. Here the dk0dkz integration gives a van-

ishing result since there are two n · k propagators with the same +i0, as discussed in detail in

App. B.2.

Next consider a collinear loop which interrupts two Glauber exchanges, as in Fig. 25b. If we

consider carrying out the collinear n · ` integral by contours, we find that the integral is nonzero
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that interrupts these longitudinal integrations, causing them to become less divergent, will lead

to a result that vanishes as ⌘ ! 0. An interruption of this type occurs if there is a vertex that

unavoidably inserts an additional longitudinal position in the midst of the burst of Glauber gluons,

and therefore stops them from coming together to yield a leading short distance divergence. The

“collapse rule” therefore states that:

Graphs with more than one Glauber exchange will vanish unless the exchanges can be

moved towards each other unimpeded, so that they all occur at the same longitudinal

position x
0

for both sources.

This ordered collapse corresponds to the instantaneous limit xi ! x
0

for every i. After taking

this limit the Glauber exchanges are now instantaneous in both time and longitudinal position11,

or equivalently in x+ and x�. This reproduces our original physical picture regarding the instan-

taneous nature of Glauber exchange. This general rule applies for diagrams with any number of

loops or with additional radiation. If we replace one of the collinear sectors by soft particles then

the same argument holds, or simultaneously have {n, s, n̄} particles, then again the same rule

regarding Glauber loops also holds true.

For the simple diagrams in Fig. 25a,b,c,d there is only one non-trivial time ordered diagram.

For the graphs in Fig. 25a,b the collapse to equal longitudinal position of the two Glauber

exchanges is impeded by the collinear gluon vertex which sets an intermediate position that stops

the Glaubers from coming together, so the graphs vanish. In other words, the integral over the

longitudinal positions vanishes unless all the positions collapse to zero, but theta functions from

the collinear propagators enforce a definite ordering which forbids this collapse. This is worked

out explicitly in Eq. (B.7) of the App. B.2 yielding for the integral appearing in Eq. (9.28):
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Here ↵ is the intermediate coordinate that interrupts the collapse, leading to a less divergent

integral. In the graphs in Fig. 25c,d,e the collapse to equal longitudinal positions is possible

and the results for these diagrams do not vanish as ⌘ ! 0. For Fig. 25e this is made clear

with the second way of drawing the same diagram, namely that the non-vanishing contribution

11For n-n̄ scattering the longitudinal position is (n · x � n̄ · x)/2. For the more general case with ni and nj

collinear particles, the “longitudinal position” for this discussion is defined by (ni ·x�nj ·x)/2. See also Eqs. (5.1)

and (5.2).
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• need unimpeded exchanges:



48

Multi-Glauber properties • When do graphs vanish? 
• When do propagators eikonalize? 
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Figure 25. Graphs with multiple Glauber exchanges that occur at distinct light-cone times vanish,

including the virtual graph a) and real emission graph b). Graphs like c), d), and e) with multiple Glauber

exchanges that can be collapsed to the same time and longitudinal position do not vanish. Graph c)

contributes to an e↵ective form factor leaving a factorized eikonal form. Graphs d) and e) are examples

where the Glauber exchange attaches to di↵erent particles which exist at the same light-cone times. The

second figure in e) is the same graph, but is time ordered.

only for 0 < n̄ · ` < n̄ · p
2

, thus ensuring that all collinear quark propagators have positive large

momenta, n̄ · p
2

> 0 and n̄ · (p
2

� `) > 0, and that the virtual collinear gluon has positive light

cone energy n̄ · ` > 0 and is traveling forward in light-cone time. Hence once again we have two

n ·k dependent n-collinear quark propagators with the same +i0, as in Eq. (9.28), and the dk0dkz

integration vanishes. The collinear gluon vertex in the loop interrupts the Glauber loop in the

same manner as for the collinear radiation graph. Note that in either of Fig. 25a,b, if we had

instead attached the rightmost Glauber exchange to the n-collinear gluon, then the graphs would

again vanish for the same reason.

On the other hand the diagram in Fig. 25c is non-vanishing. Here there is only one pole in

k+ and k� for the Glauber loop, and it gives the same result as for the box diagram in Eq. (9.10).

Indeed, one is free to add any number of Glauber exchanges between the collinear vertices, which

simply builds up the higher order terms in the Glauber function G(q?), so this type of amplitude

can be written as

Fn(q?)
⇥

G(q?)� (2⇡)2�2(q?)
⇤

, (9.29)

where Fn(q?) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing

result the eikonal approximation arises in the same manner as in Sec. 9.1 for the internal collinear

propagators participating in the Glauber loops. The collinear propagators outside the Glauber

– 118 –

a) b) c)

qkk

n

n n n

n

nn
p3p2

pg

n

n

n

n n n

qkk

p3p2
`

qk k

n
n n n

n nn

d) e)

q kk

n

n n n

n

nn
p3p2

pg μ,C

qk k

n

n nn

n

n

n

n

=

n

n nn

n

n

nn
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exchanges that can be collapsed to the same time and longitudinal position do not vanish. Graph c)

contributes to an e↵ective form factor leaving a factorized eikonal form. Graphs d) and e) are examples

where the Glauber exchange attaches to di↵erent particles which exist at the same light-cone times. The

second figure in e) is the same graph, but is time ordered.
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n ·k dependent n-collinear quark propagators with the same +i0, as in Eq. (9.28), and the dk0dkz

integration vanishes. The collinear gluon vertex in the loop interrupts the Glauber loop in the

same manner as for the collinear radiation graph. Note that in either of Fig. 25a,b, if we had

instead attached the rightmost Glauber exchange to the n-collinear gluon, then the graphs would

again vanish for the same reason.

On the other hand the diagram in Fig. 25c is non-vanishing. Here there is only one pole in

k+ and k� for the Glauber loop, and it gives the same result as for the box diagram in Eq. (9.10).

Indeed, one is free to add any number of Glauber exchanges between the collinear vertices, which

simply builds up the higher order terms in the Glauber function G(q?), so this type of amplitude

can be written as
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where Fn(q?) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing

result the eikonal approximation arises in the same manner as in Sec. 9.1 for the internal collinear

propagators participating in the Glauber loops. The collinear propagators outside the Glauber
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nonzero

loops are not eikonal. The same form would also be obtained if we iterated Glauber exchanges

solely between the n-collinear gluon and the n̄-collinear antiquark.

In contrast, non-vanishing diagrams such as Fig. 25d do not have collinear propagators that

can all be described by the eikonal approximation. Using the momentum routing shown,

Fig. 25d = (pre)
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where the steps for carrying out the dk0dkz here are described in detail in App. B.2. Here

(pre)= 4g5ifABCTDTB ⌦ T̄DT̄A and Num(k?) depends only on external momenta and the k?
loop momentum. The � factors depend on k? and are given by

�0
1

=
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The presence of the (�
1

+�0
1

) propagator in the remaining k? integral in Eq. (9.30), indicates

that here the non-eikonal nature of the n-collinear propagators was important. Since �̄0
1

does

not appear, the n̄-collinear propagator can still be treated as eikonal. The same conclusion that

non-eikonal propagators are necessary is also obtained if we consider the collinear loop graph

where the radiated n-collinear gluon in Fig. 25d is reabsorbed by the n-collinear quark after its

Glauber attachment. Furthermore, this need for non-eikonal collinear propagators is also true

even in an abelian theory, where it occurs for the diagram in Fig. 25e. Both of the diagrams in

Fig. 25d,e involve a k? convolution between the Glaubers and the collinear source function.

To determine in a simple manner whether or not a graph with multiple Glauber exchange

does or does not vanish, we use time-ordered perturbation theory (TOPT) to order the vertices

in a diagram. Usually one would utilize light cone ordered perturbation theory (LCPT ) when

analysing high energy scattering, as it greatly reduces the number of relevant diagrams [104].

However, when we factorize in rapidity space we necessarily break boost invariance via the rapidity

regulator. With our regulator in place we can perform the energy integrals by contours, but not

the light cone momentum, leading to a set of time ordered diagrams. Notice that the advantage

gained using LCPT, via the reduction in the number of diagrams, is maintained in TOPT when

working in the EFT because the propagators are linear in energy for these Glauber loops. The

regulated Glauber exchanges with |kzi |�⌘ also remain instantaneous in time. Next we transform

the longitudinal integrals kzi to position space, and thereby assign a longitudinal position label

xi for each Glauber exchange in a TOPT diagram, as was discussed in the previous section for

the example in Eq. (9.16). Since each transformed Glauber exchange comes with a prefactor of

(⌘/2), only the most divergent part of the xi integrals can contribute. Furthermore, anything
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where the steps for carrying out the dk0dkz here are described in detail in App. B.2. Here
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The presence of the (�
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) propagator in the remaining k? integral in Eq. (9.30), indicates

that here the non-eikonal nature of the n-collinear propagators was important. Since �̄0
1

does

not appear, the n̄-collinear propagator can still be treated as eikonal. The same conclusion that
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Fig. 25d,e involve a k? convolution between the Glaubers and the collinear source function.

To determine in a simple manner whether or not a graph with multiple Glauber exchange

does or does not vanish, we use time-ordered perturbation theory (TOPT) to order the vertices

in a diagram. Usually one would utilize light cone ordered perturbation theory (LCPT ) when

analysing high energy scattering, as it greatly reduces the number of relevant diagrams [104].
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the light cone momentum, leading to a set of time ordered diagrams. Notice that the advantage

gained using LCPT, via the reduction in the number of diagrams, is maintained in TOPT when

working in the EFT because the propagators are linear in energy for these Glauber loops. The

regulated Glauber exchanges with |kzi |�⌘ also remain instantaneous in time. Next we transform

the longitudinal integrals kzi to position space, and thereby assign a longitudinal position label

xi for each Glauber exchange in a TOPT diagram, as was discussed in the previous section for

the example in Eq. (9.16). Since each transformed Glauber exchange comes with a prefactor of

(⌘/2), only the most divergent part of the xi integrals can contribute. Furthermore, anything
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where the steps for carrying out the dk0dkz here are described in detail in App. B.2. Here
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) propagator in the remaining k? integral in Eq. (9.30), indicates

that here the non-eikonal nature of the n-collinear propagators was important. Since �̄0
1

does

not appear, the n̄-collinear propagator can still be treated as eikonal. The same conclusion that

non-eikonal propagators are necessary is also obtained if we consider the collinear loop graph

where the radiated n-collinear gluon in Fig. 25d is reabsorbed by the n-collinear quark after its

Glauber attachment. Furthermore, this need for non-eikonal collinear propagators is also true

even in an abelian theory, where it occurs for the diagram in Fig. 25e. Both of the diagrams in

Fig. 25d,e involve a k? convolution between the Glaubers and the collinear source function.

To determine in a simple manner whether or not a graph with multiple Glauber exchange

does or does not vanish, we use time-ordered perturbation theory (TOPT) to order the vertices

in a diagram. Usually one would utilize light cone ordered perturbation theory (LCPT ) when

analysing high energy scattering, as it greatly reduces the number of relevant diagrams [104].

However, when we factorize in rapidity space we necessarily break boost invariance via the rapidity

regulator. With our regulator in place we can perform the energy integrals by contours, but not

the light cone momentum, leading to a set of time ordered diagrams. Notice that the advantage

gained using LCPT, via the reduction in the number of diagrams, is maintained in TOPT when

working in the EFT because the propagators are linear in energy for these Glauber loops. The

regulated Glauber exchanges with |kzi |�⌘ also remain instantaneous in time. Next we transform

the longitudinal integrals kzi to position space, and thereby assign a longitudinal position label

xi for each Glauber exchange in a TOPT diagram, as was discussed in the previous section for

the example in Eq. (9.16). Since each transformed Glauber exchange comes with a prefactor of

(⌘/2), only the most divergent part of the xi integrals can contribute. Furthermore, anything
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Figure 25. Graphs with multiple Glauber exchanges that occur at distinct light-cone times vanish,

including the virtual graph a) and real emission graph b). Graphs like c), d), and e) with multiple Glauber

exchanges that can be collapsed to the same time and longitudinal position do not vanish. Graph c)

contributes to an e↵ective form factor leaving a factorized eikonal form. Graphs d) and e) are examples

where the Glauber exchange attaches to di↵erent particles which exist at the same light-cone times. The

second figure in e) is the same graph, but is time ordered.

only for 0 < n̄ · ` < n̄ · p
2

, thus ensuring that all collinear quark propagators have positive large

momenta, n̄ · p
2

> 0 and n̄ · (p
2

� `) > 0, and that the virtual collinear gluon has positive light

cone energy n̄ · ` > 0 and is traveling forward in light-cone time. Hence once again we have two

n ·k dependent n-collinear quark propagators with the same +i0, as in Eq. (9.28), and the dk0dkz

integration vanishes. The collinear gluon vertex in the loop interrupts the Glauber loop in the

same manner as for the collinear radiation graph. Note that in either of Fig. 25a,b, if we had

instead attached the rightmost Glauber exchange to the n-collinear gluon, then the graphs would

again vanish for the same reason.

On the other hand the diagram in Fig. 25c is non-vanishing. Here there is only one pole in

k+ and k� for the Glauber loop, and it gives the same result as for the box diagram in Eq. (9.10).

Indeed, one is free to add any number of Glauber exchanges between the collinear vertices, which

simply builds up the higher order terms in the Glauber function G(q?), so this type of amplitude

can be written as

Fn(q?)
⇥

G(q?)� (2⇡)2�2(q?)
⇤

, (9.29)

where Fn(q?) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing

result the eikonal approximation arises in the same manner as in Sec. 9.1 for the internal collinear

propagators participating in the Glauber loops. The collinear propagators outside the Glauber
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Figure 25. Graphs with multiple Glauber exchanges that occur at distinct light-cone times vanish,

including the virtual graph a) and real emission graph b). Graphs like c), d), and e) with multiple Glauber

exchanges that can be collapsed to the same time and longitudinal position do not vanish. Graph c)

contributes to an e↵ective form factor leaving a factorized eikonal form. Graphs d) and e) are examples

where the Glauber exchange attaches to di↵erent particles which exist at the same light-cone times. The

second figure in e) is the same graph, but is time ordered.

only for 0 < n̄ · ` < n̄ · p
2

, thus ensuring that all collinear quark propagators have positive large

momenta, n̄ · p
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> 0 and n̄ · (p
2

� `) > 0, and that the virtual collinear gluon has positive light

cone energy n̄ · ` > 0 and is traveling forward in light-cone time. Hence once again we have two

n ·k dependent n-collinear quark propagators with the same +i0, as in Eq. (9.28), and the dk0dkz

integration vanishes. The collinear gluon vertex in the loop interrupts the Glauber loop in the

same manner as for the collinear radiation graph. Note that in either of Fig. 25a,b, if we had

instead attached the rightmost Glauber exchange to the n-collinear gluon, then the graphs would

again vanish for the same reason.

On the other hand the diagram in Fig. 25c is non-vanishing. Here there is only one pole in

k+ and k� for the Glauber loop, and it gives the same result as for the box diagram in Eq. (9.10).

Indeed, one is free to add any number of Glauber exchanges between the collinear vertices, which

simply builds up the higher order terms in the Glauber function G(q?), so this type of amplitude

can be written as

Fn(q?)
⇥

G(q?)� (2⇡)2�2(q?)
⇤

, (9.29)

where Fn(q?) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing

result the eikonal approximation arises in the same manner as in Sec. 9.1 for the internal collinear

propagators participating in the Glauber loops. The collinear propagators outside the Glauber
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Figure 14. Two di↵erent momentum routings for the two loop diagram stemming from the time ordered

product of two Oqq
nsn̄ insertions with one soft gluon. The soft momentum `µ = kµ1 + kµ2 can only be routed

in a way which is consistent with the power counting. In a) the loops are soft and n-n̄ Glauber with

`µ ⇠ (�,�,�) and kµ ⇠ (�2,�2,�) respectively, while in b) the loops are s-n Glauber and s-n̄ Glauber

with kµ1 ⇠ (�2,�,�) and kµ2 ⇠ (�,�2,�) respectively.

routings. In Fig. 14a we have a soft loop momentum `µ ⇠ � and a n-n̄ Glauber loop momentum

kµ ⇠ (�2,�2,�) for its (+,�,?) components. In Fig. 14b the same diagram is shown but now

using a n-s Glauber loop momentum kµ
1

⇠ (�2,�,�) and a n̄-s Glauber loop momentum kµ
2

⇠
(�,�2,�). The routing of momentum in the two graphs are related by the changes of variable

n · k
1

= n · k , n̄ · k
1

= n̄ · (k + `) , k
1? = k? + `? , (5.48)

n · k
2

= n · (`� k) , n̄ · k
2

= �n̄ · k , k
2? = �k? .

In order that these two momentum routings give the same results, it is important that the rapidity

regulators also are transformed into one another under this change of variable, and of course also

will regulate the singularities in the diagram. Eq. (5.46) with the in · @ and in̄ · @ factors satisfies

both these criteria. In particular for the loop integrals in the two routings we have

Fig. 14a :

Z

d�dk d�d` |2kz|�2⌘|2`z|�⌘ Na(`, k?, q?)G0

(k?)G0

(k?+`?)G0

(k?+`?�q?)G0

(k?�q?)
h

k++p+
2

� (

~k?+~p2?+~̀?)2

p�
2

+i0
ih

�k�+p�
1

� (

~k?�~p1?)2
p+
1

+i0
i

⇥

`2+i0
⇤

,

Fig. 14b :

Z

d�dk d�d` |k+
1

+k�
2

|�2⌘|k�
1

+k�
2

�k+
1

�k+
2

|�⌘ Nb(k
�
1

, k+
2

, k
1?, k2?, q?)

h

k+
1

+p+
2

� (

~k
1?+~p2?)2

p�
2

+i0
ih

k�
2

+p�
1

� (

~k
2?+~p1?)2

p+
1

+i0
i

⇥

k+
2

k�
1

�(~k
1?+~k

2?)2+i0
⇤

⇥G
0

(k
1?)G0

(k
2?)G0

(k
1?�q?)G0

(k
2?+q?), (5.49)

where for this equation only, G
0

(k?) = (ig2)/~k 2

?. Here Na and Nb are functions that are each

obtained from the contraction of two Lipatov vertices from Fig. 6. For the two routings the factors

of |2kz|�2⌘ and |k+
1

+k�
2

|�2⌘ are each obtained from the |in ·  @ + in̄ · ~@|�⌘ regulator in Eq. (5.46).

This regulates the dk+dk� integrations in the Fig. 14a routing, and the dk+
1

dk�
2

integrations in

the Fig. 14b routing. The other factors, |2`z|�⌘ and |k�
1

+ k�
2

� k+
1

� k+
2

|�⌘, are generated by the

regulator in the soft Wilson lines in OAB
s , and hence only depend on the soft gluons momentum

in each case. They regulate eikonal factors that appear inside Na and Nb. Noting that Nb ! Na
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Figure 26. Two loop example with multiple collinear lines and Glauber exchange.

where fi({�̄j , �̄0
k}) is a function of the various �̄s. Since the result is independent of �

1

the

single n-collinear propagator is eikonal at O(⌘0), whereas the n̄-collinear propagators are non-

eikonal. Obviously for the opposite case, where n
+

+n� � 2 and n̄
+

+ n̄� = 1, we will find by the

same logic that the n̄-collinear propagator is e↵ectively eikonal and the n-collinear propagators

are non-eikonal.

Note that for a n–n̄, a n–s, or a n̄–s Glauber loop the decomposition in Eq. (9.33), the rules

for vanishing cases in Eq. (9.34) and the rule for eikonalization in Eq. (9.35) all apply equally

well.

When we consider extending Eqs. (9.34) and (9.35) for use in multi-Glauber-loop diagrams,

we must address the issue that now collinear or soft propagators can carry more than one k+i or

k�i loop momentum. The number of propagators through which each loop momentum flows will

also depend on the loop momentum routing, but whether a graph vanishes or whether a particular

propagator can be treated as eikonal will be independent of the routing choice. We choose to

route each Glauber loop momentum through the minimum number of collinear propagators, this

maximizes the number of cases where n
+

+n� = 1 or n̄
+

+n̄� = 1. Essentially this means that we

route loop momentum to maximize the number of obviously identifiable eikonal propagators, and

then these propagators are removed when considering the eikonal propagator count for the next

loop momentum (even if other loop momenta flow through them). Practically this means that if

a Glauber loop momentum comes in through one exchange, then we route the momentum out of

the collinear (or soft) sector on the next available Glauber exchange vertex. When determining

whether a given loop vanishes, terms that are zero due to the energy contour integral k0i are exactly

analogous to the analysis at one-loop. However, we must be more careful when considering the

implications of the kzi integrals, since it is not enough to simply consider the convergence when

a single kzi variable gets large, since we must also ensure that the integral remains regulated

when two or more kzi variables simultaneously become large. For example, if any kz variable

appears in a single propagator, then that propagator should be removed from consideration when

considering the convergence for other kzi variables.

As a non-trivial example we consider Fig. 26. Using the physical arguments discussed above or
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Together these two rules lead to the picture 
    of multiple eikonal Wilson lines crossing a shockwave:

a) b)

n

n

n
n

n

n

n

n

n
n

n

n

⌦

n

n

Figure 27. Correspondence between multiple Glauber exchange, with an example diagram shown in panel

a), and the picture of Wilson lines used to represent partons crossing a shockwave, shown in panel b). The

n-collinear particles see the other side via Glauber exchange only at an instant in time and longitudinal

distance indicated by the location of the shockwave that is drawn as a large shaded red ellipse. In a mirror

manner, the n̄-collinear particles also see a shockwave representing the Glauber exchanges.

Thus even in the abelian limit the energetic quarks do not behave solely like single Wilson

lines.14 This becomes even more prevalent when we make the theory non-abelian, for exam-

ple Fig. 25d also cannot be described by a single Wilson line, and indeed requires non-eikonal

propagators for the n-collinear quark and gluon. In QED the same is true of a diagram where

the radiated photon creates another e+e� pair, and then we simultaneously consider Glauber

attachments to members of this pair as well as the original e�. In the non-abelian case, current

algebra dictates that the light-cone commutator from Eq. (9.41) is nonzero, and thus there is no

reason to believe that the semi-classical approximation should hold universally. Indeed, we found

in section 5.1.2 that in the non-abelian case the interaction with soft gluons is non-vanishing

and occurs at leading power, and that there are also one-loop non-abelian collinear graphs that

contain rapidity divergences and are not simply form factors. In general, we will not have a com-

pletely eikonal description for sources coupling to Glauber interactions when we include collinear

splitting or collinear loop diagrams as discussed in Sec. 9.2, or once a hard interaction is involved

as discussed in Sec. 11. On the other hand, both soft and ultrasoft gluons do continue to have

eikonal interactions with collinear particles in these cases.

Despite the breakdown of the simplest Wilson line picture for these more general situations

with Glauber exchange, the eikonal approximation does still play an important role in the dynam-

14It is interesting to note that up to the two loop level, single Wilson lines will give the right answer for two-to-two

scattering as long as one appends the correct one loop form factor to the result. This includes both semi-classical

and quantum corrections. The notion that loop corrections are necessarily quantum corrections fails here, as it

does in other cases where there is a contribution from regions where some fields are behaving like classical sources.

In the e↵ective theory each loop may be considered as classical or quantum, but in the full theory, since integrals

do not scale homogeneously in the power counting, the result can be mixed quantum and classical. For a discussion

on this point see [109].
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FIG. 30. a) Active-Active interaction for the hard scattering correlator in Eq. (314). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.

alone it is far from a proof of factorization, even in the Abelian case. What this resummation does

do however is to illuminate the semi-classical nature of the physics.

Notice that for these spectator-spectator interactions, as opposed to the active-active case pre-

viously discussed in Sec. VIA, that there is no analogous diagrams in SCET where the Glauber

gluons are soft. If one of the Glauber gluons became soft then it would knock all other fermion

lines in the end loop integral o↵shell, and hence such interactions are power suppressed. There

are also no diagrams where a spectator-spectator Glauber exchange is replaced by and n-collinear

or n̄-collinear gluon, again these are power suppressed. Thus once we consider matrix elements

involving spectators lines the Glauber mode is necessary to reproduce the full theory result.

B. Active-Active and Soft Overlap

Next we will consider Glauber interactions between two partons that participate in the hard

scattering, namely active-active terms. In Secs. VIA and VIB we showed that in hard scattering

graphs without spectators, such Glauber interactions give the same contributions as the Glauber

zero-bin subtractions of soft Wilson line graphs. The Glauber exchange could therefore be absorbed

into these soft graphs as long as the correct directions for the soft Wilson lines are employed. In

this section we will demonstrate that all the results and conclusions about active-active Glauber

interactions from those sections carry over to the case when we include the interpolating fields for

the incoming hadrons.

The general reason for this can be discussed by looking at the example given in Fig. 30. In

any purely active-active loop graph with spectators present, the hadron interpolating fields are

always external to the loops. From the n- and n̄-collinear propagators that are outside of the loop,

we immediately get the same tree-level end factor E(p1?, p2?) as in Eq. (315). The only possible

changes to the calculations done in Secs. VIA and VIB are due to the fact that the active collinear

propagators entering the loops are now not onshell. This does not a↵ect any soft propagator from

a Wilson line (solid green in Fig. 30), since here only the soft gluon loop momentum appears.

This is immediate from the SCET Feynman rules, and is also clear from expanding a full-theory

propagator, since (pn + ps)2 = n̄ · pn n · ps + . . ., where the displayed leading O(�) term gives

precisely the eikonal propagator of the soft Wilson line, and the o↵shellness of the external collinear
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.
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Z

d�dk
(◆✏µ2✏ |kz|�⌘ ⌫⌘)

[k2 �m2][n · k + i0][n̄ · k + i0]
(240)

= 2g2CF ūn�un̄
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FIG. 23. One loop soft gluon and Glauber potential exchange with a Hard Scattering vertex ⌦ in SCETII.

The solid green lines denote eikonal propagators from soft Wilson lines. Graphs a) and b) are for 2-particle

production, while c) and d) involve one incoming and one outgoing particle.

two energetic particles, and demonstrate a connection with contributions from soft gluons. It

implies that the same results are obtained with or without Glauber operators as long as the correct

directions for soft Wilson lines are taken. In Sec. VIC we carry out the all order resummation of

Glauber boxes in forward scattering, demonstrating that the rapidity regulator yields an eikonal

phase. The precise connection to the semi-classical interpretation of this scattering in terms of

shock wave solutions is discussed and reviewed in Sec. VID.

A. Hard Matching: the Cheshire Glauber

In carrying out hard matching calculations from full QCD onto SCET at one, two, and even three

loops, it is known that Glauber exchange graphs are not needed to reproduce the infrared structure

of the full theory result and obtain a Wilson coe�cient that is independent of the infrared. In this

section we demonstrate that the hidden nature of Glauber exchange for calculations involving active

lines that participate in the hard scattering, is explained by the need to modify soft diagrams by

including 0-bin subtractions from the Glauber region once Glauber interactions are included in

SCET. In particular, in SCETII the Glauber exchange contribution G is also present as part of the

result from soft gluon exchange between pairs of active lines, but this soft graph also has a Glauber

subtraction, S(G), which removes this contribution. These Glauber subtractions are non-zero for

soft diagrams involving pairs of soft Wilson lines that are both outgoing or both incoming, and in

general there is a precise connection between the subtractions, active-active Glauber graphs, and

the direction of soft Wilson lines. In contrast, in SCETI the Glauber exchange contributions G

between active lines are scaleless, and are exactly canceled by the ultrasoft 0-bin subtraction on

the Glauber graph, G(U). In the remainder of this section we explore the above connections in

detail at one-loop. We will continue this discussion at higher orders in Sec. VIB.

We begin our discussion in SCETII, considering the one-loop graphs shown in Fig. 23 with a

mass IR regulator m. We take the physical momenta to be p for the n-collinear quark, and p̄ for

the n̄-collinear (anti)quark. The soft diagrams drawn here arise from the contraction between two
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming
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Z

d�kz d�d
0
k?

 �(◆✏µ2✏ |kz|�⌘ ⌫⌘)

2(~k 2 +m2)1/2(~k 2
? +m2)

�
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where d0 = d � 2 = 2 � 2✏. In writing down Eq. (10.3) we are using the notation where a tilde

over a symbol, such as S̃, denotes a completely unsubtracted integral, which we will refer to

as the naive or unsubtracted result. To obtain the second line of Eq. (10.3) we evaluated the

integrand by contours in k0, obtaining the first term from the pole from the relativistic propagator

k0 = �(~k 2 +m2)1/2 + i0, and the second term proportional to (i⇡) from the pole in the eikonal

propagator k0 = �kz+ i0. The result for these integrals is shown separately in the third equality,

and can be combined by introducing a (�1� i0) in the rapidity logarithm, as shown in the final

line. If we consider the Glauber zero-bin subtraction integral for this soft loop, then we have
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Therefore the full result for the soft graph in a theory with Glauber exchange is given by the

result without the (i⇡) contribution
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To this we must then also add the result for the Glauber exchange graph in Fig. 28b, which

exactly gives the same (i⇡) term
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Also true in the presence of additional emissions:
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Figure 29. Single soft emission graphs for an e+e� annihilation current with a soft or Glauber loop. Solid

green lines are eikonal propagators from soft Wilson lines, dashed black lines are collinear propagators,

springs are soft gluons, and Glauber exchange is a dotted red line.

Here the �s can also depend on the o↵shellness regulators. The result in Eq. (10.14) agrees with

the SCET
I

calculation with Glauber contributions in Ref. [36]. For the n-n̄ scattering graph or

n-n̄ annihilation we also have G = G(U) = 0. Therefore for all cases in SCET
I

the Glauber

graphs G = G̃ � G(U) do not contribute, and hence the result for the one-loop hard scattering

SCET graphs are the same with or without the inclusion of Glauber gluons. In this situation the

(i⇡) factors are carried by the ultrasoft diagrams. Again these factors are necessary to correctly

reproduce the hard scattering Wilson coe�cients in Eq. (10.12), which for this current are the

same in SCET
I

as in SCET
II

.

10.2 One Loop Soft Real Emission for Soft-Glauber Correspondence

We next show that the correspondence between Glauber contributions and Glauber subtractions

for soft graphs discussed in Sec. 10.1, also holds for the situation with two active quarks par-

ticipating in a hard interaction plus one soft gluon emission. In this section we only consider

SCET
II

. This soft emission case is interesting because there are three di↵erent physical situa-

tions, corresponding to an outgoing quark/antiquark pair, an incoming and then outgoing quark,
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Also true in the presence of additional emissions:

Glauber again gives all (i�) terms here.
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Figure 30. Single soft emission graphs for a e�p hard scattering current with a soft or Glauber loop. Of

the Glauber loop graphs displayed here, only Gep
6 is nonzero.

or an incoming quark/antiquark pair. We will refer to these as ee, ep and pp respectively, since

the underlying hard scattering would be relevant for each of these three hard collision processes.

Since our soft gluon is always outgoing, these processes involve either 3 outgoing particles, 2

outgoing and 1 incoming particle, or 1 outgoing and 2 incoming particles. The relevant diagrams

with soft or Glauber loops are shown in Figs. 29, 30, and 31. As usual, these SCET graphs

also contain subtraction contributions as in Eq. (5.50). In the case being considered here these

subtractions ensure that the soft propagators in the loop are truly soft, and hence do not give

contributions from the region where the propagators momentum becomes Glauber. Based on

the physical picture advocated in earlier sections, we could immediately determine that some of

the Glauber exchange diagrams are zero. Here we prefer to list all the diagrams and save the

discussion of this physical interpretation for determining the nonzero diagrams to the end of this

section.

The contribution of the ith diagram from Figs. 29–31 can be written as

iAchan

i = (i⇡)
g3

⇡
TA

⇣ nµ

n·k � n̄⌫

n̄·k
⌘



� 1

2
achani CA n·k n̄·k I(1)? (k?) + bchani CF I

(0)

? � 1

2
cchani CAI

(0)

?

�

.

(10.15)

Here k is the outgoing momentum of the soft gluon which has color A and vector index µ, and
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Also true in the presence of additional emissions:

Glauber again gives all (i�) terms here.
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Figure 31. Single soft emission graphs for a pp quark annihilation current with a soft or Glauber loop.

Of the Glauber loop graphs shown here, only Gpp
1,2,3 are nonzero.

the integrals that appear are

I(0)? =

Z

d�d�2`? (◆✏µ2✏)
~̀2

? +m2

, I(1)? (k?) =
Z

d�d�2`? (◆✏µ2✏)2

(~̀2

? +m2)
⇥

(~̀? + ~k?)2 +m2

⇤

, (10.16)

to which we can also freely add a suitable IR regulator. For example, with the displayed gluon

mass m the integral I(0)? is not scaleless. The only diagram and channel dependent factors

in Eq. (10.15) are the constants achani , bchani , cchani , where i determines which Glauber or soft

diagram is being considered, and chan = ee, ep, or pp.

In Table 3 we show the results for the achani , bchani , and cchani coe�cients for the Glauber

graphs Gi for each of the three processes. We also show results for the terms we wish to compare

them to, namely the results for the Glauber subtractions S(j)
i of the soft graphs Si. As usual,

the subtractions (j) are determined by considering all possible n-n̄, s-n, and s-n̄ Glauber limits

of the soft gluon propagators (see Table 1). These subtractions are in one-to-one correspondence

with Glauber limits of the soft eikonal propagators, so we enumerate the subtractions by letting

the superscript (j) indicate which eikonal propagator(s) are taken to be near mass shell with

virtuality of order �2. For example, S(2)

1

is the graph S
1

with propagator 2’s momentum taken
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Continues at higher orders.  Checked explicitly at 2-loops:
102
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FIG. 24. Two loop graphs that have abelian contributions and either soft gluons or Glauber exchange with

a Hard Scattering vertex ⌦ in SCETII. We refer to these graphs as S1, S2, SG, and G, and we number the

collinear/eikonal fermion propagators (1), (2), (3), (4) as shown.

discussion.) The subtraction S(G1234)
i simultaneously considers both loop momenta to have Glauber

scaling. The SCET graph SG shown in Fig. 24c contains a soft loop, and hence also has a Glauber

subtraction given by SG(G23).

Since the Abelian soft graphs have trivial numerators, it su�ces to study these overlaps by

listing the denominator propagators for the integrands for the graphs shown in Fig. 24, and for

their 0-bin subtractions. For the original graphs these are

S̃1 :
⇥

n · k1
⇤⇥

n · (k1+k2)
⇤⇥� n̄ · (k1+k2)

⇤⇥� n̄ · k1
⇤⇥

k21
⇤⇥

k22
⇤

(248)

=
⇥

n · k1
⇤⇥

n · k02
⇤⇥� n̄ · k02

⇤⇥� n̄ · k1
⇤⇥

k21
⇤⇥

(k02�k1)
2
⇤

,

S̃2 :
⇥

n · k1
⇤⇥

n · (k1+k2)
⇤⇥� n̄ · (k1+k2)

⇤⇥� n̄ · k2
⇤⇥

k21
⇤⇥

k22
⇤

=
⇥

n · k1
⇤⇥

n · k02
⇤⇥� n̄ · k02

⇤⇥

n̄ · (k1�k02)
⇤⇥

k21
⇤⇥

(k02�k1)
2
⇤

=
⇥

n · (k02�k01)
⇤⇥

n · k02
⇤⇥� n̄ · k02

⇤⇥� n̄ · k01)
⇤⇥

k021
⇤⇥

(k02�k01)
2
⇤

,

gSG :
⇥

n · k1��1
⇤⇥

n · k2
⇤⇥� n̄ · k2

⇤⇥� n̄ · k1��0
1

⇤⇥

k21?
⇤⇥

k22
⇤

,

G :
⇥

n·k1��1
⇤⇥

n·(k1+k2)��2
⇤⇥� n̄·(k1+k2)��0

2

⇤⇥� n̄·k1��0
1

⇤⇥

k21?
⇤⇥

k22?
⇤

.

where we show the eikonal propagators listed from (1) to (4), and multiple momentum routings

are shown for the purely soft graphs for later convenience. Here and below, all propagators in

square brackets include a +i0. The results are all regulated with |kz1|�⌘|kz2|�⌘ (using the notation

of the first momentum routings) and these regulator factors are not modified when taking the 0-bin

limits, and hence need not be written out explicitly in the analysis below. It should be evident

from Fig. 24 that the gSG diagram has the same propagator scaling as S(G14)
1 , while the G diagram

has the same scaling as S(G1234)
1 .

First consider the Abelian terms in the (23) limit. Since there are no Glauber graphs that

correspond to this limit we anticipate that the soft box and cross-box diagrams will cancel. Using

Eq. (248) we find

S(G23)
1 :

⇥

n · k1
⇤⇥

n · k02
⇤⇥� n̄ · k02

⇤⇥� n̄ · k1
⇤⇥

k21
⇤⇥

k+1 k
�
1 �(~k02?�~k1?)2

⇤

, (249)

abelian

non-abelian

A similar result will be obtained for the (13) and (24) limits, except now the correspondence

is with the LS
1

and LS
2

graphs. Here we have

S(G
13

)

3

:
⇥

n · k
1

⇤⇥

n · k0
2

⇤⇥� n̄ · k0
2

⇤⇥

n̄ · k
1

⇤⇥

k2
1?

⇤⇥� k0+
2

k�
1

�(~k
1?�~k0

2?)
2

⇤

(10.54)

=
⇥

n · k⇤⇥� n · `⇤⇥� n̄ · k⇤⇥n̄ · `⇤⇥(k? + `?)2
⇤⇥

`2
⇤

,

S(G
24

)

3

:
⇥� n · k0

1

⇤⇥

n · k0
2

⇤⇥� n̄ · k0
2

⇤⇥� n̄ · k0
1

⇤⇥

k02
1?

⇤⇥� k0+
1

k0�
2

�(~k
1?�~k0

2?)
2

⇤

=
⇥

n · `⇤⇥n · k⇤⇥� n̄ · `⇤⇥� n̄ · k⇤⇥k2?
⇤⇥

`2
⇤

.

In the first equality we took k
1

= k + (n/2)n̄ · ` + `? and k0
2

= k � (n̄/2)n · `, while in the

second equality we took k0
1

= k � (n̄/2)n · ` and k
2

= k + (n/2)n̄ · ` + `?. With this change

of variables the (13) limit is simply k ⇠ (�2,�2,�) while the momentum ` remains soft. This

change of variables also makes it easier to see that the result for LS
1f is the same as for S(G

13

)

3

.

For the (�n̄ · `) propagator in LS
1f that arises from the Glauber operator vertex, we have not

yet specified whether it is ±i0. Once again the same result is obtained with either choice, either

LS
1f � S(G

13

)

3

= 0 or LS
1f � S(G

13

)

3

is proportional to �(n̄ · `) which is killed by the terms with a

further Glauber 0-bin subtraction on this momentum. Similarly the result for LS
2f is the same

as S(G
24

)

3

. Here when we subtract, LS
2f � S(G

24

)

3

is zero or proportional to �(n · `). In both cases

these �-functions force the `-momentum in these di↵erences into a Glauber region, making the

results equal to their (24) and (13) subtractions respectively. Rearranging, these results we have

S(G
13

)

3

� S(G
13

)(G
24

)

3

= LS
1f � LS(G

24

)

1f , S(G
24

)

3

� S(G
24

)(G
13

)

3

= LS
2f � LS(G

13

)

2f . (10.55)

Putting all these results together we find that

S
3

+ S
4

+ S
5

+ S
6

+GS
1

+GS
2

+GS
3

+ LS
1

+ LS
2

= S̃
3

+ S̃
4

+ S̃
5

+ S̃
6

. (10.56)

So the non-abelian two-loop result is again simply given by the sum of the naive soft graph

results. From Eqs. (10.40) and (10.56) we see that, just as in the one loop case, the same result

is obtained for hard production graphs at two-loops in theories with or without the inclusion of

Glauber gluon exchange, as long as the proper subtractions are performed on the soft graphs.

It is clear that the pattern established above continues to all orders in the abelian diagrams

which involve soft and Glauber rungs that go between an active n-collinear and active n̄-collinear

line. The nontrivial Glauber regions of the soft diagrams occur when the momenta of one or

more pairs of propagators (one from the n line and one from the n̄ line) scale into the Glauber

region. For the purely abelian graphs, the box and cross-box subtraction terms continue to

cancel unless the soft loops all occur on the internal side next to the hard vertex, with Glauber

loops on the outside. When we consider Glauber 0-bin subtractions on any soft graph, we

must do so by considering soft gluons from the outside-in, otherwise we again have vanishing
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Figure 33. Non-abelian two loop graphs with soft gluons and Glauber exchange with a hard scattering

vertex ⌦ in SCETII. Only graphs that are non-vanishing in Feynman gauge are shown. We will refer

to them as S3, S4, S5, S6, GS1, GS2, GS3, LS1, LS2, and we number the collinear/eikonal fermion

propagators (1), (2), (3), (4) as shown.

write

(d� 2)n · k
1

n̄ · k
1

+ 2(k
1? + k

2?)2 + 2k2
1? +

4[k
1? · (k

1? + k
2?)]2

n̄ · k
1

n · k
1

=
n

(d� 2)n · k
1

n̄ · k
1

+ 4k2
2? � 2(k

1

+ k
2?)2 � 2k2

1

o

+
4[k

1

· (k
1

+ k
2?)]2

n̄ · k
1

n · k
1

, (10.42)

and then split the two-loop GS
1

graph into two parts by defining

GS
1

= GS
1h +GS

1f . (10.43)

Here GS
1h is the result involving the terms in curly brackets in Eq. (10.42), while GS

1f refers to

the term on the second line with the (n̄ ·k
1

n ·k
1

) eikonal propagators. The graphs with a Lipatov

vertex, LS
1

and LS
2

, have two collinear propagators and terms with both two and zero eikonal

propagators (depending on whether the Lipatov vertex cancels the soft eikonal propagator or

adds an additional one). Since these terms also need to be considered separately we divide the

graphs up as

LS
1

= LS
1r + LS

1f , LS
2

= LS
2r + LS

2f , (10.44)

where the “f” subscript refers to terms with two eikonal plus two collinear propagators, and

the “r” subscript refers to terms with just the two (black-dashed) collinear propagators that are
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Hadron Scattering Add interpolating fields for initial state hadrons.
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is

Fig. 35a = S�i4
Z

d�dk
2G(k?) (�1)2

[k+��
1

+i0][�k+��0
1

+i0][k���̄
1

+i0][�k���̄0
1

+i0]

=
2(�i)2

2
S�

Z

d�d�2k?
G(k?)

(�
1

+�0
1

)(�̄
1

+ �̄0
1

)

= �S�

Z

d�d�2k?
G(k?)

(~k? + ~p
1?)2 (~k? � ~p

2?)2

= �S�

Z

d�d�2k? G(k?) E(p
1? + k?, p2? � k?) . (11.9)

To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example

n̄ · p
1

n̄ · p
1

(k++n · p
1

)� (~k?+~p
1?)2 + i0

=
1

k+ ��
1

+ i0
. (11.10)

Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2

)? = �p
2?, the various k? dependent
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of hadronic interpolating fields. The generalization of these results to SCET
I

is discussed in

Sec. 11.4. Finally, we also propose a definition of spectators and active exchanges valid at any

order in perturbation theory in Sec. 11.5.

11.1 Spectator-Spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in Fig. 35. Since the

hard scattering case with MDIS

�

has only a single hadron, these SS contributions only exist for the

hard annihilation case with MDY

�

, where the two participating spectators are created by �n and

�n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and our routing for

incoming and outgoing external momentum is shown in Fig. 35b. For simplicity we take the limit

where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. 21 This is accomplished

by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result for Fig. 35b is

then given by

Fig. 35b = S� i n̄ · (p
1

�P )

(P � p
1

)2
i n · (P̄ � p

2

)

(P̄ � p
2

)2
(11.6)

= S�



1

~p 2

1?

1

~p 2

2?

� 

n̄ · p
1

n̄ · (P�p
1

)

n̄ · P
n · p

2

n · (P̄�p
2

)

n · P̄
�

⌘ S� E(p
1?, p2?),

where this defines the function E, and we have defined the spinor factor for the outgoing quark-

antiquark as

S� = ūn�
µ
?v

⇤
n̄ . (11.7)

The v⇤̄n appears here because of our convention for the antiquark spinors, see the discussion near

Eq. (5.8). Note that n̄ · p
1

> 0, n̄ · (P � p
1

) > 0, n · p
2

> 0, and n · (P̄ � p
2

) > 0. To obtain the

second line of Eq. (11.6) we used momentum conservation, and the equation of motion to remove

the small momentum components, n ·p
1

= ~p 2

1?/n̄ ·p1 and n̄ ·p
2

= ~p 2

2?/n ·p2. The final momentum

dependence of the result in Eq. (11.6) is defined as the “end-function” E(p
1?, p2?). We suppress

the dependence on the light cone momenta in its arguments since it is the ?-momenta that will

play the prominent role for our discussion here. The factor involving light-cone momenta that

appears in E will often occur at intermediate steps, so we define

 ⌘


n̄ · p
1

n̄ · (P � p
1

)

n̄ · P
n · p

2

n · (P̄ � p
2

)

n · P̄
�

. (11.8)

In terms of power counting we note that the tree level amplitude scales as E(p
1?, p2?) ⇠ ��4

just as expected for the scaling of MDY

�

.

21The generalization to the case with P

2

, P̄

2 6= 0 is discussed in Eq. (11.14) below.
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“an end E”

of hadronic interpolating fields. The generalization of these results to SCET
I

is discussed in

Sec. 11.4. Finally, we also propose a definition of spectators and active exchanges valid at any

order in perturbation theory in Sec. 11.5.

11.1 Spectator-Spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in Fig. 35. Since the

hard scattering case with MDIS

�

has only a single hadron, these SS contributions only exist for the

hard annihilation case with MDY

�

, where the two participating spectators are created by �n and

�n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and our routing for

incoming and outgoing external momentum is shown in Fig. 35b. For simplicity we take the limit

where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. 21 This is accomplished

by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result for Fig. 35b is

then given by

Fig. 35b = S� i n̄ · (p
1

�P )

(P � p
1

)2
i n · (P̄ � p

2

)

(P̄ � p
2

)2
(11.6)
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1

)

n̄ · P
n · p

2

n · (P̄�p
2

)

n · P̄
�

⌘ S� E(p
1?, p2?),

where this defines the function E, and we have defined the spinor factor for the outgoing quark-

antiquark as

S� = ūn�
µ
?v

⇤
n̄ . (11.7)

The v⇤̄n appears here because of our convention for the antiquark spinors, see the discussion near

Eq. (5.8). Note that n̄ · p
1

> 0, n̄ · (P � p
1

) > 0, n · p
2

> 0, and n · (P̄ � p
2

) > 0. To obtain the

second line of Eq. (11.6) we used momentum conservation, and the equation of motion to remove

the small momentum components, n ·p
1

= ~p 2

1?/n̄ ·p1 and n̄ ·p
2

= ~p 2

2?/n ·p2. The final momentum

dependence of the result in Eq. (11.6) is defined as the “end-function” E(p
1?, p2?). We suppress

the dependence on the light cone momenta in its arguments since it is the ?-momenta that will

play the prominent role for our discussion here. The factor involving light-cone momenta that

appears in E will often occur at intermediate steps, so we define

 ⌘
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n̄ · (P � p
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)

n̄ · P
n · p

2

n · (P̄ � p
2

)

n · P̄
�

. (11.8)

In terms of power counting we note that the tree level amplitude scales as E(p
1?, p2?) ⇠ ��4

just as expected for the scaling of MDY

�

.

21The generalization to the case with P

2

, P̄

2 6= 0 is discussed in Eq. (11.14) below.
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Figure 38. a) Active-Active interaction for the hard scattering correlator in Eq. (11.4). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.

As an explicit example, for Fig. 38a we have

Fig. 38a = 2S�E(p
1?, p2?)

Z

d�dk
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S� , (11.33)

where after using momentum conservation �0
1

and �̄
1

are given in Eq. (11.11), and the kz integral

was performed using Eq. (B.4). We also used the fact that up to the spinor factors a single Glauber

exchange yields 2G0(k?), where for this incoming q̄q pair we have

G0(k?) =
�ig2

~k 2

? +m2

T̄A ⌦ TA , (11.34)

and we have included the mass IR regulator. Since there is no dependence on the �i, the result in

Eq. (11.33) is identical to that in Eq. (10.6) multiplied by E(p
1?, p2?), and so as anticipated, the

correspondence G = S(G) goes through in the same manner here. The various correspondences

also remain true for active-active graphs where the hard vertex involves scattering or production,

rather than annihilation, and for higher loop orders.

From the second to last line in Eq. (11.33) we also see that the contribution of the active-

active Glauber graph corresponds to E(p
1?, p2?)

��i�(0)/2
�

S� in the notation of Eq. (9.1), where

�(0) = �(b? = 0). If we consider the iteration of active-active Glauber exchanges, the result again

yields a phase. Similar to the active-spectator graphs, the ⌘-regulator was already required for

the single-exchange graph, so the ladder sum cannot be carried out independent of considering

the loop involving the hard scattering vertex. In App. C.3 we carry out this calculation, finding

n

n

n

n
G

n

n
= S� E(p

1?, p2?) e�i�(0)/2 . (11.35)
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Figure 38. a) Active-Active interaction for the hard scattering correlator in Eq. (11.4). b) Corresponding

graph with two Wilson line interactions involving a soft gluon.
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To this we must then also add the result for the Glauber exchange graph in Fig. 23b, which

exactly gives the same (i⇡) term

G(Fig. 23b) = �2ig2CF ūn�vn̄
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d�dk
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where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming

and one outgoing collinear quark, hard scattering from n to n̄. Repeating the above calculations

for the graphs relevant to this case, we have
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= ūn�un̄
↵sCF

2⇡

�2h(✏, µ2/m2)

⌘
+ ln

µ2

⌫2

⇣1

✏
+ ln

µ2

m2

⌘

+
1

✏2
� 1

2
ln2

µ2

m2
� ⇡2

12

�

,

S(G)(Fig. 23c) = �2ig2CF ūn�un̄

Z

d�dk
(◆✏µ2✏ |kz|�⌘ ⌫⌘)

[k2? �m2][n · k + i0][n̄ · k + i0]
= 0 ,

G(Fig. 23d) = �2ig2CF ūn�un̄
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Z

d�kz d�d
0
k?

 �(◆✏µ2✏ |kz|�⌘ ⌫⌘)

2(~k 2 +m2)1/2(~k 2
? +m2)

�
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= ūn�vn̄
CF↵s

2⇡



(i⇡)
⇣1

✏
+ ln

µ2

m2

⌘

�

, (238)

where �(k?) = �n · p+ (~k? + ~p?)2/n̄ · p and �0(k?) = �n̄ · p̄+ (~k? � ~p?)2/n · p̄. Note that this is

the same integral evaluated in Eq. (50), so the values of �(k?) and �0(k?) do not e↵ect the result

for this integral, and hence it yields precisely the same value as in Eq. (236). From this analysis

we see that

S(G) = G , (S̃ � S(G)) +G = S̃ . (239)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃�S(G)), but when

added with the Glauber graph G this reproduces the naive soft result S̃. If we do not consider

Glauber gluons as degrees of freedom in SCETII, then we would arrive at the same result, since the

soft graph would simply give S̃. Therefore the Glauber gluon is not directly visible as a distinct

degree of freedom in this loop integrand at the level of matching. If all loop integrands behaved in

this manner, then we could simply absorb the Glauber exchange into our soft degree of freedom.

We will see that this pattern persists for hard scattering graphs (active-active graphs), but is not

the case once we consider graphs with spectator quarks or gluons, where some Glauber exchange

can be absorbed into collinear Wilson lines, while others can not be absorbed at all.

Next consider how the above one-loop SCETII analysis changes for the case with one incoming

and one outgoing collinear quark, hard scattering from n to n̄. Repeating the above calculations

for the graphs relevant to this case, we have

S̃(Fig. 23c) = �2ig2CF ūn�un̄
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Hadron Scattering Add interpolating fields for initial state hadrons.
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is

Fig. 35a = S�i4
Z
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2G(k?) (�1)2

[k+��
1

+i0][�k+��0
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(~k? + ~p
1?)2 (~k? � ~p

2?)2

= �S�

Z

d�d�2k? G(k?) E(p
1? + k?, p2? � k?) . (11.9)

To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example

n̄ · p
1

n̄ · p
1

(k++n · p
1

)� (~k?+~p
1?)2 + i0

=
1

k+ ��
1

+ i0
. (11.10)

Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2

)? = �p
2?, the various k? dependent
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of hadronic interpolating fields. The generalization of these results to SCET
I

is discussed in

Sec. 11.4. Finally, we also propose a definition of spectators and active exchanges valid at any

order in perturbation theory in Sec. 11.5.

11.1 Spectator-Spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in Fig. 35. Since the

hard scattering case with MDIS

�

has only a single hadron, these SS contributions only exist for the

hard annihilation case with MDY

�

, where the two participating spectators are created by �n and

�n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and our routing for

incoming and outgoing external momentum is shown in Fig. 35b. For simplicity we take the limit

where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. 21 This is accomplished

by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result for Fig. 35b is

then given by
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where this defines the function E, and we have defined the spinor factor for the outgoing quark-

antiquark as

S� = ūn�
µ
?v

⇤
n̄ . (11.7)

The v⇤̄n appears here because of our convention for the antiquark spinors, see the discussion near

Eq. (5.8). Note that n̄ · p
1

> 0, n̄ · (P � p
1

) > 0, n · p
2

> 0, and n · (P̄ � p
2

) > 0. To obtain the
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1?/n̄ ·p1 and n̄ ·p
2
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2?/n ·p2. The final momentum
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In terms of power counting we note that the tree level amplitude scales as E(p
1?, p2?) ⇠ ��4

just as expected for the scaling of MDY

�

.

21The generalization to the case with P

2

, P̄

2 6= 0 is discussed in Eq. (11.14) below.
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.

C. Active-Spectator and the Collinear Overlap

Next we consider Glauber exchange for active-spectator type diagrams. We will show that

the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by

Fig.31a = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?)|2kz|�⌘⌫⌘

[k���2+i0][�k+��1+i0][k+��0
1+i0]

, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives

Fig.31a = 2i S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�kzd�d
0
k?

G0(k?)|2kz|�⌘⌫⌘

[2kz��1��2+i0][��1��0
1+i0]

= �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�d
0
k?

G0(k?)
�1 +�0

1

= �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

n̄·p1 n̄·(P�p1)

n̄·P
Z

d�d
0
k?

G0(k?)
(~k? + ~p1?)2

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) , (328)

where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.
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� , that is, two incoming hadrons. The single
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defined. The active-spectator Glauber exchange graph in Fig. 31a is given by
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, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives

Fig.31a = 2i S� n·p2 n·(P̄�p2)
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where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take

Cn = C̃n � C(G)
n
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it to be Wn(�1, 0) since in this case it is generated in the QCD to SCETII matching calculation

from integrating out o↵shell propagators along the incoming quark line plus non-abelian graphs.

We have

C̃n(Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

n̄ · (k�P+p1) n̄ · (k+p1) |n̄ · k|�⌘⌫⌘

[k� + i0][(k�P+p1)2 + i0][(k+p1)2 + i0]
.

(329)

From Eq. (67) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (329) gives

C(S)
n (Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

(�1)|n̄ · k|�⌘⌫⌘

[k� + i0][�k+ + i0][k+ + i0]
, (330)

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(GS)
n vanishes for the same reason). The

reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons can not

couple to collinear lines without knocking them o↵shell, and hence are only leading power for the

active attachments which generate soft Wilson lines. Thus there is no leading power soft diagram

that is analogous to the active-spectator interaction in Fig. 31b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (329),

C(G)
n (Fig.31b) = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?) |n̄ · k|�⌘⌫⌘

[k� + i0][�k+ ��1 + i0][k+ ��0
1 + i0]

. (331)

Comparing this integral with the active-spectator Glauber result in Eq. (327) we see that the two

are the same up to the presence of di↵erent rapidity regulators and the absence of �2(k?) in

Eq. (331). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and then

using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives

C(G)
n (Fig.31b) = �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�d
0
k?

G0(k?)
�0

1 +�1

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) . (332)

This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (328), despite the lack of �2 and di↵erence in rapidity regulators,

C(G)
n (Fig.31b) = G(Fig.31a) . (333)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. VIA. Here the collinear subtraction result is sensitive to the direction

of the Wilson line Wn which is encoded by the sign in the propagator [k� + i0], and the Glauber

subtraction C(G)
n precisely removes this dependence. In order for the correspondence in Eq. (339)

129

it to be Wn(�1, 0) since in this case it is generated in the QCD to SCETII matching calculation

from integrating out o↵shell propagators along the incoming quark line plus non-abelian graphs.

We have

C̃n(Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

n̄ · (k�P+p1) n̄ · (k+p1) |n̄ · k|�⌘⌫⌘

[k� + i0][(k�P+p1)2 + i0][(k+p1)2 + i0]
.

(329)

From Eq. (67) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (329) gives

C(S)
n (Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

(�1)|n̄ · k|�⌘⌫⌘

[k� + i0][�k+ + i0][k+ + i0]
, (330)

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(GS)
n vanishes for the same reason). The

reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons can not

couple to collinear lines without knocking them o↵shell, and hence are only leading power for the

active attachments which generate soft Wilson lines. Thus there is no leading power soft diagram

that is analogous to the active-spectator interaction in Fig. 31b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (329),

C(G)
n (Fig.31b) = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?) |n̄ · k|�⌘⌫⌘

[k� + i0][�k+ ��1 + i0][k+ ��0
1 + i0]

. (331)

Comparing this integral with the active-spectator Glauber result in Eq. (327) we see that the two

are the same up to the presence of di↵erent rapidity regulators and the absence of �2(k?) in

Eq. (331). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and then

using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives

C(G)
n (Fig.31b) = �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�d
0
k?

G0(k?)
�0

1 +�1

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) . (332)

This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (328), despite the lack of �2 and di↵erence in rapidity regulators,

C(G)
n (Fig.31b) = G(Fig.31a) . (333)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. VIA. Here the collinear subtraction result is sensitive to the direction

of the Wilson line Wn which is encoded by the sign in the propagator [k� + i0], and the Glauber

subtraction C(G)
n precisely removes this dependence. In order for the correspondence in Eq. (339)

129

it to be Wn(�1, 0) since in this case it is generated in the QCD to SCETII matching calculation

from integrating out o↵shell propagators along the incoming quark line plus non-abelian graphs.

We have

C̃n(Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

n̄ · (k�P+p1) n̄ · (k+p1) |n̄ · k|�⌘⌫⌘

[k� + i0][(k�P+p1)2 + i0][(k+p1)2 + i0]
.

(329)

From Eq. (67) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (329) gives

C(S)
n (Fig.31b) = S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
(2ig2CF )

(k2�m2+i0)

(�1)|n̄ · k|�⌘⌫⌘

[k� + i0][�k+ + i0][k+ + i0]
, (330)

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(GS)
n vanishes for the same reason). The

reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons can not

couple to collinear lines without knocking them o↵shell, and hence are only leading power for the

active attachments which generate soft Wilson lines. Thus there is no leading power soft diagram

that is analogous to the active-spectator interaction in Fig. 31b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (329),

C(G)
n (Fig.31b) = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?) |n̄ · k|�⌘⌫⌘

[k� + i0][�k+ ��1 + i0][k+ ��0
1 + i0]

. (331)

Comparing this integral with the active-spectator Glauber result in Eq. (327) we see that the two

are the same up to the presence of di↵erent rapidity regulators and the absence of �2(k?) in

Eq. (331). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and then

using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives

C(G)
n (Fig.31b) = �1

2
S� n·p2 n·(P̄�p2)

n·P̄ ~p 2
2?

Z

d�d
0
k?

G0(k?)
�0

1 +�1

= �1

2
S�

Z

d�d
0
k? G0(k?)E(p1? + k?, p2?) . (332)

This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (328), despite the lack of �2 and di↵erence in rapidity regulators,

C(G)
n (Fig.31b) = G(Fig.31a) . (333)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. VIA. Here the collinear subtraction result is sensitive to the direction

of the Wilson line Wn which is encoded by the sign in the propagator [k� + i0], and the Glauber

subtraction C(G)
n precisely removes this dependence. In order for the correspondence in Eq. (339)

a) b) c)

n
n

n

p1

p2P
n

n

n

n

n
n

n

n
nn

Figure 37. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap

for the DIS hard scattering correlator in Eq. (11.4). a) is the lowest order end, b) involves Glauber

exchange, c) is the corresponding graphs with a Wilson line interaction involving a collinear gluon.

(11.20). Since
R

dk�|k�|�⌘/(k� � i0) = +i/2 +O(⌘), this flips the overall sign of the final result

for C(G)

n in Eq. (11.21). In this case the Glauber subtraction on the collinear graph would not

be equal to the Glauber graph itself, and we could not simply absorb the Glauber graph into the

collinear Wilson line. (The direction dependence is still canceled in Cn�C(G)

n , and only encoded

by G in this case.)

For the graphs in Fig. 36c,d the results can be obtained by swapping n $ n̄, p
1

$ p
2

,

n · P̄ ! n̄ · P , and TA ⌦ TA ! T̄A ⌦ T̄A in the analysis above. Therefore we find

C(G)

n̄ (Fig.36d) = G(Fig.36c) . (11.23)

Here the W †
n̄ = W †

n̄(�1, 0) Wilson line in the J
�

current has to extend from (�1, 0) in order for

the correspondence in Eq. (11.23) to be true. For easy reference we record the Feynman rules for

collinear Wilson lines in various directions in App. B.4. We see that the correspondence between

Glauber subtractions on the collinear graphs, and the Glauber graphs themselves is sensitive to

the direction of each of the Wn and W †
n̄ Wilson lines in the hard current J

�

. Again, if the Wilson

line in the hard scattering current were taken to extend out to +1, then the two amplitudes in

Eq. (11.23) would di↵er by a sign.

Next we consider active-spectator scattering for the MDIS

�

amplitude of Eq. (11.4), which has

active quarks in the initial and final states, and only n̄-collinear spectators from the one incoming

hadron. The relevant diagrams are shown in Fig. 36. We let the incoming momentum of the

hadron be P̄ = n · P̄ n̄µ/2 and label the outgoing quark momenta as p
1

and p
2

as shown. At tree

level the correlator is

Fig.37a = S� i n · (P̄ � p
2

)

(P̄ � p
2

)2
= �iS� 1

~p 2

2?

n · p
2

n · (P̄�p
2

)

n · P̄
⌘ S� E(p

2?), (11.24)

which defines the end factor E(p
2?), and again we suppress the dependence on n · p

2

in its

arguments. We distinguish this function from that in Eq. (11.6) by its dependence on only a

single ?-variable. Note that E(p
2?) ⇠ ��2 just as expected for the scaling of MDIS

�

.
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Figure 37. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap

for the DIS hard scattering correlator in Eq. (11.4). a) is the lowest order end, b) involves Glauber

exchange, c) is the corresponding graphs with a Wilson line interaction involving a collinear gluon.
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and p
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level the correlator is
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which defines the end factor E(p
2?), and again we suppress the dependence on n · p

2

in its

arguments. We distinguish this function from that in Eq. (11.6) by its dependence on only a

single ?-variable. Note that E(p
2?) ⇠ ��2 just as expected for the scaling of MDIS

�

.
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can absorb this Glauber into the Collinear Wilson line with 
   physical directions (note:  connection to eikonalization)

•

J� = (�̄nWn)S†
n�Sn̄(W †
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example
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Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
1

+�0
1

and �
2

+�0
2

, so the collinear

fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (11.9) in Fourier space.

If we hold the photons q? = �p
1? � p

2? fixed, then we can consider Fourier transforming in

�p? = (p
2? � p

1?)/2, to give

ASS(�p?, q?) = Fig. 35b
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
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⌦ TA
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= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
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fermions that appear outside of G here are not eikonal.
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.
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�Ẽ0(b?, q?)
�

�

2

= |S� |2
Z

d�d�2�p?
�

�E0(�p?, q?)
�

�

2

, (11.13)

– 161 –

123

n

n

n

n
G =

n

n

p1

p2

P

P

n

n
+

n

n

n

n
+

n

n

n

n
+ . . .

a) b) c) d)

FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (314). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with MDIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with MDY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S� i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(315)
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where we have defined the spinor factor for the outgoing quark-antiquark as

S� = ūn�
µ
?un̄ . (316)

Note that n̄ · p1 > 0, n̄ · (P � p1) > 0, n · p2 > 0, and n · (P̄ � p2) > 0. To obtain the second line

of Eq. (315) we used momentum conservation, and the equation of motion to remove the small

momentum components, n·p1 = ~p 2
1?/n̄·p1 and n̄·p2 = ~p 2

2?/n·p2. The final momentum dependence

of the result is defined as the end-function E(p1?, p2?). We suppress the dependence on the light

no analogous soft or collinear diagrams at leading power
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is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the

phase space integral over �p?,
Z

d�d�2�p?
�

�ASS(�p?, q?)
�

�

2

= |S� |2
Z

d�d�2�p?
Z

dd�2b? dd�2b0? ei�~p?·(~b0?�~b?) Ẽ0(b?, q?)Ẽ0†(b0?, q?) e
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the
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is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.

C. Active-Spectator and the Collinear Overlap

Next we consider Glauber exchange for active-spectator type diagrams. We will show that

the Glaubers here can be absorbed into the direction of collinear Wilson lines, since there is

an exact overlap between these Glauber diagrams and the Glauber 0-bin subtractions of graphs

involving collinear Wilson lines from the hard scattering vertex. This Glauber-collinear Wilson line

correspondence is analogous to the Glauber correspondence with soft Wilson lines in the active-

active diagrams.

We start by considering hard production with MDY
� , that is, two incoming hadrons. The single

Glauber graphs are shown by the diagrams in Fig. 31a,c. Unlike the single Glauber exchange

graph with a spectator-spectator interaction, the results here need the rapidity regulator to be well

defined. The active-spectator Glauber exchange graph in Fig. 31a is given by

Fig.31a = 2S� n·(P̄�p2)

(P̄�p2)2

Z

d�dk
G0(k?)|2kz|�⌘⌫⌘

[k���2+i0][�k+��1+i0][k+��0
1+i0]

, (327)

where S� is given in Eq. (316) and a single Glauber exchange yields �2G0(k?), where G0 is given

in Eq. (325). The other k? dependent factors �1, �1, �0
1 are given above in Eq. (320). Performing

the k0 integration by contours gives

Fig.31a = 2i S� n·p2 n·(P̄�p2)
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where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take
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FIG. 31. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap for

the hard annihilation Drell-Yan correlator in Eq. (314). a) and c) involve Glauber exchange, while b) and

d) are the corresponding graphs with a Wilson line interactions involving a collinear gluon.
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where d0 = d � 2. To obtain the second line, the kz integral was performed using Eq. (C2). The

final result here is written in terms of the end function defined in Eq. (315).

Now consider the collinear loop graph in Fig. 31b. Here the gluon entering the hard vertex has

momentum k and is generated by the Wilson line Wn[n̄ ·An] from the current in Eq. (245). We take

• cancel?

which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(S)(G)

n vanishes for the same reason).

The reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons

cannot couple to collinear lines without knocking them o↵shell, and hence are only leading power

for the active attachments which generate soft Wilson lines. Thus there is no leading power soft

diagram that is analogous to the active-spectator interaction in Fig. 36b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
limit of Eq. (11.18),
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Comparing this integral with the active-spectator Glauber result in Eq. (11.15) we see that the

two are the same up to the presence of di↵erent rapidity regulators and the absence of �
2

(k?)

in Eq. (11.20). Decomposing ddk = (1/2)dk+dk�dd0k?, performing the k+ contour integral, and

then using
R

dk�|k�|�⌘/(k� + i0) = �i/2 +O(⌘) gives
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This result for the subtraction on the collinear graph is the same as the Glauber graph result in

Eq. (11.17), despite the lack of �
2

and di↵erence in rapidity regulators,

C(G)

n (Fig.36b) = G(Fig.36a) . (11.22)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange for

active-active lines in Sec. 10.1. In particular, this type of Glauber exchange can be absorbed

into the collinear Wilson lines, in an analogous manner to the way we discussed absorbing certain

Glauber exchanges into soft Wilson lines in Sec. 10.1. The fact that these active-spectator Glauber

exchanges can be absorbed is consistent with the contour deformation picture in CSS, where the

combined collinear+Glauber loop integral can be deformed away from the Glauber region for

these types of diagrams [18, 28].

In SCET the collinear subtraction result is sensitive to the direction of the Wilson line Wn

which is encoded by the sign in the propagator [k� + i0], and the Glauber subtraction C(G)

n

precisely removes this dependence. In order for the correspondence in Eq. (11.22) to be true it is

important for n-n̄ annihilation that the Wn = Wn(�1, 0) Wilson line in the J
�

current is taken

to extend from (�1, 0) in the Wilson line integration variable n · x. If instead we had taken this

Wilson line to extend from (0,1) then we would replace [k�+ i0] ! [k�� i0] in Eqs. (11.18) and
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Figure 36. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear overlap

for the hard annihilation Drell-Yan correlator in Eq. (11.4). a) and c) involve Glauber exchange, while b)

and d) are the corresponding graphs with Wilson line interactions involving a collinear gluon.

abelian graphs. We have
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From Eq. (5.50) this collinear loop graph potentially has both soft and Glauber subtractions. For

the soft subtraction we find that the soft limit kµ ⇠ � of Eq. (11.18) gives
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which scales as ⇠ �4/�7 = ��3 and hence is dropped since it is power suppressed relative to the

leading amplitude E ⇠ O(��4) (the overlap subtraction C(S)(G)

n vanishes for the same reason).

The reason for the vanishing of this soft subtraction is clear once we recall that the soft gluons

cannot couple to collinear lines without knocking them o↵shell, and hence are only leading power

for the active attachments which generate soft Wilson lines. Thus there is no leading power soft

diagram that is analogous to the active-spectator interaction in Fig. 36b.

On the other hand, there is a leading power Glauber subtraction, given by taking the k± ⌧ ~k?
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Comparing this integral with the active-spectator Glauber result in Eq. (11.15) we see that the

two are the same up to the presence of di↵erent rapidity regulators and the absence of �̄
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Figure 35. Spectator-specator interactions for the hard scattering correlator in Eq. (11.4). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

Next we dress the end E with SS Glauber exchanges as in Fig. 35c,d. To do this we may

utilize the results from Sec. 9.1 for Glauber exchange in forward scattering diagrams. Here the

hard scattering end produces a pair of quarks that are then fed into the forward scattering. In

particular, the one-loop hard scattering graph in Fig. 35c is just the tree-level forward scattering

graph tied o↵ with an extra loop on the end and the two-loop hard scattering graph in Fig. 35d

is the one-loop box-graph for forward scattering tied o↵ with an extra loop on the end, etc.

Due to the extra loop present in hard scattering, the incoming quarks are o↵shell, with O(�2)

nonzero ± loop momenta flowing through the forward scattering part of the graph, and unrelated

?-momenta for the two incoming lines. However, as discussed in Sec. 9.1, the presence of these

modifications from the additional loop do not change the result for the sum of forward scattering

ladder graphs. Thus we can first perform all the forward scattering loop integrals to give 2G(k?),

where G(k?) is taken from Eq. (9.23) setting TA
1

⌦ TA
2

= TA ⌦ T̄A. This leaves only the loop-

integral with momentum that flows through the end, and corresponds to evaluating Fig. 35a. The

result is
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To obtain the first line, note that the small k± loop momenta do not appear in the numerator of

the collinear propagators, so we can group these factors into the denominators, for example

n̄ · p
1

n̄ · p
1

(k++n · p
1

)� (~k?+~p
1?)2 + i0

=
1

k+ ��
1

+ i0
. (11.10)

Using momentum conservation and n ·P = n̄ · P̄ = 0, and the fact that the incoming hadrons have

vanishing ?-momenta so (P � p
1

)? = �p
1? and (P � p

2

)? = �p
2?, the various k? dependent
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cancel IF we integrate over �p�

factors in Eq. (11.9) include

�
1

=
(~k? + ~p

1?)2

n̄ · p
1

� n · p
1

, �0
1

=
(~k? + ~p

1?)2

n̄ · (P�p
1

)
+ n · p

1

, (11.11)

�̄0
1

=
(~k? � ~p

2?)2

n · p
2

� n̄ · p
2

, �̄
1

=
(~k? � ~p

2?)2

n · (P̄�p
2

)
+ n̄ · p

2

.

To obtain the second line of Eq. (11.9) we note that there are no rapidity divergences and hence

we simply perform the k+ and k� integrals by contours. The final lines simply follow from the

definitions in Eq. (11.11) and Eq. (11.8). Note that unlike in the forward scattering loop integrals

that the final result here depends on the non-vanishing �
1

+�0
1

and �
2

+�0
2

, so the collinear

fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express Eq. (11.9) in Fourier space.

If we hold the photons q? = �p
1? � p

2? fixed, then we can consider Fourier transforming in

�p? = (p
2? � p

1?)/2, to give

ASS(�p?, q?) = Fig. 35b
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In the third line we have defined a related two argument end function E0 which allows us to keep

the expressions more compact. From the final result we see that the iterations of the spectator-

spectator Glauber potentials produce a final state rescattering phase �(b?), where the distance b?
is conjugate to the di↵erence of the ?-momenta of the two spectators undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry out the

phase space integral over �p?,
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�Ẽ0(b?, q?)
�

�

2

= |S� |2
Z

d�d�2�p?
�

�E0(�p?, q?)
�

�

2

, (11.13)
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Measurements (like beam thrust & transverse thrust) that disrupt this 
 integration can cause a non-cancellation. (Gaunt;  Zeng)

Single t-scale SCET:

�p� � �QCD � T cancel as in inclusive DY, 
up to power corrections

�QCD
T � 1

(Aybat & Sterman)

�p� � T ,
�

QT O(�4
s)starts at          , calculable

factorization violation(cf.  Gaunt;  Zeng) (II)� f � f

Need multi t-scale SCET for most interesting effects
(not discussed here)
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Underlying Event
Radiation not described by primary hard scattering.  •
Modeled by Multiple Particle Interactions (MPI) •

beam thrust,

Some observables are sensitive:
Atlas
Geneva+Py8
Geneva+Py8(no MPI)

Pythia8
Tune 11
Tune 14
Tune 17

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Z ! µ+µ�
, 7 TeV

1
/

N
d

N
/

d
T C

M

[
G

e
V

]

0 10 20 30 40 50 60
0.5
0.6
0.7
0.8
0.9
1.0
1.1

T
CM

[GeV]

M
C

/
D

a
t
a

Figure 10: The beam thrust distribution TCM.

Figure 11 compares Geneva+Pythia8 for the TCM distribution in di↵erent regions of

transverse momentum of the Z boson. This introduces a dependence on the pZT spectrum

in the measurement. While the overall shape is still described well by Geneva+Pythia8,

a slight discrepancy develops in the tails of the distribution at large TCM. This is most

likely due to the fact that the pZT distribution is predicted with lower accuracy in Geneva

compared to the beam thrust distribution. As expected, there is better agreement in

the pZT > 25 range, where the pZT spectrum starts to be dominated by the fixed-order

calculation.

5 Conclusions

We have presented a study of UE-sensitive observables for Drell-Yan neutral-current pro-

duction in the Geneva Monte Carlo framework. By adding the ability to turn on the

MPI model included in Pythia8, one obtains an accurate description of observables that

are sensitive to both hard and soft physics. UE-sensitive observables often contain contri-
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has measured the normalized beam thrust distribution 1/�(d�/dTCM) [56], where

TCM =
X

i

pT,i e
�|⌘i| . (4.1)

Here pT i and ⌘i are the transverse momentum and rapidity of each particle in the final

state but excluding the decay products of the vector boson.

The beam thrust 0-jet resolution variable used by Geneva is defined as

T0 =
X

i

pT,i e
�|⌘i�YV | , (4.2)

where YV is the rapidity of the vector boson. As discussed in sec. 2.3, Geneva includes the

perturbative contributions to beam thrust from the primary interaction to NNLL0+NNLO

accuracy, which includes in particular soft ISR e↵ects. While the two observables are

not exactly the same, they are closely related and have the same underlying resummation

structure [30, 57]. They only di↵er in the dependence on YV , leading to some di↵erences

in the resummed contributions. However, upon integrating over YV and matching to full

fixed order, the final distributions for both variables are nearly identical. (A detailed

study of this YV dependence in a slightly di↵erent context can be found in ref. [49].)

Hence, Geneva essentially predicts the primary perturbative contributions for TCM at

NNLL0+NNLO accuracy.

On the other hand, MPI and nonperturbative hadronization e↵ects are not included

in Geneva’s perturbative input, but have a large e↵ect on the beam thrust spectrum.

Due to the sum over all particles, any secondary collision contributes to beam thrust, such

that a prediction without MPI e↵ects fails to describe the data. Also, the experimentally

measured distribution is defined by summing only over charged final-state particles, and is

thus directly sensitive to hadronization e↵ects.

Geneva matched to Pythia8 provides the only theoretical calculation of beam thrust,

which simultaneously includes NNLL0+NNLO0 logarithmic resummation at low T0, NLO1

accuracy at large T0, as well as the e↵ects from MPI and hadronization. Thus, comparing

the predictions of Geneva+Pythia8 to the ATLAS measurements allows one to constrain

the MPI and nonperturbative e↵ects independent of perturbative contamination.

In fig. 10, the comparison of Geneva+Pythia8 with the data is shown. One can

clearly see that without including the e↵ects of MPI, one cannot reproduce the data.

However, once MPI e↵ects are included, Geneva+Pythia8 agrees well with the data.

The noticeable exception is when the ATLAS AZ tune (tune 17) is used, in which case

Pythia8 standalone and to a lesser extent Geneva+Pythia8 undershoot the data even

for moderate values of TCM. This can again be traced back to the lack of recent UE-

sensitive inputs in the ATLAS AZ tune. Note that while standalone Pythia gives a

good agreement with the data for 5GeV < TCM < 40GeV, it falls below the data for

TCM > 40GeV. Geneva+Pythia8, on the other hand, describes the data much better,

especially at larger values of TCM. Given that Geneva includes the perturbative soft

ISR e↵ects at high logarithmic accuracy, the fact that the predictions are in such good

agreement with the data indicates that the MPI is modeled well by the Pythia tune we

have chosen.
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Connection between fact. violation,
and small-x dynamics may allow us
to directly calculate these effects.



Conclusion

•

•

Future Directions

•  Study Regge & BFKL type resummation at NNLL

• Reproduce classic (CSS) proofs of factorization

• Study joint DGLAP(  ) and BFKL(  ) resummation for small-xµ �

• Improve theoretical description of Underlying Event

• ….

•
EFT formalism for             ,  Hard & Fwd. Scattering & Fact. Violations� t

Universal Operators that can be used for many processes & problems

Reggeization,  BFKL,  Shockwave picture, S-G & C-G overlaps, …
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The End
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Construction: �� 1 large Q

mode fields pµ momentum scaling physical objects type
n-collinear �n, Aµ

n (n · p, n̄ · p, p�) � Q(�2, 1,�) n-collinear “jet” onshell
n̄-collinear �n̄, Aµ

n̄ (n̄ · p, n̄ · p, p�) � Q(�2, 1,�) n̄-collinear “jet” onshell
soft �S, Aµ

S pµ � Q(�, �, �) soft virtual/real radiation onshell
ultrasoft �us, Aµ

us pµ � Q(�2,�2,�2) ultrasoft virtual/real radiation onshell
Glauber – pµ � Q(�a,�b,�), a + b > 2 forward scattering potential o�shell

(here {a, b} = {2, 2}, {2, 1}, {1, 2})
hard – p2 � Q2 hard scattering o�shell

Power Counting formula for graph (any loop order, any power):

38

double counted contributions). With the rapidity regulator we use here these subtractions often

lead to scaleless integrals, but for some diagrams we will consider they do not vanish and play

an important role in avoiding double counting. Without the Glauber dependent subtractions the

results in Eq. (67) reduce to the standard soft subtraction on collinear integrands in SCETII.

In general, the soft and collinear Wilson lines in the operators of the Glauber Lagrangian,

Eq. (41), or in expressions like Eq. (62), should have their position space directions (0,1) or

(�1, 0) specified. This corresponds with the appearance of ±i0 factors in the momentum space

Feynman rules, see App. C 3. The dependence on whether the line extends to ±1 will most often

be canceled by the 0-bin subtractions. Soft lines generate propagators such as (n · k ± i0) with

n · k ⇠ �, while it is the Glauber region describes the region of smaller momenta n · k ⇠ �2

which includes the pole n · k = �i0. The situation is similar for collinear Wilson lines, which

have both soft and Glauber 0-bin subtractions. We will show explicitly the cancellation of Wilson

line direction dependence by 0-bins for soft and collinear loop graphs in one-loop and two-loop

calculations for forward scattering in Secs. IVA and IVC and for hard scattering in Secs. VIA

and VIB. In particular, we explain in Sec. VIB that the directions of the soft Wilson lines in the

leading power Glauber Lagrangian can be chosen to be either as (0,1) or as (�1, 0) without

changing results. This occurs due to the presence of Glauber region 0-bin subtractions. On the

flip side, we will see that Glauber interactions in certain hard scattering diagrams can be absorbed

into the direction of soft and collinear Wilson lines in the hard scattering operators. In general, the

dependence on these directions may then still cancel out in factorization theorems where infinite

Wilson lines are combined into finite lines.

E. Power Counting and Operator Completeness

In this section we give the all orders power counting formulae for SCETI and SCETII that hold

in the presence of loops carrying Glauber momenta, and arbitrary power suppressed interactions.

We then discuss the complete basis for Glauber exchange at leading power, namely O(�0). The

ingredients needed for this analysis are an SCET power counting theorem valid to any order in �

in the presence of Glauber e↵ects, information about the structure of infrared divergences in gauge

theory, gauge invariance, dimensional analysis, and the momentum structure of forward scattering

operators in the limit s � t.

In App. B we derive a general power counting formula for an arbitrary diagram with operators

at any order in the power counting in both SCETI and SCETII. As shown there, the final formula

can be applied to both of these theories and says that the graph will scale as �� where

� = 6�Nn �N n̄ �NnS �N n̄S + 2u , (68)

+
X

k

(k � 8)V us
k + (k�4)

�

V n
k + V n̄

k + V S
k

�

+ (k�3)
�

V nS
k + V n̄S

k

�

+ (k�2)V nn̄
k .

� ��

need � �3 � �2

operators at leading power

(gauge invariant)

�
Glauberstandard SCET

topological factors
operator insertions


