

SIDIS cross sections: perturbative and non-perturbative aspects

Mariaelena Boglione

In collaboration with O. Gonzalez, S. Melis and A. Prokudin

UNIVERSITÀ DEGLI STUDI DI TORINO ALMA UNIVERSITAS TAURINENSIS

Drell - Yan processes

Calculating a cross section which describes a hadronic process over the whole q_T range is a highly non-trivial task

Let's consider Drell Yan processes (for historical reasons)

Fixed order calculations cannot describe correctly DY data at small q_τ: At Born Level the cross section is vanishing At order α_s the cross section is divergent...

Low energy data

$$\frac{d\sigma}{dP_T^2} \propto \frac{\alpha_{em}}{M^2} \sum_q f_{q/h_1}(x_1) \bar{f}_{q/h_2}(x_2) \frac{\exp(-P_T^2/\langle P_T^2 \rangle)}{\pi \langle P_T^2 \rangle} \qquad \qquad \langle P_T^2 \rangle = 2\langle k_\perp^2 \rangle$$

The M² dependence is described by the Gaussian model, and it is given by the interplay between the 1/M² Born cross section, DGLAP evolution and kinematics

$$\frac{d\sigma}{dP_T^2} \propto \frac{\alpha_{em}}{M^2} \sum_q f_{q/h_1}(x_1) \bar{f}_{q/h_2}(x_2) \frac{\exp(-P_T^2/\langle P_T^2 \rangle)}{\pi \langle P_T^2 \rangle}$$

Considering the same DY process at different energies:

Each data set is Gaussian but with a different width

Drell-Yan phenomenology

Does the q_{\tau} distribution behave like a Gaussian ?

Drell-Yan phenomenology

Resummation / TMD evolution

 $_{-}$ Fixed order calculations cannot describe correctly DY/SIDIS data at small q $_{_{-}}$

$$\frac{1}{\sigma_0}\frac{d\sigma}{dq_T^2} = \frac{2C_F}{2\pi q_T^2}\alpha_s \ln\left(\frac{M^2}{q_T^2} - \frac{3}{2}\right)$$

These divergencies are taken care of by TMD evolution/resummation

Resummation / TMD evolution

$$\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \int \frac{d^2 \boldsymbol{b}_T e^{i\boldsymbol{q}_T \cdot \boldsymbol{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j(x_1, x_2, b_T, Q) + Y(x_1, x_2, q_T, Q)$$

$$Y = \sigma^{\text{FO}} - \sigma^{\text{ASY}}$$

- The W term is designed to work well at moderate q_T, when q_T << Q, (but still q_T >> M, so that TMD-factorization and collinear-factorization can be simultaneously applied).
- The W term becomes unphysical at larger q_{τ} , when $q_{\tau} \ge Q$, where it becomes negative (and large).
- The Y term corrects for the misbehaviour of W as q_τ gets larger, providing a consistent (and positive) q_τ differential cross section.
- The Y term should provide an effective smooth transition to large q_{τ} , where fixed order perturbative calculations are expected to work.

Resummation / TMD evolution

Example: the CSS resummation scheme:

$$W_{j}(x_{1}, x_{2}, b_{T}, Q) = \exp \left[S_{j}(b_{T}, Q)\right] \sum_{i,k} C_{ji} \otimes f_{i}(x_{1}, C_{1}^{2}/b_{T}^{2}) C_{\overline{j}k} \otimes f_{k}(x_{2}, C_{1}^{2}/b_{T}^{2})$$

$$S_{j}(b_{T}, Q) = -\int_{C_{1}^{2}/b_{T}^{2}}^{Q^{2}} \frac{d\kappa^{2}}{\kappa^{2}} \left[A_{j}(\alpha_{s}(\kappa))\ln\left(\frac{Q^{2}}{\kappa^{2}}\right) + B_{j}(\alpha_{s}(\kappa))\right]$$
At large b_T the scale µ becomes too small!
$$\mu = \frac{C_{1}}{b_{T}}$$
Non trivially segmented to the physical particular project $Q^{2} \gg a^{2} \approx \Lambda^{2}$

Non-trivially connected to the physical region: $Q^2 \gg q_T^2 \simeq \Lambda_{QCD}^2$

All TMD evolution schemes require a model to deal with the non-perturbative region

Working in b_τ space makes phenomenological analyses more difficult, as we lose intuition and direct connection with "real world experience". (Experimental data are in q_τ space).

at small b_{τ} OPE works \rightarrow

Non perturbative region

This is a perturbative scheme. All the scales must be frozen when reaching the non perturbative region:

$$b_T \longrightarrow b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}} \qquad \mu = \frac{C_1}{b_T} \longrightarrow \mu_b = C_1/b_*$$

Then we define a non perturbative function for large b_{τ} :

$$\frac{W_j(x_1, x_2, b_T, Q)}{W_j(x_1, x_2, b_*, Q)} = F_{NP}(x_1, x_2, b_T, Q)$$

$$W_{j}(x_{1}, x_{2}, b_{T}, Q) = \sum_{i,k} \exp \left[S_{j}(b_{*}, Q)\right] \left[C_{ji} \otimes f_{i}\left(x_{1}, \mu_{b}\right)\right] \left[C_{\bar{j}k} \otimes f_{k}\left(x_{2}, \mu_{b}\right)\right] F_{NP}(x_{1}, x_{2}, b_{T}, Q)$$

$$b_{*}, \mu_{b} \qquad b_{T}$$

$$C_{1} = 2 \exp(-\gamma_{E}) \qquad Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)$$

- For this scheme to work, 4 distinct kinematic regions have to be identified
- They should be large enough and well separated

CSS for DY processes

To perform phenomenological studies we need a non perturbative function.

 $F_{NP}(x_1, x_2, b_T, Q)$

Davies-Webber-Stirling (DWS)

$$\exp\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right)\right] b^2;$$

Ladinsky-Yuan (LY)
$$\exp\left\{\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right)\right]b^2 - [g_1g_3 \ln(100x_1x_2)]b\right\};$$

Brock-Landry-
Nadolsky-Yuan (BLNY)
$$\exp\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right) - g_1 g_3 \ln(100x_1x_2)\right]b^2$$

Nadolsky et al., Phys.Rev. D67,073016 (2003)

CSS for DY processes

 $b_{max} = 0.5 \text{ GeV}^{-1}$

*Nadolsky et al., Phys.Rev. D67,073016 (2003)

SIDIS processes

Resummation in SIDIS

As mentioned above

 \star fixed order pQCD calculation fail to describe the SIDIS cross sections at small $q_{\tau_{r}}$ the cross section tail at large q_{τ} is clearly non-Gaussian.

P_T (GeV/c) Anselmino, Boglione, Prokudin, Turk, Eur.Phys.J. A31 (2007) 373-381

ZEUS Collaboration (M. Derrick), Z. Phys. C 70, 1 (1996)

Anselmino, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005 COMPASS, Adolph et al., Eur. Phys. J. C 73 (2013) 2531

Need resummation of large logs and matching perturbative to non-perturbative contributions

Simple <u>phenomenological</u> ansatz can reproduce low q₊ data

$$F_{UU} = \sum_{q} e_q^2 f_{q/p}(x_B) D_{h/q}(z_h) \frac{e^{-P_T^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}$$

Anselmino et al. JHEP 1404 (2014) 005

$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle$$

$$\begin{split} \langle k_{\perp}^2 \rangle &= 0.60 \pm 0.14 \; \mathrm{GeV^2} \\ \langle p_{\perp}^2 \rangle &= 0.20 \pm 0.02 \; \mathrm{GeV^2} \\ \chi^2_{\mathrm{dof}} &= 3.42 \end{split}$$

Fit over 6000 data points with 2 free parameters !

$$N_y = A + B y$$

"The point-to-point systematic uncertainty in the measured multiplicities as a function of p_T^2 is estimated to be 5% of the measured value. The systematic uncertainty in the overall normalization of the p_T^2 -integrated multiplicities depends on *z* and *y* and can be as large as 40%".

Erratum Eur.Phys.J. C75 (2015) 2, 94

Q² dependence of HERMES data...

Resummation of large logarithms

To ensure momentum conservation, write the cross section in the Fourier conjugate space

$$\delta^{2}(\boldsymbol{q}_{T} - \boldsymbol{k}_{1T} - \boldsymbol{k}_{2T} - \dots - \boldsymbol{k}_{nT} + \dots) = \int \frac{d^{2}\boldsymbol{b}_{T}}{(2\pi)^{2}} e^{-i\boldsymbol{b}_{T} \cdot (\boldsymbol{q}_{T} - \boldsymbol{k}_{1T} - \boldsymbol{k}_{2T} - \dots - \boldsymbol{k}_{nT} + \dots)}$$

$$\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \left[\int \frac{d^2 \boldsymbol{b}_T e^{i\boldsymbol{q}_T \cdot \boldsymbol{b}_T}}{(2\pi)^2} X_{div}(b_T) \right] + Y_{reg}(q_T)$$

 $X_{div}(b_T) \longrightarrow W(b_T) = \exp[S(b_T)] \times (PDFs \text{ and Hard coefficients})$

- For this scheme to work, 4 distinct kinematic regions have to be identified
- They should be large enough and well separated

TMD regions

Other issues related to TMD regions ...

TMD regions are defined in terms of q_{τ} and not in terms of P_{τ}

SIDIS - Y factor

- **The Y factor is very large (even at low q_{\tau})**
- However, it could be affected by large theoretical uncertainties

Boglione, Gonzalez, Melis, Prokudin, JHEP 02 (2015) 095

The Y factor cannot be neglected !!!

Bacchetta et al., yesterday talk

New prescription for Y factor, b* and W

Collins, Gamberg, Prokudin, Rogers, Sato, Wang, arXiv:1605.00671

$$\sigma^{ASY} = Q^2/q_{\tau}^2 [A Ln(Q^2/q_{\tau}^2) + B + C]$$

Fit of HERMES and COMPASS data Attempting "Resummation" in SIDIS ...

This fit gives a very high quality description of a wide amount of data points

However, there are a few issues that are worth mentioning:

★ The NLL SIDIS cross section is not correctly normalized \rightarrow N ~ 2

The Y factor has been neglected

★ More work required to include Drell-Yan data into the fit

New prescriptions for Y, b* and W

Collins, Gamberg, Prokudin, Rogers, Sato, Wang, arXiv:1605.00671

Ted Rogers talk

 $Y(q_{\mathbf{T}}, Q) \equiv \{ FO(q_{\mathbf{T}}, Q) - AY(q_{\mathbf{T}}, Q) \} X(q_{\mathbf{T}}/\lambda).$

 $FO(q_T, Q) \equiv T_{coll}\Gamma(q_T, Q)$ $AY(q_T, Q) \equiv T_{coll}T_{TMD}\Gamma(q_T, Q)$ $X(q_{\rm T}/\lambda) = 1 - \exp\left\{-(q_{\rm T}/\lambda)^{a_X}\right\}$ is a cut off function which vanishes at small $q_{\rm T}$

 $b_*(b_c(b_{\rm T})) \longrightarrow \begin{cases} b_{\rm min} & b_{\rm T} \ll b_{\rm min} \\ b_{\rm T} & b_{\rm min} \ll b_{\rm T} \ll b_{\rm max} \\ b_{\rm max} & b_{\rm T} \gg b_{\rm max} . \end{cases}$

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2Q^2b_{\rm max}^2)}}$$
$$b_{\rm min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5Q}\sqrt{\frac{1}{1 + b_0^2/(C_5^2Q^2b_{\rm max}^2)}}$$

$$W_{\text{New}}(q_{\text{T}}, Q; \eta, C_5) \equiv \Xi\left(\frac{q_{\text{T}}}{Q}, \eta\right) \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\text{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\text{T}}\cdot\boldsymbol{b}_{\text{T}}} \tilde{W}(b_c(b_{\text{T}}), Q)$$

 $\Xi\left(\frac{q_{\rm T}}{Q},\eta\right) = \exp\left[-\left(\frac{q_T}{\eta Q}\right)^{a_{\Xi}}\right] \quad \text{is a cut off function which} \\ \text{vanishes at large } \mathsf{q}_{_{\mathsf{T}}}$

New prescriptions for Y, b* and W

Collins, Gamberg, Prokudin, Rogers, Sato, Wang, arXiv:1605.00671 Ted Rogers talk

 $X(q_{\rm T}/\lambda) = 1 - \exp\left\{-(q_{\rm T}/\lambda)^{a_X}\right\}$

is a cut off function which vanishes at small q_{\perp}

Cutoff Functions 1.2 Q = 20.0 GeV1.0 0.8 0.6 $X(q_T)$ $\Xi(q_T/Q)$ 0.4 0.2 q⊤(GeV) 0 5 10 15 20 (b) is a cut off function which vanishes at large q_{τ} $\Xi\left(\frac{q_{\mathrm{T}}}{O},\eta\right) = \exp\left[-\left(\frac{q_{T}}{\eta O}\right)\right]$

With this prescriptions, the Y term goes to zero at small q_{τ} and approaches the FO cross section at large q_{τ}

Possible issues

With the new prescription the Y factor is "tamed" However this comes at a price …

The TMD scheme is now exceedingly flexible

- → Large number of unknown functions
- → Large number of free parameters
- → Hard to find the true minimum of the fit
- Computing time

Difficult to keep balance between simplicity of parameterization and full consistency of the TMD scheme

- Phenomenological studies of TMD factorization and evolution have come a long way. Many aspects of the interplay between perturbative and non-perturbative contributions are now better understood.
- Some issues remain open and need further investigation, especially as far as phenomenology is concerned:
 - \star Difficult to work in b_r space where we loose phenomenological intuition
 - F.T. involves integration of an oscillating function over b_T up to infinity:
 upon integration one loses track of what was small b_T and what was large b_T.
 ...
- \mathbf{P}_{τ} distributions of SIDIS cross sections over the full \mathbf{P}_{τ} range will have to be further investigated.
- Simultaneous fits of SIDIS, Drell-Yan and e+e- annihilation data are highly recommended, but they should be performed within a consistent and solid framework where they can be implemented.
- Data selection is crucial in global fitting:
 - not too many (only data within the ranges where the TMD evolution schemes work should be considered)
 - not too few (too strict a selection can bias the fit results and neglect important information from experimental data)

Theoretical uncertainties and dependence on the C₁, C₂, C₃ parameters in the CSS formalism in Drell-Yan and SIDIS

Theoretical uncertainties in pQCD

Perturbative, fixed order, calculations are affected by theoretical uncertainties due, for instance, to the choice of the factorization scale. The cross section depends on logs like:

$$\ln(Q/\mu_F)$$

To "optimize" the expansion the factorization scale is set to be equal to the hard scale

$$\ln(Q/\mu_F) \longrightarrow \mu_F = Q$$

The theoretical error is built changing the value of the factorization scale.
Usually:

$$Q/2 < \mu_F < 2Q$$

Theoretical uncertainties in resummation

Similarly, in resummation several scales appear.
For instance, using the standard CSS nomenclature we have:

$$C_1/b_T$$
 C_2Q C_3/b_T

Studying the theoretical uncertainties in resummation is important, as it gives us a measure of how much we know of the perturbative part of the cross section and, correspondingly, how much we have to model.

This is particularly important for low energy SIDIS data that, contrary to Drell-Yan data, are difficult to describe with resummation.

Cross section with scales in the CSS formalism

Drell-Yan cross section

Evaluation of the theoretical errors

Our choice:

we change the value of C_1 , C_2 , C_3 at fixed values of the parameters in the ranges

 $b_0/2 < C_1 < 2 \, b_0$ $1/2 < C_2 < 2$ $b_0/2 < C_3 < 2 \, b_0$

NLL BLNY parametrization, b_{max}=0.5 GeV⁻¹

$$F_{NP}^{BLNY} = \exp\left\{ \begin{bmatrix} -\frac{g_1}{2} - g_2 \ln(Q/(2Q_{0L})) - g_1 g_3 \ln(10x) \end{bmatrix} b_T^2 \right\}$$
$$g_1 = 0.21 \,\text{GeV}^2 \qquad g_2 = 0.68 \,\text{GeV}^2 \qquad g_3 = -0.6$$

NLL BLNY parametrization, b_{max}=0.5 GeV⁻¹

HERMES BLNY ($b_{max} = 0.5 \text{ GeV}^1$)

We explore the correlation between the scales. Warning: the band is an envelope of all possible curves in that range. Errors are overestimated

High energy processes are affected by reasonable theoretical errors.

- Low energy processes are instead affected by large uncertainties. Different choices of the scale would give very different sets of parameters.
- It is possible that a NNLL calculation could help to shrink the bands.
- For low energy SIDIS experiments (HERMES/COMPASS) the Y factor is large... but in principle it could be affected by the same uncertainties which affect the resummed cross section.
- Is a simultaneous fit of Drell_Yan and SIDIS data possible within this picture ?