Double parton scattering for perturbative transverse momenta

Maarten Buffing

In collaboration with Markus Diehl and Tomas Kasemets

QCD evolution workshop 2016
May 31, 2016

Content - outline

- Brief motivation/introduction
- Soft factors
- Color for DPDFs/DTMDs
- Evolution equations
- Writing them down for DTMDs
- Solving them
- Matching: cross section contributions for large y
- Conclusions

Motivation

- DPDs: double parton distribution functions
- Factorization: stick to singlets in final states
- Double Drell-Yan
- Higgs + W/Z
- For perturbative $q_{T} \rightarrow$ significant predictive results

- Motivation and goals
- Formulate description to handle soft factors
- Write down evolution equations
- Solve evolution equations
- Matching equations for DPDFs/DTMDs

Short-distance expansion

- Differences compared to TMDs
- Two hard processes involved
- Two coefficient functions per DTMD
- Positions \mathbf{z}_{1} and \mathbf{z}_{2} (compare with \mathbf{b}_{T} for the TMD case)
- Additional distance y
- Consider the limit
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right|$ much smaller than $1 / \Lambda$
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right| \ll y$, with \mathbf{y} fixed
- Gives separate matching factors

$$
\underset{\text { with }}{F_{\mathrm{us}}\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}\right)=C_{f}\left(x_{1}^{\prime}, \mathbf{z}_{1}\right) \underset{x_{1}}{\otimes} C_{f}\left(x_{2}^{\prime}, \mathbf{z}_{2}\right) \underset{x_{2}}{\otimes} F_{\mathrm{us}}\left(x_{i}^{\prime}, \mathbf{y}\right)}
$$

$$
C\left(x^{\prime}\right) \underset{x}{\otimes} F\left(x^{\prime}\right)=\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} C\left(x^{\prime}\right) F\left(\frac{x}{x^{\prime}}\right)
$$

Soft factors

- Wilson line structure from factorization formula.
- Nontrivial color complications. Collinear and soft factors carry color indices.
- Wilson line self-interactions drop out in cross section.

Figure: Diehl, Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076

Soft factors

- TMDs
- Soft functions for the single TMD related to K through

$$
K(\mathbf{z} ; \mu)=\frac{1}{2}\left[\frac{\partial}{\partial y_{A}} \log S\left(\mathbf{z} ; y_{A},-\infty\right)-\frac{\partial}{\partial y_{B}} \log S\left(\mathbf{z} ;+\infty, y_{B}\right)\right]
$$

- Soft function not matrix valued
- Square root construction for TMD (see Collins' book)
- DTMDs
- For DPDs: matrix valued functions (working hypothesis)

$$
S\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, y_{A}, y_{B}\right)=\exp \left[\left(y_{A}-y_{B}\right) K\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}\right)\right]
$$

- Soft function matrix valued
- Square root construction extended to matrix expressions

Soft factors

(technical details)

- Subtracted DPD distributions are defined as

$$
F_{q q}\left(v_{c}\right)=\lim _{v_{L}^{2} \rightarrow 0} S_{q q}^{-1}\left(v_{L}, v_{C}\right) F_{u s, q q}\left(v_{L}\right)
$$

with $F_{u s}$ vector in color space and S a matrix.

- Matrix equivalent of square root construction

$$
S^{-1}\left(v_{L}, v_{C}\right)=S^{1 / 2}\left(-v_{C}, v_{R}\right) S^{-1 / 2}\left(v_{L}, v_{R}\right) S^{-1 / 2}\left(v_{L}, v_{C}\right)
$$

using composition law

$$
S\left(v_{A},-v_{B}\right) S\left(v_{B}, v_{C}\right)=S\left(v_{A}, v_{C}\right)
$$

and a similar expression for left moving particles.

- Wilson line self-interactions drop out in F.

Soft factors

- Wilson line structure for double Drell-Yan

with Wilson lines

$$
W_{i j}(\mathbf{z}, v)=\mathcal{P} \exp \left[-i g t^{a} \int_{-\infty}^{0} d \lambda v A^{a}(z+\lambda v)\right]_{i j}^{z^{+}=z^{-}=0}
$$

and similarly for the adjoint representation.

- We will need uncontracted color indices in the middle.

Soft factors

- Uncontracted indices in the middle
- Soft factor for DTMDs factorizes in small-distance expansion as

$$
S\left(\mathbf{z}_{1}, \mathbf{z}_{\mathbf{2}}, \mathbf{y}\right)=C_{s}\left(\mathbf{z}_{\mathbf{1}}\right) C_{s}\left(\mathbf{z}_{\mathbf{2}}\right) S(\mathbf{y})
$$

- Wilson lines in $S(\mathbf{y})$ pairwise at the same transverse position.
- We require a simplification of the color indices.

Color structure

- Recall full Wilson line structure
- Hard scattering couples four parton lines, insert color projectors
- Examples of color projectors
- Quarks:

$$
\begin{aligned}
p_{1}^{j_{1} j_{1}^{\prime} k_{1} k_{1}^{\prime}} & =\frac{1}{N_{c}} \delta_{j_{1} j_{1}^{\prime}} \delta_{k_{1} k_{1}^{\prime}} \\
p_{8}^{j_{1} j_{1}^{\prime} k_{1} k_{1}^{\prime}} & =2 t_{j_{1} j_{1}^{\prime}}^{a} t_{k_{1} k_{1}^{\prime}}^{a}
\end{aligned}
$$

- For gluons: more possibilities
- Mixed quark-gluon projectors also exist
- Highly nontrivial whether color structure can be factorized.

Color structure

- Recall full Wilson line structure
- Hard scattering couples four parton lines, insert color projectors

- Color trick (in collinear situation: $W W^{+}=1$)

For proof: use color Fierz identity

Color structure

- Color trick (in collinear situation: $W W^{+}=1$)

- For proof: use color Fierz identity:

$$
2 t_{i i^{\prime}}^{a} t_{j j^{\prime}}^{a}=\delta_{i j^{\prime}} \delta_{i^{\prime} j}-\frac{1}{N_{c}} \delta_{i i^{\prime}} \delta_{j j^{\prime}}
$$

- Trick also works for adjoint Wilson lines. Use color Fierz identity and

$$
W^{a b}=2 \operatorname{Tr}\left(t^{a} W t^{b} W^{\dagger}\right)
$$

Color structure

- Color trick (in collinear situation: $W W^{+}=1$)

- Dynamical and not just some color algebra
- With same trick show that $\mathrm{S}(\mathbf{y})$ is color diagonal.

Implications for soft factor

- Color projection of fields at infinity rather than $\xi^{+}=\xi^{-}=0$.

- Allows for relating most general soft function with open indices in the middle with soft function with contracted indices in the middle.
- For collinear factorization case only!

Renormalization and rapidity evolution

- Short-distance expansion
- The two hard processes are separated
- Evolution equations for DTMDs
- Two renormalization scales: μ_{1} and μ_{2}
- Soft factor recap
- Working hypothesis

$$
S\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, y_{A}, y_{B}\right)=\exp \left[\left(y_{A}-y_{B}\right) K\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}\right)\right]
$$

- Soft factor becomes

$$
{ }^{R R^{\prime}} S\left(\mathbf{z}_{\mathbf{1}}, \mathbf{z}_{\mathbf{2}}, \mathbf{y}\right)={ }^{R} C_{s}\left(\mathbf{z}_{\mathbf{1}}\right)^{R} C_{s}\left(\mathbf{z}_{\mathbf{2}}\right)^{R R} S(\mathbf{y}) \delta_{R R^{\prime}}
$$

- For phenomenology: only four independent collinear soft functions

Renormalization and rapidity evolution

- TMDs

$$
\begin{aligned}
\frac{\partial}{\partial \log \mu} F(x, \mathbf{z} ; \mu, \zeta) & =\gamma_{F}(\mu, \zeta) F(x, \mathbf{z} ; \mu, \zeta) \\
\frac{\partial}{\partial \log \zeta} F(x, \mathbf{z}, \mu, \zeta) & =\frac{1}{2} K(\mathbf{z} ; \mu) F(x, \mathbf{z}, \mu, \zeta)
\end{aligned}
$$

- DTMDs

$$
\begin{aligned}
& {\frac{\partial}{\partial \log \mu_{1}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x_{2}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& {\frac{\partial}{\partial \log \mu_{2}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{2}, x_{2} \zeta / x_{1}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& \frac{\partial}{\partial \log \zeta}
\end{aligned}{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \mu_{i}, \zeta\right)=\frac{1}{2} \sum_{R^{\prime}}{ }^{R R^{\prime}} K\left(\mathbf{z}_{i}, \mathbf{y} ; \mu_{i}\right)^{R^{\prime}} F\left(x_{i}, \mathbf{y}, \mu_{i}, \zeta\right), ~ l
$$

- DTMD renormalizations are independent, since they are separated.

Evolution: TMDs vs DTMDs

PDF/TMDs

- Soft function not matrix valued
- Just the position of one parton
- Renormalization scale μ
- Rapidity evolution scale ζ
- One coefficient function per TMD

DPDF/DTMDs

- Soft function matrix valued
- Positions of two partons and the distance y
- Renormalization scales μ_{1}, μ_{2}
- Rapidity evolution scale ζ
- ζ dependence also for collinear distribution if $\mathrm{R} \neq 1$.
- Two coefficient functions per DTMD

DTMD evolution

- The evolution of DTMDs is in the short-distance matching given by

$$
\begin{aligned}
& { }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{1}, \mu_{2}, \zeta\right) \\
& =\exp
\end{aligned} \begin{aligned}
& \mu_{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu}\right]+{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu_{01}} \\
& \quad+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu}\right]+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu_{02}} \\
&\left.\quad+{ }^{R} J\left(\mathbf{y}, \mu_{01}, \mu_{02}\right) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\right\} \\
& \quad \times{ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}^{R} C\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \otimes_{x_{2}}^{R} F\left(x_{i}^{\prime}, \mathbf{y} ; \mu_{01}, \mu_{02}, \zeta_{0}\right)
\end{aligned}
$$

- From additive structure of the Collins-Soper evolution kernel we have the sum for the two contributions for the μ_{1} and μ_{2} dependences.
- $K\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}\right)$-kernel splits in three separate contributions: $K\left(\mathbf{z}_{1}, \mu_{01}\right), K\left(\mathbf{z}_{2}, \mu_{02}\right)$ and $J\left(\mathbf{y}, \mu_{01}, \mu_{02}\right)$ when collinear soft function becomes diagonal.

Cross section contribution

- Cross section contribution given by

$$
\begin{aligned}
W_{\text {large } \mathbf{y}}= & \sum_{R} \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{1}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{Q_{1}^{2}}{\mu_{01}^{2}}\right. \\
& \left.+\int_{\mu_{0}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{2}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{Q_{2}^{2}}{\mu_{02}^{2}}\right\} \\
& \times{ }^{R} C\left(\bar{x}_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}^{R} C\left(\bar{x}_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{\bar{x}_{2}} \\
& \times{ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}{ }^{R} C\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{x_{2}} \\
& \times[\Phi(\nu \mathbf{y})]^{2} \exp \left[{ }^{R} J\left(\mathbf{y}, \mu_{0 i}\right) \log \frac{\sqrt{Q_{1}^{2} Q_{2}^{2}}}{\zeta_{0}}\right]{ }^{R} F\left(\bar{x}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)^{R} F\left(x_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)
\end{aligned}
$$

- The $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{y} contributions nicely factorize.

Cross section contribution

- Cross section contribution given by

$$
\begin{aligned}
W_{\text {large } \mathbf{y}}= & \sum_{R} \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{1}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{Q_{1}^{2}}{\mu_{01}^{2}}\right. \\
& \left.+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{2}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{Q_{2}^{2}}{\mu_{02}^{2}}\right\} \\
& \times{ }^{R} C\left(\bar{x}_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{\bar{x}_{1}}^{R} C\left(\bar{x}_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{\bar{x}_{2}} \\
& \times{ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}^{R} C\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{x_{2}} \\
& \times[\Phi(\nu \mathbf{y})]^{2} \exp \left[{ }^{R} J\left(\mathbf{y}, \mu_{0 i}\right) \log \frac{\sqrt{Q_{1}^{2} Q_{2}^{2}}}{\zeta_{0}}\right]{ }^{R} F\left(\bar{x}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)^{R} F\left(x_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)
\end{aligned}
$$

- There is ζ - dependence for color non-singlet DPDFs.

Polarizations (work in progress)

- Including parton labels in equations for DTMDs and cross section. E.g.

$$
\begin{aligned}
&{ }^{R} F_{a_{1} a_{2}}\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{1}, \mu_{2}, \zeta\right) \\
&=\sum_{b_{1} b_{2}} \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F, a_{1}}\left(\mu, \mu^{2}\right)-\gamma_{K, a_{1}}(\mu) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu}\right]+{ }^{R} K_{a_{1}}\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu_{01}}\right. \\
&+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F, a_{2}}\left(\mu, \mu^{2}\right)-\gamma_{K, a_{2}}(\mu) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu}\right]+{ }^{R} K_{a_{2}}\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu_{02}} \\
&\left.+{ }^{R} J\left(\mathbf{y}, \mu_{01}, \mu_{02}\right) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta}}\right\} \\
& \times{ }^{R} C_{a_{1} b_{1}}\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}^{R} C_{a_{2} b_{2}}\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \otimes_{x_{2}}^{R} F_{b_{1} b_{2}}\left(x_{i}^{\prime}, \mathbf{y} ; \mu_{01}, \mu_{02}, \zeta_{0}\right)
\end{aligned}
$$

- Parton labels like a_{1} not only q, \bar{q} and g, but also $\delta q, \Delta q, \delta g, \Delta g$, etc.
- Splitting kernels from PDF/TMDs can largely be recycled

$$
C_{q / g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad C_{g / g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad C_{g / \delta g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad \text { etc. }
$$

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042; Bacchetta, Prokudin, NPB 875 (2013) 536; Echevarría, Kasemets, Mulders, Pisano, JHEP 1507 (2015) 158; MGAB, Diehl, Kasemets, work in progress.

Conclusions

- We use short-distance expansion
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right|$ much smaller than $1 / \wedge$
- $\left|z_{1}\right|,\left|z_{2}\right| \ll y$
although part of our results are also valid outside this region.
- Description for soft function
- Separation in a \mathbf{y}-dependent contribution and two pieces depending on either \mathbf{z}_{1} or \mathbf{z}_{2}.
- We have shown the correct way to deal with color.
- Matching equations for DPDs
- Evolution equations for DTMDs.
- Expression for matching at level of individual DTMDs/DPDFs and cross section.
- Work in progress: explicit expressions for matching of all polarizationmodes.

Backup slides

Properties of the DTMD soft factor

- Parity and boost
$S_{a_{1} a_{2}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, v_{A}, v_{B}\right)=S_{a_{1} a_{2}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, v_{B}, v_{A}\right)$
- Parity and time reversal
$S_{a_{1} a_{2}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, v_{A}, v_{B}\right)=S_{a_{1} a_{2}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y},-v_{A},-v_{B}\right)$
- Hermitian conjugation

$$
S_{a_{1} a_{2}}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, v_{A}, v_{B}\right)=S_{a_{1} a_{2}}^{\dagger}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}, v_{A}, v_{B}\right)
$$

- Charge conjugation

$$
S_{q q}^{*}=S_{q q} \quad \text { and } \quad S_{g g}^{*}=S_{g g}
$$

- Composition law $S_{a_{1} a_{2}}\left(v_{A},-v_{B}\right) S_{a_{1} a_{2}}\left(v_{B}, v_{C}\right)=S_{a_{1} a_{2}}\left(v_{A}, v_{C}\right)$
- Independent collinear soft matrix elements (singlet configurations are 1)

$$
\begin{aligned}
{ }^{88} S & ={ }^{88} S_{q q}={ }^{A A} S_{q g}={ }^{S S} S_{q g}={ }^{A A} S_{g q}={ }^{S S} S_{g q}={ }^{A A} S_{g g}={ }^{S S} S_{g g} \\
D D & ={ }^{D D} S_{g g} \\
{ }^{2727} S & ={ }^{27} 27 S_{g g}
\end{aligned}
$$

Solving evolution equations for DTMDs

DTMDs: μ_{1} and μ_{2} scale evolution

- μ_{1} scale evolution governed by an equation of the form

$$
{\frac{\partial}{\partial \log \mu_{1}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x_{2}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)
$$ and similarly for μ_{2}.

- For the starting values:
- Starting scales μ_{10} and μ_{20} for μ_{1} and μ_{2}.
- We define the ζ value as the geometric mean
- We get the result

$$
\begin{aligned}
{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) & ={ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta\right) \\
& \times \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, x_{1} \zeta / x_{2}\right)+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, x_{2} \zeta / x_{1}\right)\right\}
\end{aligned}
$$

- Note the additive structure

Solving evolution equations for DTMDs

DTMDs: μ_{1} and μ_{2} scale evolution and ζ evolution

- ζ evolution governed by

$$
\frac{\partial}{\partial \log \zeta}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \mu_{i}, \zeta\right)=\frac{1}{2} \sum_{R^{\prime}}{ }^{R R^{\prime}} K\left(\mathbf{z}_{i}, \mathbf{y} ; \mu_{i}\right)^{R^{\prime}} F\left(x_{i}, \mathbf{y}, \mu_{i}, \zeta\right)
$$

- Solving for rapidity dependence, we then get the result

$$
{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)={ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta\right)
$$

$$
\begin{aligned}
& \times \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, x_{1} \zeta / x_{2}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu}\right]\right. \\
& \quad+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, x_{2} \zeta / x_{1}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu}\right] \\
& \left.\quad+\left[{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right)+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right)+{ }^{R} J\left(\mathbf{y}, \mu_{0 i}\right)\right] \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\right\}
\end{aligned}
$$

- The K-kernel splitting in three separate contributions is crucial, but only true in limit where we can do the DTMD \rightarrow DPDF matching.

Coefficient functions

- Consider the limit
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right|$ much smaller than $1 / \Lambda$
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right| \ll \mathbf{y}$, with \mathbf{y} fixed
- We calculate the coefficient functions for a value of \mathbf{z} at $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$.
- Collinear contribution given by

$$
{ }^{R} C_{f, a b}\left(x, \mathbf{z}, v_{L}\right)=\delta_{a b} \delta(1-x)+\alpha_{s}^{R} C_{f, a b}^{(1)}\left(x, \mathbf{z}, v_{L}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- Soft function contribution given by

$$
{ }^{R} C_{s, a}\left(\mathbf{z}, v_{L}, v_{C}\right)=1+\alpha_{s}^{R} C_{s, a}^{(1)}\left(\mathbf{z}, v_{L}, v_{C}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- The expression for the coefficient function at order at $\mathrm{O}\left(\alpha_{s}\right)$ is then given by

$$
\begin{aligned}
& { }^{R} C_{a b}(x, \mathbf{z}, \ldots / \zeta \ldots)=\delta_{a b} \delta(1-x) \\
& \quad+\alpha_{s} \lim _{v_{L}^{2} \rightarrow 0}\left[{ }^{R} C_{f, a b}^{(1)}\left(x, \mathbf{z}, v_{L}\right)-\delta_{a b} \delta(1-x)^{R} C_{s, a}^{(1)}\left(\mathbf{z}, v_{L}, v_{C}\right)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

