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Motivation 
•  DPDs: double parton distribution functions 

•  Factorization: stick to singlets in final states 
–  Double Drell-Yan 
–  Higgs + W/Z 

•  For perturbative qT → significant predictive 
        results 

•  Motivation and goals 
–  Formulate description to handle soft factors 
–  Write down evolution equations 
–  Solve evolution equations 
–  Matching equations for DPDFs/DTMDs 

Diehl, Ostermeier, Schäfer, JHEP 1203 (2012) 089 
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Short-distance expansion 
•  Differences compared to TMDs 

–  Two hard processes involved 
–  Two coefficient functions per DTMD 
–  Positions z1 and z2 (compare with 

bT for the TMD case)  
–  Additional distance y 

•  Consider the limit 
–  |z1|, |z2| much smaller than 1/Λ  
–  |z1|, |z2|≪ y, with y fixed 

•  Gives separate matching factors 

     with 
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Figure: modified from Diehl, Ostermeier, 
Schäfer, JHEP03 (2012) 089 
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Soft factors 

•  Wilson line structure from 
factorization formula. 

•  Nontrivial color complications. 
Collinear and soft factors carry 
color indices. 

•  Wilson line self-interactions 
drop out in cross section. 

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042; Diehl, 
Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076 

Figure: Diehl, Gaunt, Ostermeier, 
Plößl, Schäfer, JHEP01 (2016) 076 
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Soft factors 
•  TMDs 

•  Soft functions for the single TMD related to K through 

•  Soft function not matrix valued 
•  Square root construction for TMD (see Collins’ book) 

•  DTMDs 
•  For DPDs: matrix valued functions (working hypothesis) 

•  Soft function matrix valued 
•  Square root construction extended to matrix expressions 

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042 
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Soft factors 

•  Subtracted DPD distributions are defined as 

     with Fus vector in color space and S a matrix. 

•  Matrix equivalent of square root construction 
  
using composition law 
  
and a similar expression for left moving particles. 

      
•  Wilson line self-interactions drop out in F. 

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042 
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(technical details) 

Fqq(vc) = lim
v2
L!0

S�1
qq (vL, vC)Fus,qq(vL)

S(vA,�vB)S(vB , vC) = S(vA, vC)



Soft factors 
•  Wilson line structure for double Drell-Yan 

     with Wilson lines 

     and similarly for the adjoint representation. 
 

•  We will need uncontracted color indices in the middle. 
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Soft factors 
•  Uncontracted indices in the middle 

•  Soft factor for DTMDs factorizes 
in small-distance expansion as 

•  Wilson lines in S(y) pairwise at the 
same transverse position. 

•  We require a simplification of the 
color indices. 
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S(z1, z2,y) = Cs(z1)Cs(z2)S(y)



Color structure 
•  Recall full Wilson line structure 

•  Hard scattering couples four parton 
lines, insert color projectors 

•  Examples of color projectors 
–  Quarks: 

–  For gluons: more possibilities 
–  Mixed quark-gluon projectors also exist 

•  Highly nontrivial whether color structure can be factorized. 
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Color structure 
•  Recall full Wilson line structure 

•  Hard scattering couples four parton 
lines, insert color projectors 

•  Color trick (in collinear situation: WW†	=	1) 

For proof: use color Fierz identity 11	



Color structure 
•  Color trick (in collinear situation: WW†	=	1) 

•  For proof: use color Fierz identity: 

•  Trick also works for adjoint Wilson lines. Use color Fierz identity and 

W ab = 2Tr
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Color structure 
•  Color trick (in collinear situation: WW†	=	1) 

•  Dynamical and not just some color algebra 

•  With same trick show that S(y) is color diagonal. 
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Implications for soft factor 
•  Color projection of fields at infinity rather than ξ + = ξ - = 0. 

•  Allows for relating most general soft function with open indices in the 
middle with soft function with contracted indices in the middle. 

•  For collinear factorization case only! 

()Related	
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Renormalization and rapidity evolution 
•  Short-distance expansion 

–  The two hard processes are separated 

•  Evolution equations for DTMDs 
–  Two renormalization scales: µ1 and µ2 

•  Soft factor recap 
–  Working hypothesis 

–  Soft factor becomes 

•  For phenomenology: only four independent collinear soft functions 

S(z1, z2,y, yA, yB) = exp

h
(yA � yB)K(z1, z2,y)

i
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Renormalization and rapidity evolution 
•  TMDs 

•  DTMDs 

•  DTMD renormalizations are independent, since they are separated. 

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042 
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Evolution: TMDs vs DTMDs 
PDF/TMDs 
•  Soft function not matrix valued 

•  Just the position of one parton 
 

•  Renormalization scale µ 

•  Rapidity evolution scale ζ 

•  One coefficient function per 
TMD 

DPDF/DTMDs 
•  Soft function matrix valued 

•  Positions of two partons and the 
distance y 

•  Renormalization scales µ1, µ2 

•  Rapidity evolution scale ζ 
–  ζ dependence also for collinear distri-

bution if R ≠ 1. 

•  Two coefficient functions per 
DTMD 
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DTMD evolution 
•  The evolution of DTMDs is in the short-distance matching given by 

•  From additive structure of the Collins-Soper evolution kernel we have 
the sum for the two contributions for the µ1 and µ2 dependences. 

•  K(z1,z2,y)-kernel splits in three separate contributions: K(z1,µ01), K(z2,µ02) 
and J(y,µ01,µ02) when collinear soft function becomes diagonal. 
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Cross section contribution 
•  Cross section contribution given by 

•  The z1, z2 and y contributions nicely factorize. 
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Cross section contribution 
•  Cross section contribution given by 

•  There is ζ – dependence for color non-singlet DPDFs. 
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Polarizations (work in progress) 
•  Including parton labels in equations for DTMDs and cross section. E.g.  

•  Parton labels like a1 not only q, q and g, but also δq, Δq, δg, Δg, etc. 
•  Splitting kernels from PDF/TMDs can largely be recycled 

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042; 
Bacchetta, Prokudin, NPB 875 (2013) 536; Echevarría, Kasemets, Mulders, Pisano, JHEP 1507 
(2015) 158; MGAB, Diehl, Kasemets, work in progress. 
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Conclusions 
•  We use short-distance expansion 

–  |z1|, |z2| much smaller than 1/Λ 
–  |z1|, |z2|≪ y 

     although part of our results are also valid outside this region. 
 
•  Description for soft function 

–  Separation in a y-dependent contribution and two pieces depending on either z1 or z2. 
–  We have shown the correct way to deal with color.  

•  Matching equations for DPDs 
–  Evolution equations for DTMDs. 
–  Expression for matching at level of individual DTMDs/DPDFs and cross section. 

•  Work in progress: explicit expressions for matching of all polarization-
modes. 
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Backup slides 
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Properties of the DTMD soft factor 
•  Parity and boost 

•  Parity and time reversal 

•  Hermitian conjugation 

•  Charge conjugation 
    and  

•  Composition law 

•  Independent collinear soft matrix elements (singlet configurations are 1) 

Sa1a2(z1, z2,y, vA, vB) = Sa1a2(z1, z2,y, vB , vA)

Sa1a2(z1, z2,y, vA, vB) = Sa1a2(z1, z2,y,�vA,�vB)

Sa1a2(z1, z2,y, vA, vB) = S†
a1a2

(z1, z2,y, vA, vB)

S⇤
qq = Sqq S⇤

gg = Sgg

Sa1a2(vA,�vB)Sa1a2(vB , vC) = Sa1a2(vA, vC)

88S = 88Sqq = AASqg = SSSqg = AASgq = SSSgq = AASgg = SSSgg
DDS = DDSgg

27 27S = 27 27Sgg 24	



Solving evolution equations for DTMDs 
DTMDs: µ1 and µ2 scale evolution  
•  µ1 scale evolution governed by an equation of the form 

     and similarly for µ2. 

•  For the starting values: 
•  Starting scales µ10 and µ20 for µ1 and µ2. 
•  We define the ζ value as the geometric mean 

•  We get the result 

•  Note the additive structure 
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Solving evolution equations for DTMDs 
DTMDs: µ1 and µ2 scale evolution and ζ evolution 
•  ζ evolution governed by 

•  Solving for rapidity dependence, we then get the result 

•  The K-kernel splitting in three separate contributions is crucial, but 
only true in limit where we can do the DTMD → DPDF matching. 
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Coefficient functions 
•  Consider the limit 

–  |z1|, |z2| much smaller than 1/Λ 
–  |z1|, |z2|≪ y, with y fixed 

•  We calculate the coefficient functions for a value of z at O(αs). 
–  Collinear contribution given by 

–  Soft function contribution given by 

•  The expression for the coefficient function at order at O(αs) is then 
given by 
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