Interpretation of Angular Distributions of Z-boson Production

Jen-Chieh Peng
University of Illinois at Urbana-Champaign

"QCD Evolution 2016" Workshop
Nikhef, Amsterdam
May 30 - June 3, 2016

Based on the paper of JCP, Wen-Chen Chang, Evan McClellan, Oleg Teryaev, Phys. Lett. B758 (2016) 384, arXiv: 1511.08932

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 25 May 1970)
On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty, Q^{2} / s$ finite, Q^{2} and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^{2} / s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_{2} near threshold.

Success and difficulties of the "naïve" Drell-Yan Success: (T.M. Yan, hep-ph/9810268)

- Scaling of the cross sections (depends on x1 and x2 only)
- Nuclear dependence (cross section depends linearly on the mass A)
- Angular distributions ($1+\cos ^{2} \Theta$ distributions)

Difficulties:

- Absolute cross sections (K-factor is needed)
- Transverse momentum distributions (much larger $\left\langle\mathrm{p}_{\mathrm{T}}>\right.$ than expected)

Drell-Yan angular distribution

Lepton Angular Distribution of "naïve" Drell-Yan:

$$
\frac{d \sigma}{d \Omega}=\sigma_{0}\left(1+\lambda \cos ^{2} \theta\right) ; \quad \lambda=1
$$

Data from Fermilab E772
(Ann. Rev. Nucl. Part. Sci. 49 (1999) 217-253)

Drell-Yan lepton angular distributions

Θ and Φ are the decay polar and azimuthal angles of the μ^{-} in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions:
$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
Lam-Tung relation: $1-\lambda=2 v$

- Reflect the spin- $1 / 2$ nature of quarks
(analog of the Callan-Gross relation in DIS)
- Insensitive to QCD - corrections

Decay angular distributions in pion-induced Drell-Yan

$$
\begin{aligned}
& \left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right] \\
& 140 \mathrm{GeV} / \mathrm{c} \\
& 194 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

NA10 $\pi^{-}+\mathbf{W}$
Z. Phys.

37 (1988) 545

Dashed curves are from pQCD calculations
$v \neq 0$ and v increases with p_{T}

Decay angular distributions in pion-induced Drell-Yan Is the Lam-Tung relation violated?

194 GeV/c
$286 \mathrm{GeV} / \mathrm{c}$

Data from NA10 (Z. Phys. 37 (1988) 545)
Violation of the Lam-Tung relation suggests interesting new origins
(Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer,Väntinnen, Vogt, etc.)

Boer-Mulders function h_{1}^{\perp} -

- Boer pointed out that the $\cos 2 \phi$ dependence can be caused by the presence of the Boer-Mulders function.
- h_{1}^{\perp} can lead to an azimuthal dependence with $v \propto\left(\frac{h_{1}^{\perp}}{f_{1}}\right)\left(\frac{\bar{h}_{1}^{\perp}}{\bar{f}_{1}}\right)$

$$
\begin{aligned}
& h_{1}^{\perp}\left(x, k_{T}^{2}\right)=\frac{\alpha_{T}}{\pi} c_{H} \frac{M_{C} M_{H}}{k_{T}^{2}+M_{C}^{2}} e^{-\alpha_{r} k_{T}^{2}} f_{1}(x) \\
& v=16 \kappa_{1} \frac{Q_{T}^{2} M_{C}^{2}}{\left(Q_{T}^{2}+4 M_{C}^{2}\right)^{2}}
\end{aligned}
$$

Boer, PRD 60 (1999) 014012

$$
\kappa_{1}=0.47, M_{C}=2.3 \mathrm{GeV}
$$

$v>0$ implies valence $B M$ functions for pion and nucleon have same signs

Azimuthal $\cos 2 \Phi$ Distribution in $p+d$ Drell-Yan Lingyan Zhu et al., PRL 99 (2007) 082301; PRL 102 (2009) 182001

With Boer-Mulders function $h_{1}{ }^{\perp}$:

$v\left(\pi^{-W} \rightarrow \mu^{+} \mu X\right) \sim\left[\right.$ valence $\left.h_{1}^{\perp}(\pi)\right]$ * [valence $\left.h_{1}^{\perp}(p)\right]$
$\mathrm{v}(\mathrm{pd} \rightarrow \mu+\mu-X) \sim$ [valence $\left.\mathrm{h}_{1}^{\perp}(\mathrm{p})\right]$ * [sea $\left.\mathrm{h}_{1}^{\perp}(\mathrm{p})\right]$
Sea-quark BM function is much smaller than valence BM function

Lam-Tung relation from CDF Z-production

$$
\begin{gathered}
p+\bar{p} \rightarrow e^{+}+e^{-}+X \text { at } \sqrt{s}=1.96 \mathrm{TeV} \\
\text { arXiv:1103.5699 }
\end{gathered}
$$

- Strong $\mathrm{p}_{\mathrm{T}}\left(\mathrm{q}_{\mathrm{T}}\right)$ dependence of λ and v
- Lam-Tung relation $(1-\lambda=2 v)$ is satisfied within experimental uncertainties

Recent CMS data for Z-boson production in $p+p$ collision at 8 TeV

- Striking q_{T} dependencies for λ and v were observed at two rapidity regions
- Is Lam-Tung relation violated?

Recent data from CMS for Z-boson production in $p+p$ collision at 8 TeV

- Yes, the Lam-Tung relation is violated $(1-\lambda>2 v)$!
- Can one understand the origin of the violation of the Lam-Tung relation?

Interpretation of the CMS Z-production results

$$
\frac{d \sigma}{d \Omega} \propto\left(1+\cos ^{2} \theta\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi
$$

$$
+\frac{A_{2}}{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta
$$

$$
+A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi
$$

Questions:

- How is the above expression derived?
- Can one express $A_{0}-A_{7}$ in terms of some quantities?
- Can one understand the Q_{T} depndence of A_{0}, A_{1}, A_{2}, etc?
- Can one understand the origin of the violation of Lam-Tung relation?

How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_{B} and target \vec{P}_{T} momenta

- Angle β satisfies the relation $\tan \beta=q_{T} / Q$

How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_{B} and target \vec{P}_{T} momenta
- Angle β satisfies the relation $\tan \beta=q_{T} / Q$

2) Quark Plane

- q and \bar{q} have head - on collision along the \hat{z}^{\prime} axis
- \hat{z}^{\prime} axis has angles θ_{1} and ϕ_{1} in the $\mathrm{C}-\mathrm{S}$ frame

How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_{B} and target \vec{P}_{T} momenta
- Angle β satisfies the relation $\tan \beta=q_{T} / Q$

2) Quark Plane

- q and \bar{q} have head - on collision along the \hat{z}^{\prime} axis
- \hat{z}^{\prime} axis has angles θ_{1} and ϕ_{1} in the C - S frame

3) Lepton Plane

- l^{-}and l^{+}are emitted back - to- back with equal $|\vec{P}|$
$-l^{-}$is emitted at angle θ and ϕ in the $\mathrm{C}-\mathrm{S}$ frame

How is the angular distribution expression derived?

How is the angular distribution expression derived?

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{\sin ^{2} \theta_{1}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \cos \phi_{1}\right) \sin 2 \theta \cos \phi \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \cos 2 \phi_{1}\right) \sin ^{2} \theta \cos 2 \phi \\
& +\left(a \sin \theta_{1} \cos \phi_{1}\right) \sin \theta \cos \phi+\left(a \cos \theta_{1}\right) \cos \theta \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \sin 2 \phi_{1}\right) \sin ^{2} \theta \sin 2 \phi \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \sin \phi_{1}\right) \sin 2 \theta \sin \phi \\
& +\left(a \sin \theta_{1} \sin \phi_{1}\right) \sin \theta \sin \phi
\end{aligned}
$$

How is the angular distribution expression derived?

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{\sin ^{2} \theta_{1}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \cos \phi_{1}\right) \sin 2 \theta \cos \phi \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \cos 2 \phi_{1}\right) \sin ^{2} \theta \cos 2 \phi \\
& +\left(a \sin \theta_{1} \cos \phi_{1}\right) \sin \theta \cos \phi+\left(a \cos \theta_{1}\right) \cos \theta \\
& +\left(\frac{1}{2} \sin ^{2} \theta_{1} \sin 2 \phi_{1}\right) \sin ^{2} \theta \sin 2 \phi \\
& +\left(\frac{1}{2} \sin 2 \theta_{1} \sin \phi_{1}\right) \sin 2 \theta \sin \phi \\
& +\left(a \sin \theta_{1} \sin \phi_{1}\right) \sin \theta \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} \propto & \left(1+\cos ^{2} \theta\right)+\frac{A_{0}}{2}\left(1-3 \cos ^{2} \theta\right) \\
& +A_{1} \sin 2 \theta \cos \phi \\
& +\frac{A_{2}}{2} \sin ^{2} \theta \cos 2 \phi \\
& +A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& +A_{5} \sin ^{2} \theta \sin 2 \phi \\
& +A_{6} \sin 2 \theta \sin \phi \\
& +A_{7} \sin \theta \sin \phi
\end{aligned}
$$

$A_{0}-A_{7}$ are entirely described by θ_{1}, ϕ_{1} and a

Angular distribution coefficients $\mathrm{A}_{0}-\mathrm{A}_{7}$

$$
\begin{aligned}
& A_{0}=\left\langle\sin ^{2} \theta_{1}\right\rangle \\
& A_{1}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{2}=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle \\
& A_{3}=a\left\langle\sin \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{4}=a\left\langle\cos \theta_{1}\right\rangle \\
& A_{5}=\frac{1}{2}\left\langle\sin ^{2} \theta_{1} \sin 2 \phi_{1}\right\rangle \\
& A_{6}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \sin \phi_{1}\right\rangle \\
& A_{7}=a\left\langle\sin \theta_{1} \sin \phi_{1}\right\rangle
\end{aligned}
$$

Some implications of the angular distribution coefficients $\mathrm{A}_{0}-\mathrm{A}_{7}$

$$
\begin{aligned}
& A_{0}=\left\langle\sin ^{2} \theta_{1}\right\rangle \\
& A_{1}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{2}=\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle \\
& A_{3}=a\left\langle\sin \theta_{1} \cos \phi_{1}\right\rangle \\
& A_{4}=a\left\langle\cos \theta_{1}\right\rangle \\
& A_{5}=\frac{1}{2}\left\langle\sin ^{2} \theta_{1} \sin 2 \phi_{1}\right\rangle \\
& A_{6}=\frac{1}{2}\left\langle\sin 2 \theta_{1} \sin \phi_{1}\right\rangle \\
& A_{7}=a\left\langle\sin \theta_{1} \sin \phi_{1}\right\rangle
\end{aligned}
$$

- $A_{0} \geq A_{2}($ or $1-\lambda-2 v \geq 0)$
- Lam - Tung relation $\left(A_{0}=A_{2}\right)$ is satisfied when $\phi_{1}=0$
- Forward - backward asy mmetry, a, is reduced by a factor of $\left\langle\cos \theta_{1}\right\rangle$ for A_{4}
- A_{5}, A_{6}, A_{7} are odd function of ϕ_{1} and must vanish from sy mmetry consideration
- Some equality and inequality relations among $A_{0}-A_{7}$ can be obatined

What are the values of θ_{1} and ϕ_{1} at order α_{s} ?

What are the values of θ_{1} and ϕ_{1} at order α_{s} ?

$$
\begin{aligned}
& \text { 2) } q g \rightarrow \gamma^{*}\left(Z^{0}\right) q \\
& \text { In } \gamma^{*} \text { rest frame (C-S) } \\
& \bar{q} \\
& \theta_{1}=\beta \text { and } \phi_{1}=0 \\
& \hat{Z} \\
& \theta_{1}>\beta \text { and } \phi_{1}=0 ; A_{0}=A_{2} \approx 5 q_{T}^{2} /\left(Q^{2}+5 q_{T}^{2}\right) \\
& \lambda=\frac{2-3 A_{0}}{2+A_{0}}=\frac{2 Q^{2}-5 q_{T}^{2}}{2 Q^{2}+15 q_{T}^{2}} ; \quad v=\frac{2 A_{2}}{2+A_{0}}=\frac{10 q_{T}^{2}}{2 Q^{2}+15 q_{T}^{2}}
\end{aligned}
$$

Compare with CMS data on λ

(Z production in $p+p$ collision at 8 TeV)

$$
\begin{aligned}
& \lambda=\frac{2 Q^{2}-q_{T}^{2}}{2 Q^{2}+3 q_{T}^{2}} \quad \text { for } \quad q \bar{q} \rightarrow Z g \\
& \lambda=\frac{2 Q^{2}-5 q_{T}^{2}}{2 Q^{2}+15 q_{T}^{2}} \quad \text { for } \quad q G \rightarrow Z q
\end{aligned}
$$

For both processes
$\lambda=1$ at $q_{T}=0 \quad\left(\theta_{1}=0^{\circ}\right)$
$\lambda=-1 / 3$ at $q_{T}=\infty\left(\theta_{1}=90^{\circ}\right)$
Data can be well described with a mixture of $58.5 \% q G$ and $41.5 \% q \bar{q}$ processes

Compare with CMS data on v
 (Z production in $p+p$ collision at 8 TeV)

Solid curve corresponds to
$\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.77$
$q-\bar{q}$ axis is non-coplanar relative to the hadron plane

Origins of the non-coplanarity

1) Processes at order α_{s}^{2} or higher

2) Intrinsic k_{T} from inetracting partons

Compare with CMS data on Lam-Tung relation

Solid curves correspond to a mixture of $58.5 \% q G$ and 41.5\% $q \bar{q}$ processes, and $\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.77$

Violation of Lam-Tung relation is well described

Compare with CDF data

(Z production in $p+\bar{p}$ collision at 1.96 TeV)

Solid curves correspond to a mixture of $27.5 \% q G$ and
$72.5 \% q \bar{q}$ processes, and
$\left\langle\sin ^{2} \theta_{1} \cos 2 \phi_{1}\right\rangle /\left\langle\sin ^{2} \theta_{1}\right\rangle=0.85$

Violation of Lam-Tung relation is not ruled out

Summary

- The lepton angular distribution coefficients $A_{0}-A_{7}$ are described in terms of the polar and azimuthal angles of the $q-\bar{q}$ axis.
- The striking q_{T} dependence of A_{0} (or equivalently, λ) can be well described by the mis-alignment of the $q-\bar{q}$ axis and the Collins-Soper z-axis.
- Violation of the Lam-Tung relation $\left(A_{0} \neq A_{2}\right)$ is described by the non-coplanarity of the $q-\bar{q}$ axis and the hadron plane. This can come from order α_{S}^{2} or higher processes or from intrinsic k_{T}.
- This study can be extended to fixed-target DrellYan data.

