

Double parton scattering for perturbative transverse momenta

Maarten Buffing

In collaboration with Markus Diehl and Tomas Kasemets

QCD evolution workshop 2016 May 31, 2016

Content - outline

- Brief motivation/introduction
- Soft factors
- Color for DPDFs/DTMDs
- Evolution equations
 - Writing them down for DTMDs
 - Solving them
- Matching: cross section contributions for large **y**
- Conclusions

Motivation

- DPDs: double parton distribution functions
- Factorization: stick to singlets in final states
 - Double Drell-Yan
 - Higgs + W/Z
- For perturbative $q_T \rightarrow \text{significant predictive}$ results
- Motivation and goals
 - Formulate description to handle soft factors
 - Write down evolution equations
 - Solve evolution equations
 - Matching equations for DPDFs/DTMDs

Short-distance expansion

- Differences compared to TMDs
 - Two hard processes involved
 - Two coefficient functions per DTMD
 - Positions \mathbf{z}_1 and \mathbf{z}_2 (compare with \mathbf{b}_T for the TMD case)
 - Additional distance y
- Consider the limit
 - $|\mathbf{z}_1|$, $|\mathbf{z}_2|$ much smaller than $1/\Lambda$
 - $|\mathbf{z}_1|, |\mathbf{z}_2| \ll \mathbf{y}$, with \mathbf{y} fixed
- Gives separate matching factors

$$F_{\rm us}(x_i,\mathbf{z}_i,\mathbf{y}) = C_f(x_1',\mathbf{z}_1) \underset{x_1}{\otimes} C_f(x_2',\mathbf{z}_2) \underset{x_2}{\otimes} F_{\rm us}(x_i',\mathbf{y})$$
 with

$$C(x') \underset{x}{\otimes} F(x') = \int_{x}^{1} \frac{dx'}{x'} C(x') F\left(\frac{x}{x'}\right)$$

Figure: modified from Diehl, Ostermeier, Schäfer, JHEP03 (2012) 089

• Wilson line structure from factorization formula.

 Nontrivial color complications. Collinear and soft factors carry color indices.

• Wilson line self-interactions drop out in cross section.

Collins, *Foundations of perturbative QCD*, (2011); Aybat, Rogers, PRD 83 (2011) 114042; Diehl, Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076 5

TMDs

• Soft functions for the single TMD related to *K* through

$$K(\mathbf{z};\mu) = \frac{1}{2} \left[\frac{\partial}{\partial y_A} \log S(\mathbf{z};y_A,-\infty) - \frac{\partial}{\partial y_B} \log S(\mathbf{z};+\infty,y_B) \right]$$

- Soft function not matrix valued
- Square root construction for TMD (see Collins' book)

- DTMDs
 - For DPDs: matrix valued functions (working hypothesis)

$$S(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, y_A, y_B) = \exp\left[(y_A - y_B)K(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y})\right]$$

- Soft function matrix valued
- Square root construction extended to matrix expressions

(technical details)

Subtracted DPD distributions are defined as

$$F_{qq}(v_c) = \lim_{v_L^2 \to 0} S_{qq}^{-1}(v_L, v_C) F_{us,qq}(v_L)$$

with F_{us} vector in color space and S a matrix.

• Matrix equivalent of square root construction $S^{-1}(v_L, v_C) = S^{1/2}(-v_C, v_R)S^{-1/2}(v_L, v_R)S^{-1/2}(v_L, v_C)$

using composition law

$$S(v_A, -v_B)S(v_B, v_C) = S(v_A, v_C)$$

and a similar expression for left moving particles.

• Wilson line self-interactions drop out in *F*.

• Wilson line structure for double Drell-Yan

with Wilson lines

$$W_{ij}(\mathbf{z}, v) = \mathcal{P} \exp\left[-igt^a \int_{-\infty}^0 d\lambda v A^a(z+\lambda v)\right]_{ij}^{z^+=z^-=0}$$

and similarly for the adjoint representation.

• We will need uncontracted color indices in the middle.

• Uncontracted indices in the middle

• Soft factor for DTMDs factorizes in small-distance expansion as $S(\mathbf{z_1}, \mathbf{z_2}, \mathbf{y}) = C_s(\mathbf{z_1}) C_s(\mathbf{z_2}) S(\mathbf{y})$

• Wilson lines in S(**y**) pairwise at the same transverse position.

• We require a simplification of the color indices.

- Recall full Wilson line structure
- Hard scattering couples four parton lines, insert color projectors
- Examples of color projectors
 - Quarks:

$$p_1^{j_1 j'_1 k_1 k'_1} = \frac{1}{N_c} \delta_{j_1 j'_1} \delta_{k_1 k'_1}$$
$$p_8^{j_1 j'_1 k_1 k'_1} = 2t_{j_1 j'_1}^a t_{k_1 k'_1}^a$$

- For gluons: more possibilities
- Mixed quark-gluon projectors also exist
- Highly nontrivial whether color structure can be factorized.

- Recall full Wilson line structure
- Hard scattering couples four parton lines, insert color projectors

W

W(y+ 321, VL)

 \mathcal{J}_1

 k_1

 $W^{\dagger}_{(\underline{y} \neq \underline{j}^{2}, v_{R})}$

W (322, VI)

 j_2

 k_2

 $P_{\scriptscriptstyle P}^{ii',j'}$

 $W_{1}^{(-1)}$

Ž

1,22, VR

 j_2'

 k'_2

• For proof: use color Fierz identity:

۲

$$2t^a_{ii'}t^a_{jj'} = \delta_{ij'}\delta_{i'j} - \frac{1}{N_c}\delta_{ii'}\delta_{jj'}$$

• Trick also works for adjoint Wilson lines. Use color Fierz identity and

$$W^{ab} = 2 \operatorname{Tr} \left(t^a W t^b W^\dagger \right)$$

- Dynamical and not just some color algebra
- With same trick show that S(**y**) is color diagonal.

Implications for soft factor

• Color projection of fields at infinity rather than $\xi^{+} = \xi^{-} = 0$.

- Allows for relating most general soft function with open indices in the middle with soft function with contracted indices in the middle.
- For collinear factorization case only!

Renormalization and rapidity evolution

- Short-distance expansion
 - The two hard processes are separated
- Evolution equations for DTMDs
 - Two renormalization scales: μ_1 and μ_2

- Soft factor recap
 - Working hypothesis

$$S(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, y_A, y_B) = \exp\left[(y_A - y_B)K(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y})\right]$$

- Soft factor becomes ${}^{RR'}S(\mathbf{z_1}, \mathbf{z_2}, \mathbf{y}) = {}^{R}C_s(\mathbf{z_1}){}^{R}C_s(\mathbf{z_2}){}^{RR}S(\mathbf{y})\delta_{RR'}$
- For phenomenology: only four independent collinear soft functions

Renormalization and rapidity evolution

TMDs

$$\frac{\partial}{\partial \log \mu} F(x, \mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \gamma_F(\boldsymbol{\mu}, \boldsymbol{\zeta}) F(x, \mathbf{z}; \boldsymbol{\mu}, \boldsymbol{\zeta})$$
$$\frac{\partial}{\partial \log \boldsymbol{\zeta}} F(x, \mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\zeta}) = \frac{1}{2} K(\mathbf{z}; \boldsymbol{\mu}) F(x, \mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\zeta})$$

DTMDs

 $\frac{\partial}{\partial \log \mu_1}{}^R F(x_i, \mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i, \boldsymbol{\zeta}) = \gamma_F(\mu_1, \boldsymbol{x}_1 \boldsymbol{\zeta} / \boldsymbol{x}_2){}^R F(x_i, \mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i, \boldsymbol{\zeta})$

 $\frac{\partial}{\partial \log \mu_2}{}^R F(x_i, \mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i, \boldsymbol{\zeta}) = \gamma_F(\mu_2, \boldsymbol{x_2 \zeta}/\boldsymbol{x_1}){}^R F(x_i, \mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i, \boldsymbol{\zeta})$ $\frac{\partial}{\partial \log \boldsymbol{\zeta}}^{R} F(x_i, \mathbf{z}_i, \mathbf{y}, \boldsymbol{\mu}_i, \boldsymbol{\zeta}) = \frac{1}{2} \sum_{i=1}^{RR'} K(\mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i)^{R'} F(x_i, \mathbf{y}, \boldsymbol{\mu}_i, \boldsymbol{\zeta})$

- DTMD renormalizations are independent, since they are separated. •

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042

Evolution: TMDs vs DTMDs

PDF/TMDs

- Soft function <u>not</u> matrix valued
- Just the position of one parton

- Renormalization scale μ
- Rapidity evolution scale ζ

 One coefficient function per TMD

DPDF/DTMDs

- Soft function matrix valued
- Positions of two partons <u>and</u> the distance y
- Renormalization scales μ_1 , μ_2
- Rapidity evolution scale ζ
 ζ dependence also for collinear distribution if R ≠ 1.
- Two coefficient functions per DTMD

DTMD evolution

• The evolution of DTMDs is in the short-distance matching given by

$$\begin{split} {}^{R}F(x_{i},\mathbf{z}_{i},\mathbf{y};\mu_{1},\mu_{2},\zeta) \\ &= \exp\left\{\int_{\mu_{01}}^{\mu_{1}}\frac{d\mu}{\mu} \left[\gamma_{F}(\mu,\mu^{2}) - \gamma_{K}(\mu)\log\frac{\sqrt{x_{1}\zeta/x_{2}}}{\mu}\right] + {}^{R}K(\mathbf{z}_{1},\mu_{01})\log\frac{\sqrt{x_{1}\zeta/x_{2}}}{\mu_{01}} \right] \\ &+ \int_{\mu_{02}}^{\mu_{2}}\frac{d\mu}{\mu} \left[\gamma_{F}(\mu,\mu^{2}) - \gamma_{K}(\mu)\log\frac{\sqrt{x_{2}\zeta/x_{1}}}{\mu}\right] + {}^{R}K(\mathbf{z}_{2},\mu_{02})\log\frac{\sqrt{x_{2}\zeta/x_{1}}}{\mu_{02}} \\ &+ {}^{R}J(\mathbf{y},\mu_{01},\mu_{02})\log\frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\right\} \\ &\times {}^{R}C(x_{1}',\mathbf{z}_{1};\mu_{01},\mu_{01}^{2})\bigotimes_{x_{1}}{}^{R}C(x_{2}',\mathbf{z}_{2};\mu_{02},\mu_{02}^{2})\bigotimes_{x_{2}}{}^{R}F(x_{i}',\mathbf{y};\mu_{01},\mu_{02},\zeta_{0}) \end{split}$$

- From additive structure of the Collins-Soper evolution kernel we have the sum for the two contributions for the μ_1 and μ_2 dependences.
- $K(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y})$ -kernel splits in three separate contributions: $K(\mathbf{z}_1, \mu_{01})$, $K(\mathbf{z}_2, \mu_{02})$ and $J(\mathbf{y}, \mu_{01}, \mu_{02})$ when collinear soft function becomes diagonal.

Cross section contribution

Cross section contribution given by

$$W_{\text{large } \mathbf{y}} = \sum_{R} \exp\left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d\mu}{\mu} \left[\gamma_{F}(\mu,\mu^{2}) - \gamma_{K}(\mu)\log\frac{Q_{1}^{2}}{\mu^{2}}\right] + {}^{R}K(\mathbf{z}_{1},\mu_{01})\log\frac{Q_{1}^{2}}{\mu_{01}^{2}} \\ + \int_{\mu_{02}}^{\mu_{2}} \frac{d\mu}{\mu} \left[\gamma_{F}(\mu,\mu^{2}) - \gamma_{K}(\mu)\log\frac{Q_{2}^{2}}{\mu^{2}}\right] + {}^{R}K(\mathbf{z}_{2},\mu_{02})\log\frac{Q_{2}^{2}}{\mu_{02}^{2}}\right\} \\ \times {}^{R}C(\overline{x}_{1}',\mathbf{z}_{1};\mu_{01},\mu_{01}^{2}) \underset{\overline{x}_{1}}{\otimes} {}^{R}C(\overline{x}_{2}',\mathbf{z}_{2};\mu_{02},\mu_{02}^{2}) \underset{\overline{x}_{2}}{\otimes} \\ \times {}^{R}C(x_{1}',\mathbf{z}_{1};\mu_{01},\mu_{01}^{2}) \underset{x_{1}}{\otimes} {}^{R}C(x_{2}',\mathbf{z}_{2};\mu_{02},\mu_{02}^{2}) \underset{x_{2}}{\otimes} \\ \times \left[\Phi(\nu\mathbf{y})\right]^{2} \exp\left[{}^{R}J(\mathbf{y},\mu_{0i})\log\frac{\sqrt{Q_{1}^{2}Q_{2}^{2}}}{\zeta_{0}}\right] {}^{R}F(\overline{x}_{i},\mathbf{y};\mu_{0i},\zeta_{0}) {}^{R}F(x_{i},\mathbf{y};\mu_{0i},\zeta_{0})$$

• The **z**₁, **z**₂ and **y** contributions nicely factorize.

Cross section contribution

Cross section contribution given by

$$\begin{split} W_{\text{large }\mathbf{y}} &= \sum_{R} \exp\left\{ \int_{\mu_{01}}^{\mu_{1}} \frac{d\mu}{\mu} \left[\gamma_{F}(\mu,\mu^{2}) - \gamma_{K}(\mu) \log \frac{Q_{1}^{2}}{\mu^{2}} \right] + {}^{R}K(\mathbf{z}_{1},\mu_{01}) \log \frac{Q_{1}^{2}}{\mu_{01}^{2}} \\ &+ \int_{\mu_{02}}^{\mu^{2}} \frac{d\mu}{\mu} \left[\gamma_{F}(\mu,\mu^{2}) - \gamma_{K}(\mu) \log \frac{Q_{2}^{2}}{\mu^{2}} \right] + {}^{R}K(\mathbf{z}_{2},\mu_{02}) \log \frac{Q_{2}^{2}}{\mu_{02}^{2}} \right\} \\ &\times {}^{R}C(\overline{x}_{1}',\mathbf{z}_{1};\mu_{01},\mu_{01}^{2}) \underset{\overline{x}_{1}}{\otimes} {}^{R}C(\overline{x}_{2}',\mathbf{z}_{2};\mu_{02},\mu_{02}^{2}) \underset{\overline{x}_{2}}{\otimes} \\ &\times {}^{R}C(x_{1}',\mathbf{z}_{1};\mu_{01},\mu_{01}^{2}) \underset{x_{1}}{\otimes} {}^{R}C(x_{2}',\mathbf{z}_{2};\mu_{02},\mu_{02}^{2}) \underset{x_{2}}{\otimes} \\ &\times \left[\Phi(\nu\mathbf{y}) \right]^{2} \exp\left[{}^{R}J(\mathbf{y},\mu_{0i}) \log \frac{\sqrt{Q_{1}^{2}Q_{2}^{2}}}{\zeta_{0}} \right] {}^{R}F(\overline{x}_{i},\mathbf{y};\mu_{0i},\zeta_{0}) {}^{R}F(x_{i},\mathbf{y};\mu_{0i},\zeta_{0}) \end{split}$$

• There is ζ – dependence for color non-singlet DPDFs.

Polarizations (work in progress)

• Including parton labels in equations for DTMDs and cross section. E.g.

$$\begin{split} {}^{R}F_{a_{1}a_{2}}(x_{i},\mathbf{z}_{i},\mathbf{y};\mu_{1},\mu_{2},\zeta) \\ &= \sum_{b_{1}b_{2}} \exp\left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d\mu}{\mu} \bigg[\gamma_{F,a_{1}}(\mu,\mu^{2}) - \gamma_{K,a_{1}}(\mu)\log\frac{\sqrt{x_{1}\zeta/x_{2}}}{\mu}\bigg] + {}^{R}K_{a_{1}}(\mathbf{z}_{1},\mu_{01})\log\frac{\sqrt{x_{1}\zeta/x_{2}}}{\mu_{01}} \right] \\ &\quad + \int_{\mu_{02}}^{\mu_{2}} \frac{d\mu}{\mu} \bigg[\gamma_{F,a_{2}}(\mu,\mu^{2}) - \gamma_{K,a_{2}}(\mu)\log\frac{\sqrt{x_{2}\zeta/x_{1}}}{\mu}\bigg] + {}^{R}K_{a_{2}}(\mathbf{z}_{2},\mu_{02})\log\frac{\sqrt{x_{2}\zeta/x_{1}}}{\mu_{02}} \\ &\quad + {}^{R}J(\mathbf{y},\mu_{01},\mu_{02})\log\frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\bigg\} \\ &\quad \times {}^{R}C_{a_{1}b_{1}}(x_{1}',\mathbf{z}_{1};\mu_{01},\mu_{01}^{2}) \bigotimes_{x_{1}}^{R}C_{a_{2}b_{2}}(x_{2}',\mathbf{z}_{2};\mu_{02},\mu_{02}^{2}) \bigotimes_{x_{2}}^{R}F_{b_{1}b_{2}}(x_{i}',\mathbf{y};\mu_{01},\mu_{02},\zeta_{0}) \end{split}$$

- Parton labels like a_1 not only q, \overline{q} and g, but also δq , Δq , δg , Δg , etc.
- Splitting kernels from PDF/TMDs can largely be recycled

$$C_{q/g}(x', \mathbf{z}; \mu_0, \mu_0^2)$$
 $C_{g/g}(x', \mathbf{z}; \mu_0, \mu_0^2)$ $C_{g/\delta g}(x', \mathbf{z}; \mu_0, \mu_0^2)$ etc.

Collins, *Foundations of perturbative QCD*, (2011); Aybat, Rogers, PRD 83 (2011) 114042; Bacchetta, Prokudin, NPB 875 (2013) 536; Echevarría, Kasemets, Mulders, Pisano, JHEP 1507 (2015) 158; MGAB, Diehl, Kasemets, *work in progress*.

Conclusions

- We use short-distance expansion
 - $|\mathbf{z}_1|$, $|\mathbf{z}_2|$ much smaller than $1/\Lambda$
 - $|\mathbf{z}_1|, |\mathbf{z}_2| \ll \mathbf{y}$

although part of our results are also valid outside this region.

- Description for soft function
 - Separation in a **y**-dependent contribution and two pieces depending on either z_1 or z_2 .
 - We have shown the correct way to deal with color.
- Matching equations for DPDs
 - Evolution equations for DTMDs.
 - Expression for matching at level of individual DTMDs/DPDFs and cross section.
- Work in progress: explicit expressions for matching of all polarizationmodes.

Backup slides

Properties of the DTMD soft factor

- Parity and boost $S_{a_1a_2}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, v_A, v_B) = S_{a_1a_2}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, v_B, v_A)$
- Parity and time reversal $S_{a_1a_2}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, v_A, v_B) = S_{a_1a_2}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, -v_A, -v_B)$
- Hermitian conjugation $S_{a_1a_2}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, v_A, v_B) = S^{\dagger}_{a_1a_2}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{y}, v_A, v_B)$
- Charge conjugation $S_{qq}^* = S_{qq} \quad \text{and} \quad S_{gg}^* = S_{gg}$
- Composition law $S_{a_1a_2}(v_A, -v_B)S_{a_1a_2}(v_B, v_C) = S_{a_1a_2}(v_A, v_C)$
- Independent collinear soft matrix elements (singlet configurations are 1)

$${}^{88}S = {}^{88}S_{qq} = {}^{AA}S_{qg} = {}^{SS}S_{qg} = {}^{AA}S_{gq} = {}^{SS}S_{gq} = {}^{AA}S_{gg} = {}^{SS}S_{gg} = {}^{SS}S_{gg} = {}^{SS}S_{gg} = {}^{27}S_{gg} = {$$

Solving evolution equations for DTMDs

DTMDs: μ_1 and μ_2 scale evolution

• μ_1 scale evolution governed by an equation of the form

 $\frac{\partial}{\partial \log \mu_1}{}^R F(x_i, \mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i, \boldsymbol{\zeta}) = \gamma_F(\mu_1, x_1 \boldsymbol{\zeta}/x_2){}^R F(x_i, \mathbf{z}_i, \mathbf{y}; \boldsymbol{\mu}_i, \boldsymbol{\zeta})$

and similarly for μ_2 .

- For the starting values:
 - Starting scales μ_{10} and μ_{20} for μ_1 and μ_2 .
 - We define the ζ value as the geometric mean
- We get the result

$${}^{R}F(x_{i}, \mathbf{z}_{i}, \mathbf{y}; \boldsymbol{\mu}_{i}, \boldsymbol{\zeta}) = {}^{R}F(x_{i}, \mathbf{z}_{i}, \mathbf{y}; \boldsymbol{\mu}_{0i}, \boldsymbol{\zeta})$$
$$\times \exp\left\{\int_{\boldsymbol{\mu}_{01}}^{\boldsymbol{\mu}_{1}} \frac{d\boldsymbol{\mu}}{\boldsymbol{\mu}} \gamma_{F}(\boldsymbol{\mu}, x_{1}\boldsymbol{\zeta}/x_{2}) + \int_{\boldsymbol{\mu}_{02}}^{\boldsymbol{\mu}_{2}} \frac{d\boldsymbol{\mu}}{\boldsymbol{\mu}} \gamma_{F}(\boldsymbol{\mu}, x_{2}\boldsymbol{\zeta}/x_{1})\right\}$$

• Note the additive structure

Solving evolution equations for DTMDs

DTMDs: μ_1 and μ_2 scale evolution and ζ evolution

• ζ evolution governed by

$$\frac{\partial}{\partial \log \zeta}{}^{R}F(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \boldsymbol{\mu}_{i}, \boldsymbol{\zeta}) = \frac{1}{2} \sum_{R'}{}^{RR'}K(\mathbf{z}_{i}, \mathbf{y}; \boldsymbol{\mu}_{i}){}^{R'}F(x_{i}, \mathbf{y}, \boldsymbol{\mu}_{i}, \boldsymbol{\zeta})$$

• Solving for rapidity dependence, we then get the result

$${}^{R}F(x_{i}, \mathbf{z}_{i}, \mathbf{y}; \boldsymbol{\mu}_{i}, \boldsymbol{\zeta}) = {}^{R}F(x_{i}, \mathbf{z}_{i}, \mathbf{y}; \boldsymbol{\mu}_{0i}, \boldsymbol{\zeta})$$

$$\times \exp\left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d\mu}{\mu} \left[\gamma_{F}(\mu, x_{1}\boldsymbol{\zeta}/x_{2}) - \gamma_{K}(\mu)\log\frac{\sqrt{x_{1}\boldsymbol{\zeta}/x_{2}}}{\mu}\right] \right.$$

$$\left. + \int_{\mu_{02}}^{\mu_{2}} \frac{d\mu}{\mu} \left[\gamma_{F}(\mu, x_{2}\boldsymbol{\zeta}/x_{1}) - \gamma_{K}(\mu)\log\frac{\sqrt{x_{2}\boldsymbol{\zeta}/x_{1}}}{\mu}\right] \right.$$

$$\left. + \left[{}^{R}K(\mathbf{z}_{1}, \boldsymbol{\mu}_{01}) + {}^{R}K(\mathbf{z}_{2}, \boldsymbol{\mu}_{02}) + {}^{R}J(\mathbf{y}, \boldsymbol{\mu}_{0i})\right]\log\frac{\sqrt{\boldsymbol{\zeta}}}{\sqrt{\boldsymbol{\zeta}_{0}}}\right]$$

• The *K*-kernel splitting in three separate contributions is crucial, but only true in limit where we can do the DTMD \rightarrow DPDF matching. ²⁶

Coefficient functions

- Consider the limit
 - $|\mathbf{z}_1|$, $|\mathbf{z}_2|$ much smaller than $1/\Lambda$
 - $|\mathbf{z}_1|, |\mathbf{z}_2| \ll \mathbf{y}$, with \mathbf{y} fixed
- We calculate the coefficient functions for a value of **z** at $O(\alpha_s)$.
 - Collinear contribution given by
 ${}^{R}C_{f,ab}(x, \mathbf{z}, v_L) = \delta_{ab}\delta(1-x) + \alpha_s {}^{R}C_{f,ab}^{(1)}(x, \mathbf{z}, v_L) + \mathcal{O}(\alpha_s^2)$ Soft function contribution given by

$${}^{R}C_{s,a}(\mathbf{z}, v_L, v_C) = 1 + \alpha_s {}^{R}C_{s,a}^{(1)}(\mathbf{z}, v_L, v_C) + \mathcal{O}(\alpha_s^2)$$

- The expression for the coefficient function at order at $\mathrm{O}(\alpha_s)$ is then given by

$${}^{R}C_{ab}(x,\mathbf{z},\ldots/\zeta\ldots) = \delta_{ab}\delta(1-x) + \alpha_{s} \lim_{v_{L}^{2}\to 0} \left[{}^{R}C_{f,ab}^{(1)}(x,\mathbf{z},v_{L}) - \delta_{ab}\delta(1-x) {}^{R}C_{s,a}^{(1)}(\mathbf{z},v_{L},v_{C}) \right] + \mathcal{O}(\alpha_{s}^{2})$$