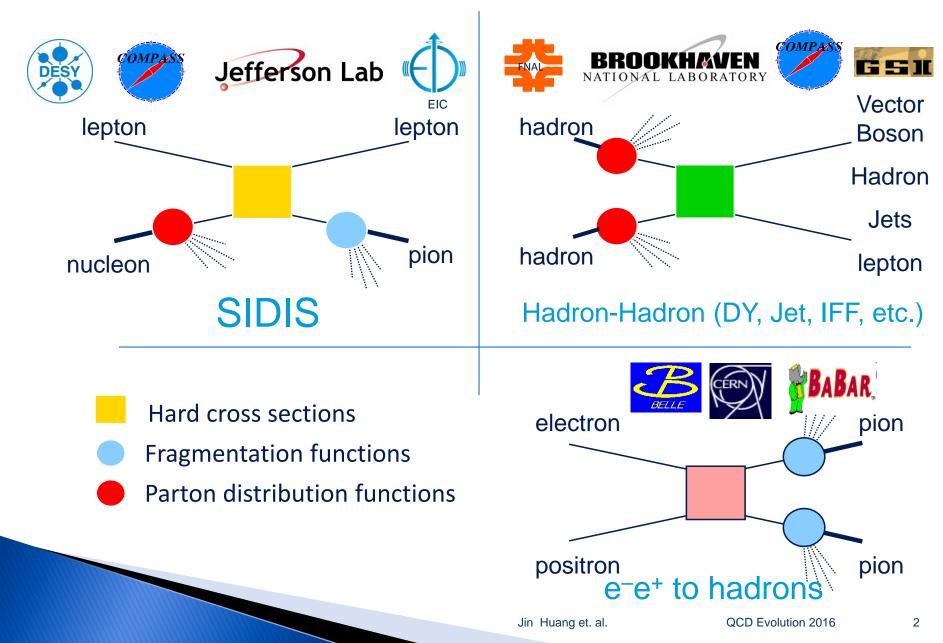
Spin asymmetries for vector boson production in polarized p+p collisions

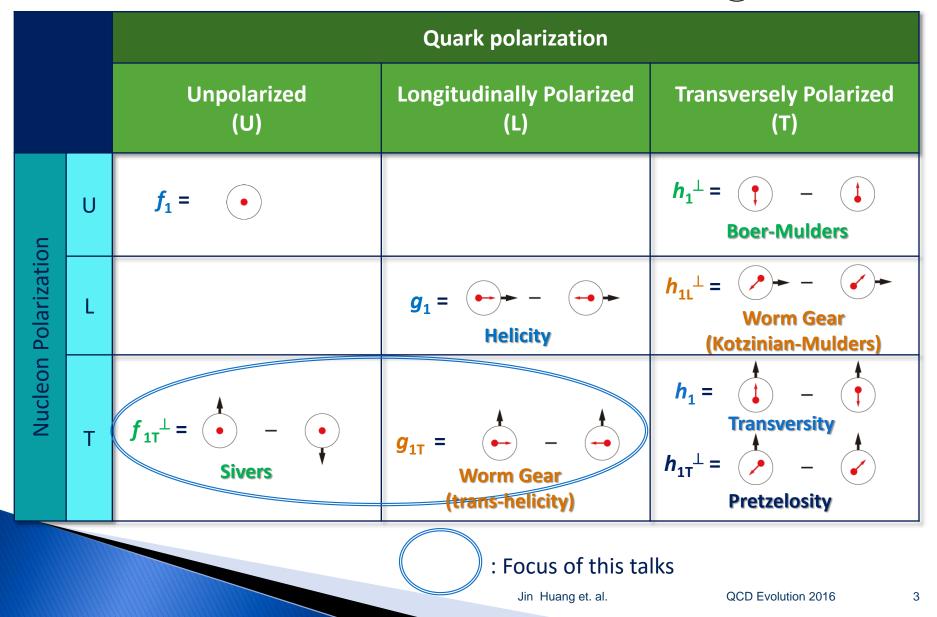
Outline • Sivers and g_{1T} • W/Z cross section in TMD • Phenomenology • Outlook

Jin Huang (Brookhaven National Lab) Zhongbo Kang (Los Alamos National Lab) Ivan Vitev (Los Alamos National Lab) Hongxi Xing (Los Alamos National Lab)

Access TMDs through Hard Processes

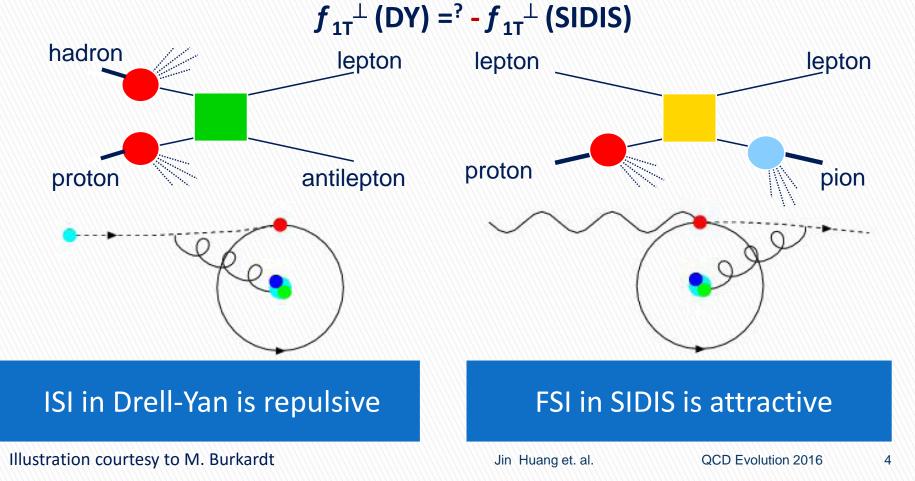


Leading-Twist TMD PDFs



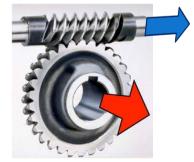
The well-known Sivers effect and modified universality $f_{11} =$

 Test of sign reversal of Sivers function in SIDIS VS Drell-Yan is critical for the TMD factorization approach.

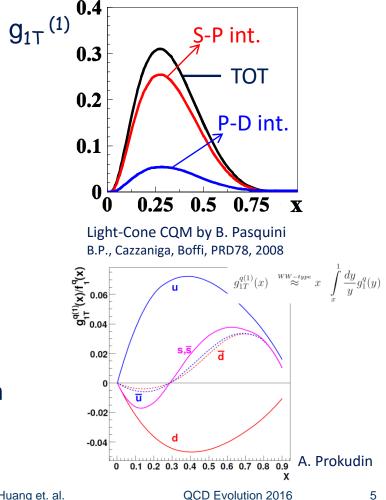


Trans-Helicity Functions

- *g*_{1T}
- Leading twist TMD PDFs, off-diagonal and only survive if p_{τ} !=0
- The only T-even and Chiral-even off-diagonal TMD
 - Expect universal between DY and SIDIS
 - Do not need Chiral-odd FF 0
- Dominated by real part of interference between L=0 (S) and L=1 (P) states
 - Imaginary part -> Sivers effect •
- Harder to access experimentally when compared to Sivers, need to probe two polarization (usually double dilution).
- Previous observables require double spin asymmetries A_{IT} in SIDIS or p+p collisions



Worm Gear



Existing data: Semi-inclusive DIS (SIDIS)

d

e

Scattering Plane

 \vec{p}_h

U

d

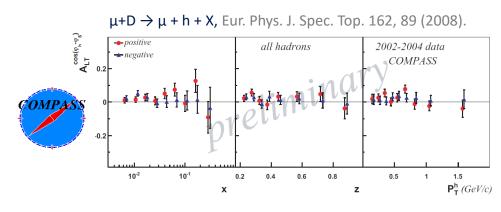
Access of $g_{\rm 1T}$ in SIDIS

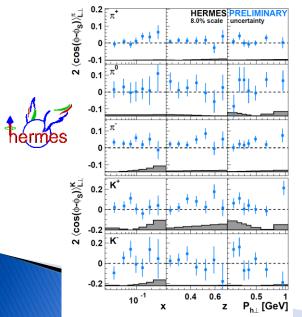
- Transversely polarized nucleon target
- Select quark spin via control polarization of virtual photon (double spin asymmetries)
- Tagging quark flavor/kinematics via choice of final state hadron (FF)

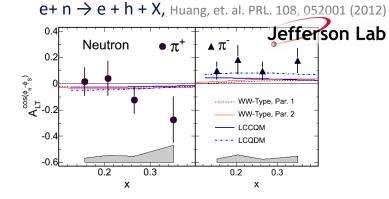
Access g _{1T} in SIDIS Cross Section		
		$\frac{d\sigma}{dxdyd\phi_{S}dzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}.$
	$f_1 = \bullet$	$a_{X}a_{Y}a_{\varphi_{S}}a_{Z}a_{\varphi_{h}}a_{F_{h\perp}} = x_{Y}Q = 2(1-\varepsilon)$ $\{F_{UU,T} +$
Boer-Mulder	$h_1^{\perp} = $ \uparrow $ \downarrow$	$+ \varepsilon \cos(2\phi_h) \cdot F_{UU}^{\cos(2\phi_h)} + \dots$
Worm Gear	$g_{1T} = -$	$+ \frac{S_T \lambda_e}{\sqrt{1 - \varepsilon^2} \cos(\phi_h - \phi_S)} \cdot F_{LT}^{\cos(\phi_h - \phi_S)} + \dots]$
Helicity	$g_1 = -$	$+ S_L \lambda_e \left[\sqrt{1 - \varepsilon^2} \cdot F_{LL} + \ldots \right] \qquad F_{LT}^{\cos(\phi_h - \phi_S)} = \left[\frac{\hat{h} \cdot p_T}{M} g_{1T} \otimes D_1 \right]$
Worm Gear	$h_{1L} = $	$+ S_{L}[\varepsilon \sin(2\phi_{h}) \cdot F_{UL}^{\sin(2\phi_{h})} + \dots] \qquad A_{LT}^{\cos(\phi_{h} - \phi_{S})} \equiv \sqrt{1 - \varepsilon^{2}} \frac{F_{LT}^{\cos(\phi_{h} - \phi_{S})}}{(1 + \varepsilon R) F_{UU,T}}$
Transversity	$h_{1T} = $	$+S_T[\varepsilon\sin(\phi_h+\phi_S)\cdot F_{UT}^{\sin(\phi_h+\phi_S)}] \qquad (1+\varepsilon R) F_{UU,T}$
Sivers	$f_{1T}^{\perp} = \bullet - \bullet$	$+\sin(\phi_h-\phi_S)\cdot(F_{UT}^{\sin(\phi_h-\phi_S)}+)$
Pretzelosity	$h_{1T}^{\perp} = $	$+\varepsilon\sin(3\phi_h-\phi_S)\cdot F_{UT}^{\sin(3\phi_h-\phi_S)}+\ldots]\}$

 S_L , S_T : Target Polarization; λ_e : Beam Polarization

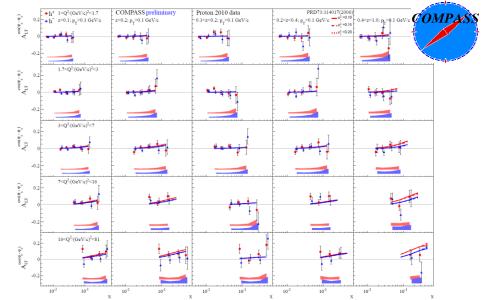
Existing data: Access g_{1T} in SIDIS







 $\mu + p \rightarrow \mu + h + X$, arXiv:1504.01599 [hep-ex]



Also a central piece for JLab12/SoLID SIDIS program.

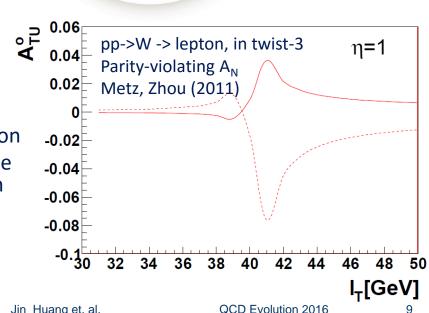
Access g_{1T} via W production in p+p

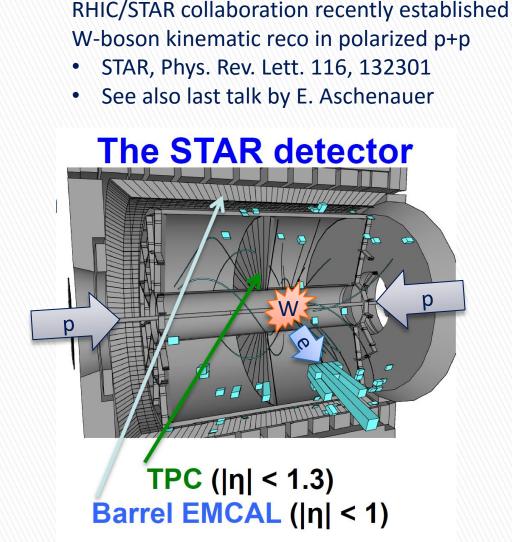
U

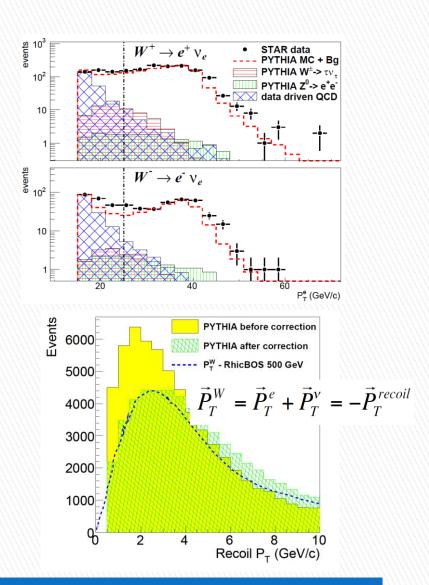
- W-boson couple to left-chirality guark, which provided 100% analyzing power to quark spin (parity-violating observables)
- Flavor separation via charge-selection of W boson

d

However, previous asymmetry estimation for the decay lepton on show asymmetry near Jacobian Peak [Kang, Qiu(2009), Boer, den Dunnen, Kotzinian (2011), Metz, Zhou (2011)]







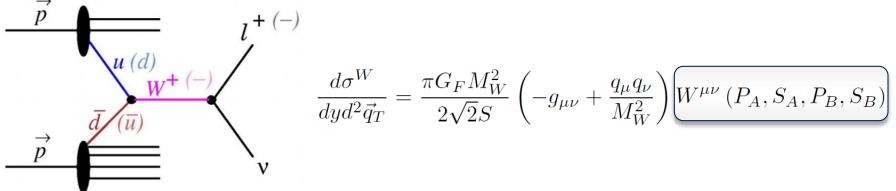
$p^{\uparrow}p \rightarrow W + X \text{ in STAR}$

STAR Run11 data, Phys. Rev. Lett. 116, 132301

Jin Huang et. al.

Differencial Cross section for polarized $p+p \rightarrow W + X$

- In kinematic region of $q_T \ll M_V$, therefore TMD factorization applies.
- Observe boson kinematics after integrating over decays.



$$\begin{split} W^{\mu\nu}\left(P_{A}, S_{A}, P_{B}, S_{B}\right) &= \frac{1}{N_{c}} \sum_{q,q'} |V_{qq'}|^{2} \int d^{2}\vec{k}_{aT} d^{2}\vec{k}_{bT} \delta^{2} \left(\vec{q}_{T} - \vec{k}_{aT} - \vec{k}_{bT}\right) \\ &\times \operatorname{Tr}\left[\gamma^{\mu}(v_{q} - a_{q}\gamma^{5}) \Phi^{q}(x_{a}, \vec{k}_{aT}, S_{A})\gamma^{\nu}(v_{q} - a_{q}\gamma^{5}) \bar{\Phi}^{q'}(x_{b}, \vec{k}_{bT}, S_{B})\right] \\ \Phi^{q[\gamma^{+}]} &= f_{1}^{q}(x_{a}, \vec{k}_{aT}^{2}) - \frac{\epsilon_{T}^{ij} k_{aT}^{i} S_{AT}^{j}}{M_{A}} f_{1T}^{\perp q}(x_{a}, \vec{k}_{aT}^{2}), \\ \Phi^{q[\gamma^{+}\gamma^{5}]} &= S_{AL} g_{1L}^{q}(x_{a}, \vec{k}_{aT}^{2}) + \frac{\vec{k}_{aT} \cdot \vec{S}_{AT}}{M_{A}} g_{1T}^{q}(x_{a}, \vec{k}_{aT}^{2}) \end{split}$$

Connection to experimental observables

Huang, Kang, Vitev, Xing, PRD 93 (2016)

$$\begin{aligned} \mathsf{pp} & \rightarrow \mathsf{W}/\mathsf{Z}/\mathsf{\gamma}^* + \mathsf{X}, \text{ integrated over vector boson decay} \\ \frac{d\sigma^W}{dyd^2 \vec{q}_T} = \sigma_0^W \bigg\{ F_{UU} + S_{AL}F_{LU} + S_{BL}F_{UL} + S_{AL}S_{BL}F_{LL} \\ & + S_{AT} \bigg[\sin(\phi_V - \phi_{S_A})F_{TU}^{\sin(\phi_V - \phi_{S_A})} + \cos(\phi_V - \phi_{S_A})F_{TU}^{\cos(\phi_V - \phi_{S_A})} \bigg] \\ & + S_{BT} \bigg[\sin(\phi_V - \phi_{S_B})F_{UT}^{\sin(\phi_V - \phi_{S_B})} + \cos(\phi_V - \phi_{S_B})F_{UT}^{\cos(\phi_V - \phi_{S_A})} \bigg] \\ & + S_{AL} \bigg[\sin(\phi_V - \phi_{S_A})F_{TL}^{\sin(\phi_V - \phi_{S_A})} + \cos(\phi_V - \phi_{S_A})F_{TL}^{\cos(\phi_V - \phi_{S_A})} \bigg] \\ & + S_{AL} \bigg[S_{BT} \bigg[\sin(\phi_V - \phi_{S_B})F_{LT}^{\sin(\phi_V - \phi_{S_B})} + \cos(\phi_V - \phi_{S_B})F_{LT}^{\cos(\phi_V - \phi_{S_B})} \bigg] \\ & + \bigg[\sin(\phi_V - \phi_{S_B})F_{LT}^{\sin(\phi_V - \phi_{S_B})} + \cos(\phi_V - \phi_{S_B})F_{LT}^{\cos(\phi_V - \phi_{S_B})} \bigg] \\ & + \bigg[\sin(\phi_V - \phi_{S_A} - \phi_{S_B})F_{TT}^{\sin(\phi_V - \phi_{S_A} - \phi_{S_B})} + \cos(\phi_{S_A} - \phi_{S_B})F_{TT}^{1} \\ & + \bigg[\sin(2\phi_V - \phi_{S_A} - \phi_{S_B})F_{TT}^{\sin(2\phi_V - \phi_{S_A} - \phi_{S_B})} + \sin(\phi_{S_A} - \phi_{S_B})F_{TT}^{1} \bigg] \bigg\}. \end{aligned}$$

Parity violating : only probed by weak boson.

For W, bonus++: 100% analyzing power on quark helicity + quark flavor tagging

$$F_{TU}^{\sin(\phi_V - \phi_{S_A})} = \mathcal{C}^W \left[(v_q^2 + a_q^2) \frac{\hat{q}_T \cdot \vec{k}_{aT}}{M_A} f_{1T}^{\perp} \bar{f}_1 \right],$$

$$F_{TU}^{\cos(\phi_V - \phi_{S_A})} = -\mathcal{C}^W \left[2v_q a_q \frac{\hat{q}_T \cdot \vec{k}_{aT}}{M_A} g_{1T} \bar{f}_1 \right],$$
Jin Huang et. al.
$$QCD \text{ Evolution 2016}$$

Phenomenology study

Assumptions:

- No TMD evolution
- $\circ~$ Gauss ansatz for $k_{\rm T}{\rm -dependence}$
- Parametrizations of TMDs:

$$f_{1}^{q}(x,k_{T}^{2}) = f_{1}^{q}(x)\frac{1}{\pi\langle k_{T}^{2}\rangle_{f_{1}}}e^{-k_{T}^{2}/\langle k_{T}^{2}\rangle_{f_{1}}},$$

$$CTEQ 6 \qquad \mu = M_{V} \\ \langle k_{T}^{2}\rangle_{f_{1}} = \langle k_{T}^{2}\rangle_{g_{1L}} = 0.25 \text{ GeV}^{2}$$

$$g_{1L}^{q}(x,k_{T}^{2}) = g_{1L}^{q}(x)\frac{1}{\pi\langle k_{T}^{2}\rangle_{g_{1L}}}e^{-k_{T}^{2}/\langle k_{T}^{2}\rangle_{g_{1L}}},$$

$$DSSV$$

$$k_{T}^{T}\int_{T}(x,k_{T}^{2}) = -\mathcal{N}_{q}(x)h(k_{T})f_{1}^{q}(x,k_{T}^{2})$$

$$f_{1T}^{\perp q}(x,k_{T}^{2}) = -\mathcal{N}_{q}(x)h(k_{T})f_{1}^{q}(x,k_{T}^{2})$$

$$Anselmino et al.$$

$$\frac{1}{2M^{2}}g_{1T}^{q}(x,k_{T}^{2}) = g_{1T}^{q(1)}(x)\frac{1}{\pi\langle k_{T}^{2}\rangle_{g_{1T}}^{2}}e^{-k_{T}^{2}/\langle k_{T}^{2}\rangle_{g_{1T}}}$$

$$Kotzinian et al.$$

$$\langle k_{T}^{2}\rangle_{g_{1T}} = 0.15 \text{ GeV}^{2}$$

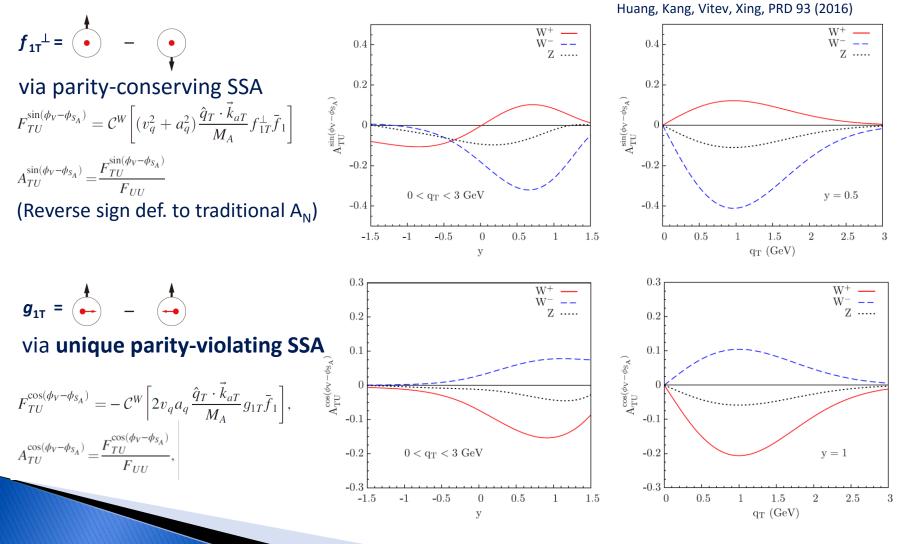
$$g_{1T}^{(1)}(x) \approx x \int_{x}^{1}\frac{dz}{z}g_{1L}^{q}(z)$$

$$Jin Huang et al.$$

$$QCD Evolution 2016$$

$$13$$

Single transverse spin asymmetries in week boson production



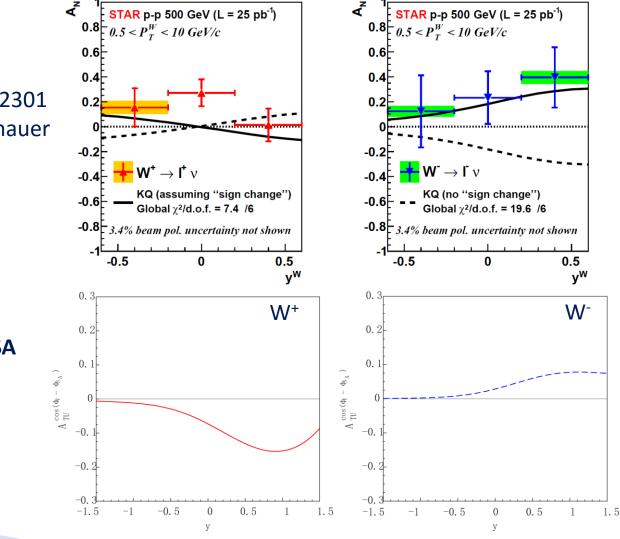
Jin Huang et. al.

Published RHIC data

 $f_{1T}^{\perp} = \bullet$ - \bullet via parity-conserving SSA STAR, Phys. Rev. Lett. 116, 132301 See also last talk by E. Aschenauer

$$g_{1T} = -$$

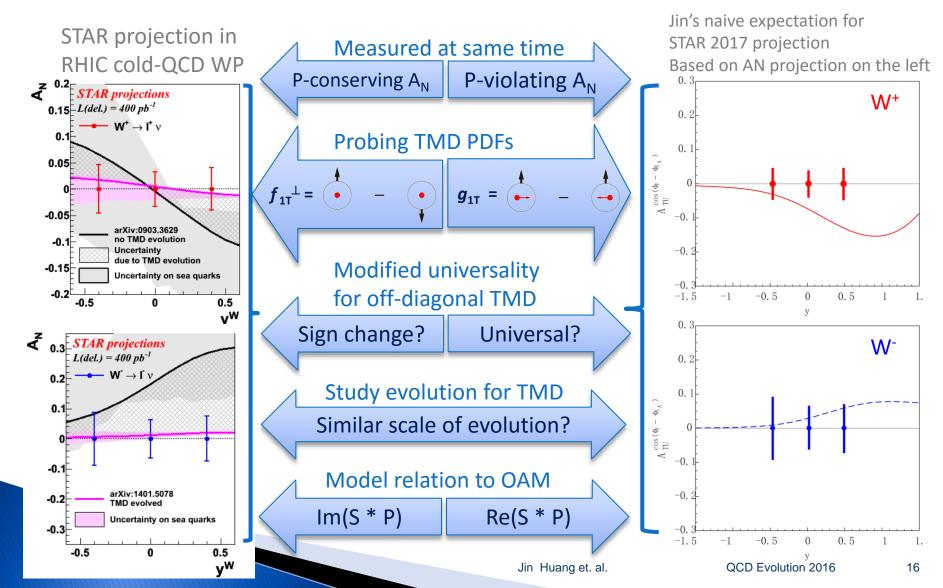
via **unique parity-violating SSA** our prediction (no evolution), Huang, Kang, Vitev, Xing, PRD 93 (2016)



Jin Huang et. al.

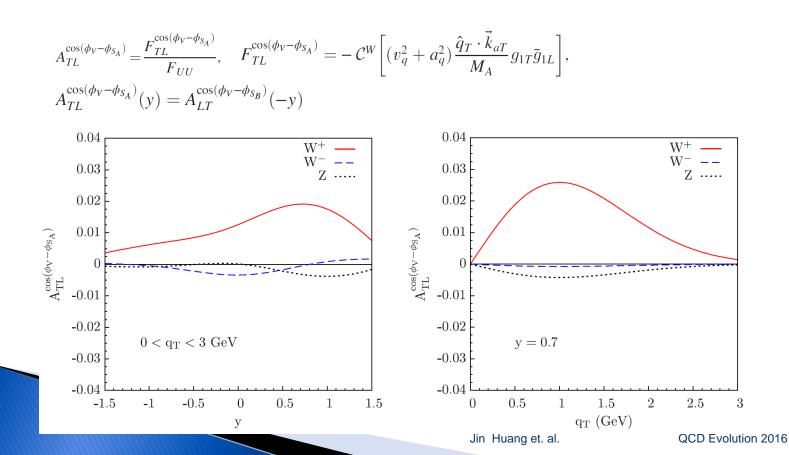
Experimental outlook: RHIC/STAR W in Run 2017

 $p^{\uparrow}p \rightarrow W + X \rightarrow (e+v)+X$, transversely polarized p+p collision @ vs = 510 GeV



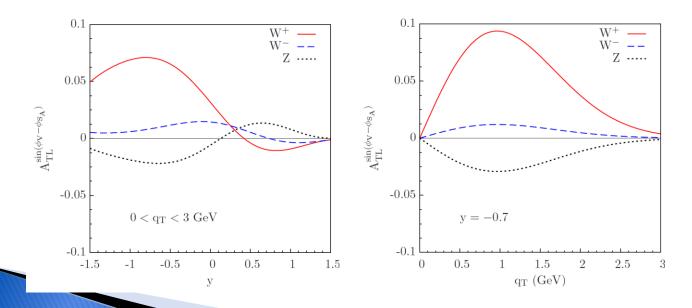
Parity-conserving Double spin asymmetries, A_{LT}

► Parity-conserving modulation on LT-double spin observable $\rightarrow g_{11} = \bigoplus - \bigoplus * g_{1T} = \bigoplus - \bigoplus$



Parity-conserving Double spin asymmetries, A_{LT}

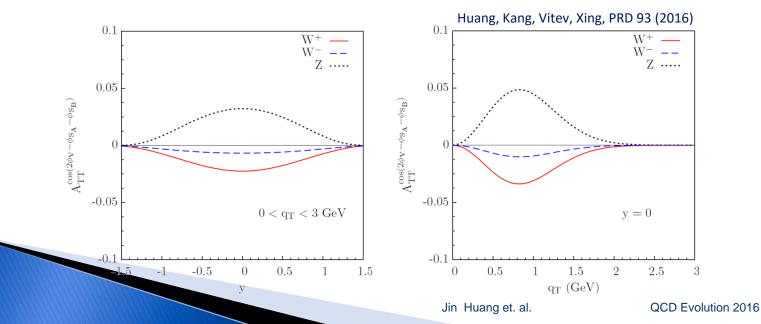
$$\begin{split} A_{TL}^{\sin(\phi_{V}-\phi_{S_{A}})} &= \frac{F_{TL}^{\sin(\phi_{V}-\phi_{S_{A}})}}{F_{UU}}, \quad F_{TL}^{\sin(\phi_{V}-\phi_{S_{A}})} = \mathcal{C}^{W} \bigg[2v_{q}a_{q} \frac{\hat{q}_{T} \cdot \vec{k}_{aT}}{M_{A}} f_{1T}^{\perp} \bar{g}_{1L} \bigg], \\ A_{TL}^{\sin(\phi_{V}-\phi_{S_{A}})}(y) &= -A_{LT}^{\sin(\phi_{V}-\phi_{S_{B}})}(-y) \end{split}$$



Parity-conserving Double spin asymmetries, ATT

- Modulation also expected in TT-double spin asymmetry
- ► Parity-conserving modulation on TT-double spin observable → f_{1T}^{\perp} = • - • * g_{1T} = • - •

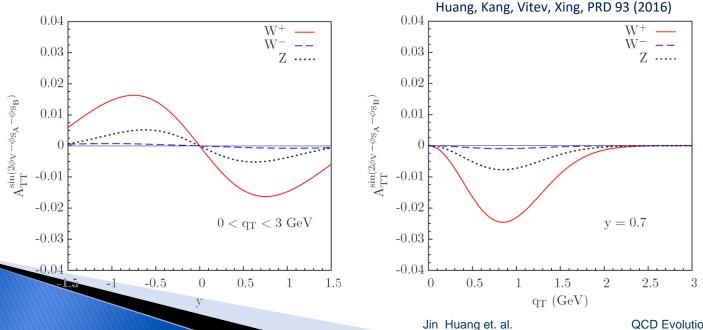
$$F_{TT}^{\cos(2\phi_V - \phi_{S_A} - \phi_{S_B})} = \mathcal{C}^W \left[(v_q^2 + a_q^2) \frac{2\vec{k}_{aT} \cdot \hat{q}_T \vec{k}_{bT} \cdot \hat{q}_T - \vec{k}_{aT} \cdot \vec{k}_{bT}}{2M_A M_B} (f_{1T}^{\perp} \bar{f}_{1T}^{\perp} - g_{1T} \bar{g}_{1T}) \right],$$



Parity-violating Double spin asymmetries, A_{TT}

▶ Parity-violating modulation on TT-double spin observable also $\rightarrow f_{1T}^{\perp} = \bullet - \bullet * g_{1T} = \bullet - \bullet$

$$F_{TT}^{\sin(2\phi_V - \phi_{S_A} - \phi_{S_B})} = \mathcal{C}^W \left[v_q a_q \frac{2\vec{k}_{aT} \cdot \hat{q}_T \vec{k}_{bT} \cdot \hat{q}_T - \vec{k}_{aT} \cdot \vec{k}_{bT}}{M_A M_B} (f_{1T}^{\perp} \bar{g}_{1T} + g_{1T} \bar{f}_{1T}^{\perp}) \right],$$



Summary

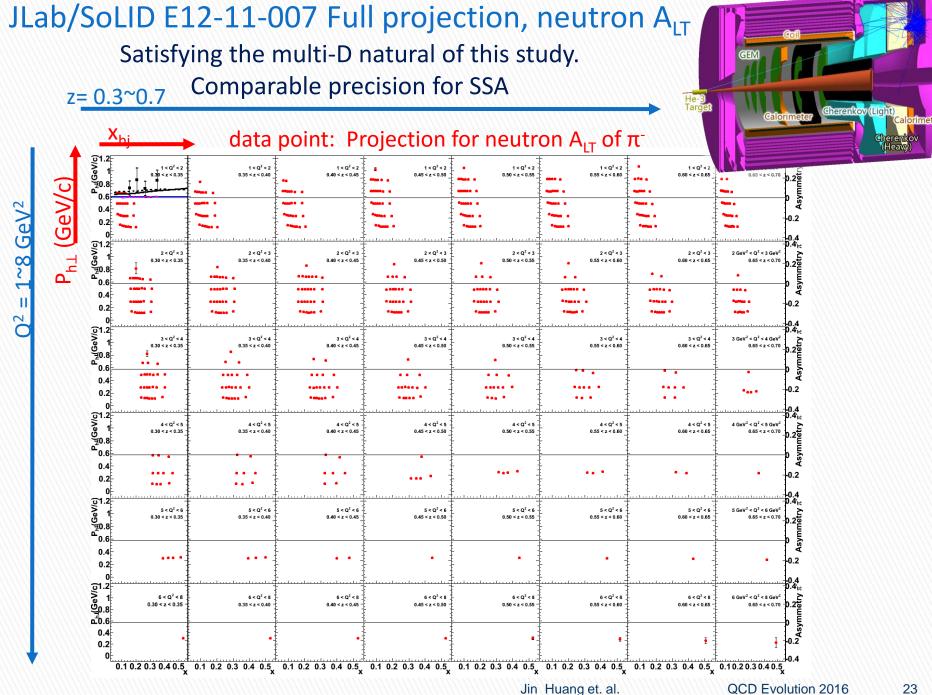
- Within TMD factorization formalism, we presented the cross sections for weak boson production in polarized pp collisions. And estimated the spin asymmetries at the top RHIC energy.
- Unique opportunity of probe g_{1T} via parity violating single transverse spin asymmetry
- The W spin physics program at RHIC could be viewed as truly multi-purpose: flavor separation, tests the universality properties of TMDs, constrains the TMD evolution effects, and probes the sea quark TMDs.
- We thank E. C. Aschenauer, A. Metz, D. Pitonyak, and M. Schlegel for helpful comments.



- Curve: Huang, Kang, Vitev, Xing, PRD 93 (2016)
- Points: Jin's naïve expectation of STAR Run17 projection based on Sivers ${\sf A}_{\sf N}$ projection in RHIC Cold QCD plan

Extra information

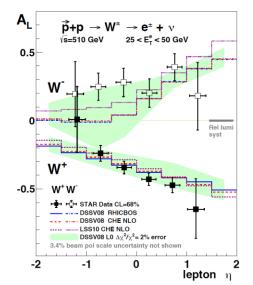
Jin Huang et. al.

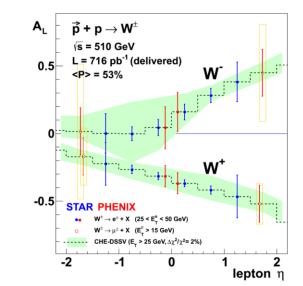


QCD Evolution 2016

What about A_{LU}

Observed decay lepton from vector boson RHIC data/projection





For observed vector boson Huang, Kang, Vitev, Xing, PRD 93 (2016)

