Mirko Serino

Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

QCD Evolution 2016 Amsterdam, The Netherlands May 30 - June 3 2016

Work in collaboration with Krzysztof Kutak, Rafal Maciula, Antoni Szczurek and Andreas van Hameren

Supported by NCN grant DEC-2013/10/E/ST2/00656 of Krzysztof Kutak

2 BCFW recursion relations: the all-leg solution

3 4-jet production in kt-factorization: Single and Double Parton scattering

4 Summary and perspectives

High-Energy-factorisation: original formulation

High-Energy-factorisation (Catani, Ciafaloni, Hautmann, 1991 / Collins, Ellis, 1991)

$$\sigma_{h_1,h_2 \to q\bar{q}} = \int d^2 k_{1\perp} d^2 k_{2\perp} \frac{dx_1}{x_1} \frac{dx_2}{x_2} \mathcal{F}_g(x_1,k_{1\perp}) \mathcal{F}_g(x_2,k_{2\perp}) \hat{\sigma}_{gg}\left(\frac{m^2}{x_1 x_2 s},\frac{k_{1\perp}}{m},\frac{k_{2\perp}}{m}\right)$$

where the \mathcal{F}_{g} 's are the gluon densities, obeying BFKL, BK, CCFM evolution equations, and $\hat{\sigma}$ the **gauge invariant** parton cross section (!!!)

Non negligible transverse momentum is associated to small-x physics.

Momentum parameterisation:

$$k_1^{\mu} = x_1 p_1^{\mu} + k_{1\perp}^{\mu}$$
, $k_2^{\mu} = x_2 p_2^{\mu} + k_{2\perp}^{\mu}$ for $p_i \cdot k_i = 0$ $k_i^2 = -k_{i\perp}^2$ $i = 1, 2$

└─ The formal framework: off-shell amplitudes

Gauge invariant off-shell amplitudes

Problem: general partonic processes must be described by gauge invariant amplitudes \Rightarrow ordinary Feynman rules are not enough !

└─ The formal framework: off-shell amplitudes

Gauge invariant off-shell amplitudes

ONE IDEA:

on-shell amplitudes are gauge invariant, so off-shell gauge-invariant amplitudes could be got by embedding them into on-shell processes...

— The formal framework: off-shell amplitudes

Gauge invariant off-shell amplitudes

ONE IDEA:

on-shell amplitudes are gauge invariant, so off-shell gauge-invariant amplitudes could be got by embedding them into on-shell processes...

...first result...: 1) For off-shell gluons: represent g^* as coming from a $\bar{q}qg$ vertex, with the quarks taken to be on-shell

- embed the scattering of the off-shell gluons in the scattering of two quark pairs carrying momenta $p_A^{\mu} = k_1^{\mu}$, $p_B^{\mu} = k_2^{\mu}$, $p_{A'}^{\mu} = 0$, $p_{B'}^{\mu} = 0$
- Assign the spinors $|p_1\rangle, |p_1|$ to the *A*-quark and the propagator $\frac{ip_1}{p_1 \cdot k}$ instead of $\frac{ik}{k^2}$ to the propagators of the *A*-quark carrying momentum *k*; same thing for the *B*-quark line.

• ordinary Feynman elsewhere and factor $x_1 \sqrt{-k_{\perp}^2/2}$ to match to the collinear limit *K. Kutak, P. Kotko, A. van Hameren, JHEP 1301 (2013) 078*

Prescription for off-shell gluons: derivation 1

Auxiliary vectors
$$p_{3,4}$$
 (complex in general):

$$\begin{cases}
p_3^{\mu} = \frac{1}{2} \langle p_2 | \gamma^{\mu} | p_1] \\
p_4^{\mu} = \frac{1}{2} \langle p_1 | \gamma^{\mu} | p_2] \\
p_1^2 = p_2^2 = p_3^2 = p_4^2 = 0 \\
p_{1,2} \cdot p_{3,4} = 0, \quad p_1 \cdot p_2 = -p_3 \cdot p_4
\end{cases}$$

Auxiliary momenta:
$$\begin{cases} p_{A}^{\mu} = (\Lambda + x_{1})p_{1}^{\mu} - \frac{p_{4} \cdot k_{1\perp}}{p_{1} \cdot p_{2}}p_{3}^{\mu}, & p_{A'}^{\mu} = \Lambda p_{1}^{\mu} + \frac{p_{3} \cdot k_{1\perp}}{p_{1} \cdot p_{2}}p_{4}^{\mu} \\ p_{B}^{\mu} = (\Lambda + x_{2})p_{2}^{\mu} - \frac{p_{3} \cdot k_{2\perp}}{p_{1} \cdot p_{2}}p_{4}^{\mu}, & p_{B'}^{\mu} = \Lambda p_{2}^{\mu} + \frac{p_{4} \cdot k_{2\perp}}{p_{1} \cdot p_{2}}p_{3}^{\mu} \end{cases}$$

For any
$$\Lambda$$
:
$$\begin{cases} p_A^{\mu} - p_{A'}^{\mu} = x_1 p_1^{\mu} + k_{1\perp}^{\mu} \\ p_B^{\mu} - p_{B'}^{\mu} = x_2 p_2^{\mu} + k_{2\perp}^{\mu} \\ p_A^2 = p_{A'}^2 = p_B^2 = p_{B'}^2 = 0 \end{cases}$$

Prescription for off-shell gluons: derivation 2

Momentum flowing through a propagator of an auxiliary quark line:

$$k^{\mu}=(\Lambda+x_k)p_1^{\mu}+y_k\,p_2^{\mu}+k_{\perp}^{\mu}$$

Final step: remove complex components taking the $\Lambda \to \infty$ limit.

$$\frac{\cancel{k}}{k^2} = \frac{(\Lambda + x_k)\cancel{p}_1 + y_k \cancel{p}_2 + \cancel{k}}{2(\Lambda + x_k)y_k p_1 \cdot p_2 + k_\perp^2} \xrightarrow{\Lambda \to \infty} \frac{\cancel{p}_1}{2 y_k p_1 \cdot p_2} = \frac{\cancel{p}_1}{2p_1 \cdot k}$$

In agreement with Lipatov's effective action Lipatov Nucl.Phys. B452 (1995) 369-400 Antonov, Lipatov, Kuraev, Cherednikov, Nucl.Phys. B721 (2005) 111-135

Prescription for off-shell quarks

... and second result:

2) for off-shell quarks: represent q^* as coming from a $\gamma \bar{q}q$ vertex, with a 0 momentum and \bar{q} on shell (and vice-versa)

- embed the scattering of the quark with whatever set of particles in the scattering of an auxiliary quark-photon pair, q_A and γ_A carrying momenta $p_{q_A}^{\mu} = k_1^{\mu}$, $p_{\gamma_A}^{\mu} = 0$
- Let q_A -propagators of momentum k be $\frac{i p_1}{p_1 \cdot k}$ and assign the spinors $|p_1\rangle, |p_1|$ to the A-quark.
- Assign the polarization vectors $\epsilon^{\mu}_{+} = \frac{\langle q | \gamma^{\mu} | p_1]}{\sqrt{2} \langle p_1 q \rangle}$, $\epsilon^{\mu}_{-} = \frac{\langle p_1 | \gamma^{\mu} | q]}{\sqrt{2} [p_1 q]}$ to the auxiliary photon, with q a light-like auxiliary momentum.
- Multiply the amplitude by $x_1 \sqrt{-k_{1\perp}^2/2}$ and use ordinary Feynman rules everywhere else.

K. Kutak, T. Salwa, A. van Hameren, Phys.Lett. B727 (2013) 226-233

One left issue: huge slowness for many legs

The diagrammatic approach is too slow to allow for the computation of amplitudes containing more than 4 particles in a reasonable time.

Computing scattering amplitudes in Yang-Mills theories via ordinary Feynman diagrams: soon overwhelming !

Number of Feynman diagrams at tree level on-shell:

# of gluons	4	5	6	7	8	9	10
# of diagrams	4	25	220	2485	34300	559405	10525900

And there are even more with the proposed method for amplitudes with off-shell particles due to the gauge-restoring terms.

A method to efficiently compute helicity amplitudes: BCFW recursion relation

Britto, Cachazo, Feng, Nucl.Phys. B715 (2005) 499-522 Britto, Cachazo, Feng, Witten, Phys.Rev.Lett. 94 (2005) 181602

BCFW recursion relation

Two very simple ideas for tree level amplitudes:

2 Cauchy's residue theorem: if the amplitude is formally treated as a function of a complex variable z and if it is rational and vanishes for $z \to \infty$, then the integral extended to an infinite contour enclosing all poles vanishes

$$\lim_{z\to\infty}\mathcal{A}(z)=0 \Rightarrow \frac{1}{2\pi i}\oint dz\,\frac{\mathcal{A}(z)}{z}=0$$

implying that the value at z = 0 (physical amplitude) can be determined as a sum of the residues at the poles:

$$\mathcal{A}(0) = -\sum_{i} \frac{\lim_{z \to z_i} [(z - z_i) f(z)]}{z_i}$$

where z_i is the location of the *i*-th pole

2 Unitarity: Poles in Yang-Mills tree level amplitudes can only be due to gluon propagators dividing the n-point amplitude into two on-shell sub-amplitudes with k + 1 and n - k + 1 gluons \Rightarrow it is all about finding the proper way to "complexify" an amplitude.

To properly "complexify" A: for helicities $(h_1, h_n) = (-, +)$ (no loss of generality...)

$$\begin{aligned} |1] & \to & |\hat{1}] \equiv |1] - z |n] \Rightarrow p_1 \to \hat{p}_1 = |1] \langle 1| - z |1] \langle n| \\ |n\rangle & \to & |\hat{n}\rangle \equiv |n\rangle + z |1\rangle \Rightarrow p_n \to \hat{p}_n = |n] \langle n| + z |1] \langle n| \end{aligned}$$

With such a choice

- On-shellness, gauge invariance and momentum conservation preserved throughout.
- the most serious issue is the behaviour for $z \to \infty$, but either a result derived with twistor methods (*Cachazo,Svrcek and Witten JHEP 0409 (2004) 006*) or a smart choice of reference lines always allow to overcome the problem, so that $\lim_{z\to\infty} \mathcal{A}(z) = 0$ holds

BCFW applies to color-ordered partial amplitudes, for which the kinematics and gauge structure are factorised like

$$\mathcal{M}_n = g^{n-2} \sum_{\sigma \in S_n/Z_n} \operatorname{Tr}(T_{\sigma(1)} \dots T_{\sigma(n)}) \mathcal{A}(g_{\sigma(1)}, \dots, g_{\sigma(n)})$$

Amazingly simple recursive relation:

any tree-level color-ordered amplitude is the sum of residues of the poles it develops when it is made dependent on a complex variable as above. Such residues are simply products of color-ordered lower-point amplitudes evaluated at the pole times an intermediate propagator. Shifted particles are always on opposite sides of the propagator.

$$\mathcal{A}(g_1,\ldots,g_n) = \sum_{i=2}^{n-2} \sum_{h=+,-} \mathcal{A}(g_1,\ldots,g_i,\hat{P}^h) \frac{1}{(p_1+\cdots+p_i)^2} \mathcal{A}(-\hat{P}^{-h},g_{i+1},\ldots,g_n)$$

 $z_i = rac{(
ho_1 + \dots +
ho_i)^2}{[1|
ho_1 + \dots +
ho_i|n
angle}$ location of the pole corresponding for the "i-th" partition

Off-Shell Amplitudes and Four-Jet Production in kt-factorization BCFW recursion relations: the all-leg solution

The inclusion of fermions and MHV amplitudes

The BCFW recursion was promptly extended to Yang-Mills theories with fermions: *M. Luo, C. Wen, JHEP 0503 (2005) 004*

14/36

It is natural to ask whether something like a BCFW recursion relation exists with off-shell particles. For off shell, gluons, the answer was first found in *A. van Hameren, JHEP 1407 (2014) 138*

$$\mathcal{A}(\mathbf{0}) = \sum_{s=g,f} \left(\sum_{p} \sum_{h=+,-} \mathbf{A}^{s}_{p,h} + \sum_{i} \mathbf{B}^{s}_{i} + \mathbf{C}^{s} + \mathbf{D}^{s} \right) \,,$$

- $A_{p,h}^{g/f}$ are due to the poles which appear in the original BCFW recursion for on-shell amplitudes. The pole appears because one of the intermediate virtual gluon, whose shifted momentum squared $K^2(z)$ goes on-shell.
- $B_i^{g/f}$ are due to the poles appearing in the propagator of auxiliary eikonal quarks. This means $p_i \cdot \hat{K}(z) = 0$ for $z = -\frac{2 p_i \cdot K}{2 p_i \cdot e}$. \hat{K} is the momentum flowing through the eikonal propagator.
- $C^{g/f}$ and $D^{g/f}$ show up us the first/last shifted particle is off-shell and their external propagator develops a pole.

The external propagator for off-shell particles is necessary to ensure

$$\lim_{z\to\infty}\mathcal{A}(z)=0$$

Off-Shell Amplitudes and Four-Jet Production in kt-factorization BCFW recursion relations: the all-leg solution

Classification of poles in the fermion case

General outline of the results

- It is necessary to understand which shifts are legitimate in the off-shell case, i.e. for which choices $\lim_{z\to\infty} \mathcal{A}(z) = 0$. We provide a full classification of the possibilities.
- It turns out that amplitudes which are MHV in the on-shell case (2 of the partons have different helicity sign w.r.t. all the others) preserve a similar structure in the off-shell case.
- 5-point amplitudes exhibit some non-MHV structures, which have been calculated for the first time
- Numerical cross-checks are always successful. They were performed cross checked with a program implementing Berends-Giele recursion relation, A. van Hameren, M. Bury, Comput.Phys.Commun. 196 (2015) 592-598

Explicit results are presented and discussed thoroughly in A. van Hameren, M.S. JHEP 1507 (2015) 010.

The smooth results: MHV amplitudes

Transverse momentum parameterization:

$$\begin{cases}
k_{T\,i}^{\mu} = -\frac{\kappa_{i}}{2} \frac{\langle p_{i} | \gamma^{\mu} | q]}{[p_{i}q]} - \frac{\kappa_{i}^{*}}{2} \frac{\langle q | \gamma^{\mu} | p_{i} \rangle}{\langle q p_{i} \rangle} \\
\kappa_{i} \equiv \frac{\langle q | k_{i} | p_{i} \rangle}{\langle q p_{i} \rangle} \quad \kappa_{i}^{*} \equiv \frac{\langle p_{i} | k_{i} | q]}{[p_{i}q]} \\
q^{2} = 0 \quad \text{auxiliary momentum}
\end{cases}$$

Subleading contribution: it is zero in the on-shell case !

$$\mathcal{A}(g_1^+, g_2^+, \dots, g_{n-1}^+, \bar{q}, q, g_n^+) = \frac{\langle \bar{q}q \rangle^3}{\langle 12 \rangle \langle 23 \rangle \dots \langle \bar{q}q \rangle \langle qn \rangle \langle n1 \rangle}$$

Structure of MHV amplitudes

$$\begin{aligned} \mathcal{A}(g_{1}^{+},g_{2}^{+},\ldots,g_{n-1}^{+},\bar{q}^{*},q^{+},g_{n}^{-}) &= & \frac{1}{\kappa_{\bar{q}}^{*}} \frac{\langle \bar{q}n \rangle^{3} \langle qn \rangle}{\langle 12 \rangle \langle 23 \rangle \ldots \langle \bar{q}q \rangle \langle qn \rangle \langle n1 \rangle} \\ \mathcal{A}(g^{*},\bar{q}^{+},q^{-},g_{1}^{+},g_{2}^{+},\ldots,g_{n}^{+}) &= & \frac{1}{\kappa_{g}^{*}} \frac{\langle gq \rangle^{3} \langle g\bar{q} \rangle}{\langle g\bar{q} \rangle \langle \bar{q}q \rangle \ldots \langle n-1|n\rangle \langle ng \rangle} \end{aligned}$$

Off-Shell Amplitudes and Four-Jet Production in kt-factorization BCFW recursion relations: the all-leg solution

But not everything is so smooth...

$$\begin{split} \mathcal{A}(g^*,\bar{q}^+,q^-,g_1^+,g_2^-) &= \frac{1}{\kappa_g^*} \frac{[\bar{q}1]^3 \langle 2g \rangle^4}{[\bar{q}q] \langle g| \not p_2 + \not k_g |1] \langle 2| \not k_g \left(\not k_g + \not p_2 \right) |g] \langle 2| \not k_g |\bar{q}]} \\ &+ \frac{1}{\kappa_g} \frac{1}{(k_g + p_{\bar{q}})^2} \frac{[g\bar{q}]^2 \langle 2q \rangle^3 \langle 2| \not k_g + \not p_{\bar{q}} |g]}{\langle 1q \rangle \langle 12 \rangle \left\{ (k_g + p_{\bar{q}})^2 [\bar{q}g] \langle 2q \rangle - \langle 2| \not k_g + \not p_{\bar{q}} |g] \langle q| \not k_g |\bar{q}] \right\}} \\ &+ \frac{\langle gq \rangle^3 [g1]^4}{\langle \bar{q}q \rangle [12] [g2] \langle q| \not p_1 + \not p_2 |g] \langle g| \not p_1 + \not p_2 |g] \langle g| \not k_g + \not p_2 |1]} \end{split}$$

Our PDFs: the prescription

DLC 2016 (Double Log Coherence) K. Kutak, R. Maciula, M.S., A. Szczurek, A. van Hameren, JHEP 1604 (2016) 175

Conjectured formulas for 2 and 4 jets production:

$$\begin{split} \sigma_{2-jets} &= \sum_{i,j} \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} d^2 k_{T1} d^2 k_{T2} \, \mathcal{F}_i(x_1, k_{T1}, \mu_F) \, \mathcal{F}_j(x_2, k_{T2}, \mu_F) \\ &\times \frac{1}{2\hat{s}} \prod_{l=i}^2 \frac{d^3 k_l}{(2\pi)^3 2E_l} \Theta_{2-jet} \, (2\pi)^4 \, \delta \left(P - \sum_{l=1}^2 k_l \right) \, \overline{|\mathcal{M}(i^*, j^* \to 2 \text{ part.})|^2} \\ \sigma_{4-jets} &= \sum_{i,j} \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} \, d^2 k_{T1} d^2 k_{T2} \, \mathcal{F}_i(x_1, k_{T1}, \mu_F) \, \mathcal{F}_j(x_2, k_{T2}, \mu_F) \\ &\times \frac{1}{2\hat{s}} \prod_{l=i}^4 \frac{d^3 k_l}{(2\pi)^3 2E_l} \Theta_{4-jet} \, (2\pi)^4 \, \delta \left(P - \sum_{l=1}^4 k_l \right) \, \overline{|\mathcal{M}(i^*, j^* \to 4 \text{ part.})|^2} \end{split}$$

- PDFs and matrix elements well defined.
- No factorization rigorous proof around (not even in the collinear case, actually)
- Reasonable description of data justifies this formula a posteriori

Our framework

AVHLIB (A. van Hameren) : https://bitbucket.org/hameren/avhlib

- complete Monte Carlo program for tree-level calculations
- any process within the Standard Model
- any initial-state partons on-shell or off-shell
- employs numerical Dyson-Schwinger recursion to calculate helicity amplitudes
- automatic phase space optimization
- Flavour scheme: $N_f = 5$
- **Running** α_s from the MSTW68cl PDF sets
- Massless quarks approximation $E_{cm} = 7/8 TeV \Rightarrow m_{q/\bar{q}} = 0$.
- **Scale** $\mu_R = \mu_F \equiv \mu = \frac{H_T}{2} \equiv \frac{1}{2} \sum_i p_T^i$, (sum over final state particles)

We don't take into account correlations in DPS: $D(x_1, x_2, \mu) = f(x_1, \mu) f(x_2, \mu)$. There are attempts to go beyond this approximation: Golec-Biernat, Lewandowska, Snyder, M.S., Stasto, Phys.Lett. B750 (2015) 559-564 Rinaldi, Scopetta, Traini, Vento, JHEP 1412 (2014) 028

4-jet production: Single Parton Scattering (SPS)

We take into account all the (according to our conventions) 20 channels.

Here q and q' stand for different quark flavours in the initial (final) state.

We do not introduce K factors, amplitudes@LO.

 \sim 95 % of the total cross section

There are 19 different channels contributing to the cross section at the parton-level:

$$\begin{split} gg &\to 4g \,, gg \to q\bar{q} \, 2g \,, qg \to q \, 3g \,, q\bar{q} \to q\bar{q} \, 2g \,, qq \to qq \, 2g \,, qq' \to qq' \, 2g \,, \\ gg &\to q\bar{q}q\bar{q} \,, gg \to q\bar{q}q'\bar{q}' \,, qg \to qgq\bar{q} \,, qg \to qgq'\bar{q}' \,, \\ q\bar{q} \to 4g \,, q\bar{q} \to q'\bar{q}' \, 2g \,, q\bar{q} \to q\bar{q}q\bar{q} \,, q\bar{q} \to q\bar{q}q'\bar{q}' \,, \\ q\bar{q} \to q'\bar{q}' \,, q\bar{q} \to q'\bar{q}' \, 2g \,, q\bar{q} \to q\bar{q}q\bar{q} \,, q\bar{q} \to q\bar{q}q'\bar{q}' \,, \\ q\bar{q} \to q'\bar{q}' \,, q\bar{q} \to q'\bar{q}' \,, q\bar{q} \to q\bar{q}q\bar{q} \,, q\bar{q} \to q\bar{q}q\bar{q} \,, q\bar{q} \to q\bar{q}q'\bar{q} \,, \end{split}$$

4-jet production: Double parton scattering (DPS)

$$\begin{split} \sigma &= \sum_{i,j,a,b;k,l,c,d} \frac{\mathcal{S}}{\sigma_{\text{eff}}} \, \sigma(i,j \rightarrow a,b) \, \sigma(k,l \rightarrow c,d) \\ \mathcal{S} &= \begin{cases} 1/2 & \text{if } ij = k \, l \text{ and } a \, b = c \, d \\ 1 & \text{if } ij \neq k \, l \text{ or } a \, b \neq c \, d \end{cases} \\ \sigma_{\text{eff}} &= 15 \, mb \,, (\text{CDF}, \text{ D0 and LHCb collaborations}) \,, \end{split}$$

Experimental data may hint at different values of $\sigma_{\it eff}$; main conclusions not affected

In our conventions, 9 channels from 2 \rightarrow 2 SPS events,

$$\begin{array}{rcl} \#1 & = & gg \rightarrow gg \,, & \#6 = u\bar{u} \rightarrow dd \\ \#2 & = & gg \rightarrow u\bar{u} \,, & \#7 = u\bar{u} \rightarrow gg \\ \#3 & = & ug \rightarrow ug \,, & \#8 = uu \rightarrow uu \\ \#4 & = & gu \rightarrow ug \,, & \#9 = ud \rightarrow ud \\ \#5 & = & u\bar{u} \rightarrow u\bar{u} \end{array}$$

 \Rightarrow 45 channels for the DPS; only 14 contribute to \geq 95% of the cross section :

Hard jets

We reproduce all the LO results (only SPS) for $p p \rightarrow n j ets$, n = 2, 3, 4 published in BlackHat collaboration, Phys.Rev.Lett. 109 (2012) 042001 S. Badger et al., Phys.Lett. B718 (2013) 965-978

Asymmetric cuts for hard central jets

$$\begin{split} p_T &\geq 80 \text{ GeV} \;, \quad \text{for leading jet} \\ p_T &\geq 60 \text{ GeV} \;, \quad \text{for non leading jets} \\ |\eta| &\leq 2.8 \;, \quad R = 0.4 \end{split}$$

PDFs set: MSTW2008LO@68cl

 $\sigma(\geq 2\,{\rm jets}) = 958^{+316}_{-221} \quad \sigma(\geq 3\,{\rm jets}) = 93.4^{+50.4}_{-30.3} \quad \sigma(\geq 4\,{\rm jets}) = 9.98^{+7.40}_{-3.95}$

Cuts are too hard to pin down DPS and/or benefit from HEF: 4-jet case

Collinear case
$$\begin{cases} 9.98^{+7.40}_{-3.95} & SPS \\ 0.094^{+0.06}_{-0.036} & DPS \end{cases} \quad \begin{array}{c} 10.0^{+6.9}_{-5.3} & SPS \\ 0.05^{+0.054}_{-0.029} & DPS \\ 0.05^{+0.054}_{-0.029} & DPS \end{cases}$$

Differential cross section

Most recent ATLAS paper on 4-jet production in proton-proton collision: ATLAS, JHEP 1512 (2015) 105

$$\begin{split} p_T &\geq 100 \, \text{GeV} \,, \quad \text{for leading jet} \\ p_T &\geq 64 \, \text{GeV} \,, \quad \text{for non leading jets} \\ |\eta| &\leq 2.8 \,, \quad R = 0.4 \end{split}$$

- All channels included and running α_s @ NLO
- Good agreement with data
- DPS effects are manifestly too small for such hard cuts: this could be expected.

Comparing collinear factorization and HEF

Collinear factorization performs slightly better for intermediate values and HEF does a better job for the last bins, except for the 4th jet.

DPS effects in collinear and HEF

For more formal approach to DPS \Rightarrow Gaunt's, Buffing's and Diehl's talks Inspired by Maciula, Szczurek, Phys.Lett. B749 (2015) 57-62 DPS effects are expected to become significant for lower p_T cuts, like the ones of the CMS collaboration, Phys.Rev. D89 (2014) no.9, 092010

 $p_T(1,2) \ge 50 \text{ GeV} \,, \quad p_T(3,4) \ge 20 \text{ GeV} \,, \quad |\eta| \le 4.7 \,, \quad R = 0.5$

 $\begin{aligned} & \text{CMS collaboration}: \qquad \sigma_{tot} = 330 \pm 5 \text{ (stat.)} \pm 45 \text{ (syst.)} \text{ } nb \\ & \text{LO collinear factorization}: \qquad \sigma_{SPS} = 697 \text{ } nb \text{ }, \quad \sigma_{DPS} = \textbf{125 nb} \text{ }, \quad \sigma_{tot} = 822 \text{ } nb \\ & \text{LO HEF } k_T \text{-factorization}: \qquad \sigma_{SPS} = 548 \text{ } nb \text{ }, \quad \sigma_{DPS} = \textbf{33 nb} \text{ }, \quad \sigma_{tot} = 581 \text{ } nb \end{aligned}$

In HE factorization DPS gets suppressed and does not dominate at low p_T

Counterintuitive result from well-tested perturbative framework \Rightarrow phase space effect ? (\Rightarrow see Colferai's talk)

Higher order corrections to 2-jet production

Figure: The transverse momentum distribution of the leading (long dashed line) and subleading (long dashed-dotted line) jet for the dijet production in HEF. NLO corrections to 2-jet production suffer from instability problem when using symmetric cuts: Frixione, Ridolfi, Nucl.Phys. B507 (1997) 315-333

Symmetric cuts rule out from integration final states in which the momentum imbalance due to the initial state non vanishing transverse momenta gives to one of the jets a lower transverse momentum than the threshold.

ATLAS data vs. theory (nb) @ LHC7 for 2,3,4 jets. Cuts are defined in Eur.Phys.J. C71 (2011) 1763; theoretical predictions from Phys.Rev.Lett. 109 (2012) 042001

#jets	ATLAS	LO	NLO
2	$620 \pm 1.3^{+110}_{-66} \pm 24$	$958(1)^{+316}_{-221}$	$1193(3)^{+130}_{-135}$
3	$43\pm0.13^{+12}_{-6.2}\pm1.7$	$93.4(0.1)^{+50.4}_{-30.3}$	$54.5(0.5)^{+2.2}_{-19.9}$
4	$4.3\pm0.04^{+1.4}_{-0.79}\pm0.24$	$9.98(0.01)^{+7.40}_{-3.95}$	$5.54(0.12)^{+0.08}_{-2.44}$

Reconciling HE and collinear factorisation: asymmetric p_T cuts

In order to open up wider region of soft final states and thereof expected that the DPS contribution increases

 $p_T(1) \ge 35 \text{GeV}, \quad p_T(2,3,4) \ge 20 \text{ GeV}, |\eta| < 4.7, \quad \Delta R > 0.5$

LO collinear factorization : $\sigma_{SPS} = 1969 \ nb$, $\sigma_{DPS} = 514 \ nb$, $\sigma_{tot} = 2309 \ nb$ LO HEF k_T -factorization : $\sigma_{SPS} = 1506 \ nb$, $\sigma_{DPS} = 297 \ nb$, $\sigma_{tot} = 1803 \ nb$

DPS dominance pushed to even lower p_T but restored in HE factorization as well

An interesting variable: do we see DPS ?

$$\Delta S = \arccos\left(\frac{\vec{p}_{\mathcal{T}}(j_1^{\text{hard}}, j_2^{\text{hard}}) \cdot \vec{p}_{\mathcal{T}}(j_1^{\text{soft}}, j_2^{\text{soft}})}{|\vec{p}_{\mathcal{T}}(j_1^{\text{hard}}, j_2^{\text{hard}})| \cdot |\vec{p}_{\mathcal{T}}(j_1^{\text{soft}}, j_2^{\text{soft}})|}\right) , \quad \vec{p}_{\mathcal{T}}(j_i, j_k) = p_{\mathcal{T},i} + p_{\mathcal{T},j}$$

We roughly describe the data via pQCD effects within our HEF approach which are (equally partially) described by parton-showers and soft MPIs by CMS. CMS collaboration Phys.Rev. D89 (2014) no.9, 092010

Pinning down double parton scattering: large rapidity separation

- It is interesting to look for kinematic variables which could make DPS apparent.
- The maximum rapidity separation in the four jet sample is one such variable, especially at 13 GeV.
- for $\Delta Y > 6$ the total cross section is dominated by DPS.

Pinning down double parton scattering: $\Delta \phi_3^{min}$ - azimuthal separation

• Definition: $\Delta \phi_3^{min} = min_{i,j,k[1,4]} \left(\left| \phi_i - \phi_j \right| + \left| \phi_j - \phi_k \right| \right), \quad i \neq j \neq k$

- Proposed by ATLAS in JHEP 12 105 (2015) for high p_T analysis
- High values favour configurations closer to back-to-back, i.e. DPS
- For $\Delta \phi_3^{min} \ge \pi/2$ the total cross section is dominated by DPS

Summary and perspectives

Summary and conclusions

- The problem of the recursive computation of tree-level amplitudes in kt-factorization was completely solved for any number of legs in massless QCD
- We have a complete framework for the evaluation of cross sections from amplitudes with off-shell quarks and TMDs via KMR procedure obtained from NLO collinear PDFs
- HE factorisation reproduces well ATLAS data @ 7 and 8 TeV for hard central inclusive 4-jet production. Essential agreement with collinear predictions.
- HE factorisation smears out the DPS contribution to the cross section for less central jet, pushing the DPS-dominance region to lower p_T , but asymmetric cuts are in order: initial state transverse momentum generates asymmetries in the p_T of final state jet pairs.
- It would be interesting to have an experimental analysis with cuts which are asymmetric and soft.
- We have proposed a set of observables which would help pinning down DPS more effectively
- Further insight into HE factorisation prediction will come with progress in NLO results and with the addition of final state paton showers. Work in progress...

Summary and perspectives

Just for the formalism: Weyl spinors

High energy limit \Rightarrow massless particles \Rightarrow Weyl basis for spinors.

If $p^2 = 0$, it can be cast in the Pauli matrices language,

$$p \cong p^{\mu} \sigma_{\mu} = \begin{pmatrix} p^0 - p^3 & -p^1 + i p^2 \\ -p^1 - i p^2 & p^0 + p^3 \end{pmatrix} = |p] \langle p|$$

$$\begin{aligned} |p] &= \begin{pmatrix} L(p) \\ \mathbf{0} \end{pmatrix} \qquad L(p) = \frac{1}{\sqrt{|p^0 + p^3|}} \begin{pmatrix} -p^1 + i p^2 \\ p^0 + p^3 \end{pmatrix} \\ |p\rangle &= \begin{pmatrix} \mathbf{0} \\ R(p) \end{pmatrix} \qquad R(p) = \frac{\sqrt{|p^0 + p^3|}}{p^0 + p^3} \begin{pmatrix} p^0 + p^3 \\ p^1 + i p^2 \end{pmatrix} \end{aligned}$$

and the charge-conjugated spinors

$$[p] = ((\mathcal{E}L(p))^T, \mathbf{0}) \qquad \langle p| = (\mathbf{0} (\mathcal{E}^T R(p))^T) \qquad \text{where} \quad \mathcal{E} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Summary and perspectives

Example: central-forward dijets production

Hybrid factorization, (Deak, Hautmann, Jung, Kutak, '09):

$$\sigma_{h_1,h_2 \to q\bar{q}} = \int d^2 k_{1\perp} dx_1 dx_2 \mathcal{F}(x_1,k_{1\perp},\mu) f(x_2,\mu) \hat{\sigma} (x_1,x_2,k_{1\perp},\mu)$$

Kutak, Sapeta, '12:

- Reasonable agreement with data
- No traditional parton showers: the Unintegrated PDF as a parton shower.
- Hybrid factorization formula for dijet production (fully differential) can be derived from Color-Glass-Condensate P. Kotko, K. Kutak, C. Marquet, E. Petreska, A. van Hameren, JHEP 1509 (2015) 106