Factorization and Resummation for Massive Quark Effects in Exclusive Drell-Yan

Daniel Samitz
(University of Vienna)

in collaboration with Piotr Pietrulewicz, Anne Spiering and Frank J. Tackmann

QCD Evolution 2016, Amsterdam
May 31st, 2016

Outline

(1) Motivation
(2) Massless Factorization
(3) Factorization with Massive Quarks
(4) Resummation with Massive Quarks
(5) Outlook and Conclusions

Outline

(1) Motivation

(2) Massless Factorization

(3) Factorization with Massive Quarks
(4) Resummation with Massive Quarks
(5) Outlook and Conclusions

Motivation

- m_{b}-effects frequently relevant at the LHC (e.g. Higgs production)
- systematic treatment for many inclusive processes available
- often missing for exclusive processes
- here: quark mass effects in p_{T}-spectrum for Drell-Yan +0 jets (i.e. small p_{T})

Drell-Yan at small p_{T}

- Drell-Yan + 0 Jets different jet vetoes, here: $p_{T} \equiv\left|\vec{p}_{T}^{\bar{\ell}}\right| \ll Q$
- p_{T} spectrum of Z-boson measured with high precision
- NNLL' analyses available, ingredients for $\mathrm{N}^{3} \mathrm{LL}$ known
- no systematic theoretical description of b-quark mass effects yet

from: [Stewart, Tackmann, Waalewijn (2010)]
- discrepancies between MC and experiment in low p_{T} region
our project: systematic treatment of quark mass effects at NNLL' accuracy for transverse momentum spectrum using EFTs (also for beam thrust)

Drell-Yan at small p_{T}

- Drell-Yan + 0 Jets different jet vetoes, here: $p_{T} \equiv\left|\vec{p}_{T}^{\bar{\ell}}\right| \ll Q$
- p_{T} spectrum of Z-boson measured with high precision
- NNLL' analyses available, ingredients for $\mathrm{N}^{3} \mathrm{LL}$ known
- no systematic theoretical description of b-quark mass effects yet
- discrepancies between MC and experiment in low p_{T} region

[ATLAS Collaboration (2014)]
our project: systematic treatment of quark mass effects at NNLL' accuracy for transverse momentum spectrum using EFTs (also for beam thrust)

Drell-Yan at small p_{T}

- Drell-Yan + 0 Jets different jet vetoes, here: $p_{T} \equiv\left|\vec{p}_{T}^{\vec{e}}\right| \ll Q$

- p_{T} spectrum of Z-boson measured with high precision
- NNLL' analyses available, ingredients for $\mathrm{N}^{3} \mathrm{LL}$ known
- no systematic theoretical description of b-quark mass effects yet
- discrepancies between MC and
[ATLAS Collaboration (2015)] experiment in low p_{T} region
our project: systematic treatment of quark mass effects at NNLL' accuracy for transverse momentum spectrum using EFTs (also for beam thrust)

Outline

(1) Motivation

(2) Massless Factorization

(3) Factorization with Massive Quarks
(4) Resummation with Massive Quarks
(5) Outlook and Conclusions

Massless Factorization

[Collins, Soper, Sterman (1985); Bozzi, Catani, de Florian, Grazzini (2001), Becher, Neubert, Wilhelm (2011);
Echevarria, Idilbi, Scimemi (2011); Chiu, Jain, Neill, Rothstein (2012); ...]

- involved scales
- hard process

$$
\begin{aligned}
& \mu \sim Q \\
& \mu \sim p_{T} \\
& \mu \sim p_{T}
\end{aligned}
$$

- collinear ISR
- soft ISR
- non pert. collinear proton $\mu \sim \Lambda_{\mathrm{QCD}}$

- large hierarchies: $Q \gg p_{T} \gg \Lambda_{\mathrm{QCD}}$
large logarithms: $\log \left(Q^{2} / p_{T}^{2}\right), \log \left(p_{T}^{2} / \Lambda_{Q C D}^{2}\right)$
- we use methods of SCET to derive Factorization theorem

Massless Factorization

hard $\mu \sim Q$:
hard function $H^{\left(n_{l}\right)}(Q)$

TMD/beam function

$$
B_{i}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right) \otimes f_{k}^{\left(n_{l}\right)}(x)
$$

soft

$$
\mu \sim p_{T}:
$$

soft function $S^{\left(n_{l}\right)}\left(\vec{p}_{T}\right)$
rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Massless Factorization

hard $\mu \sim Q$:
hard function $H^{\left(n_{l}\right)}(Q)$
matching between QCD and SCET current

$$
\begin{aligned}
& \left(J_{\mathrm{QCD}}^{\mu}\right)^{\left(n_{l}\right)}=C(Q) \times\left(J_{\mathrm{SCET}}^{\mu}\right)^{\left(n_{l}\right)} \\
& H(Q)=|C(Q)|^{2} \\
& J_{\mathrm{QCD}}^{\mu}=\bar{\psi} \Gamma^{\mu} \psi \\
& J_{\mathrm{SCET}}^{\mu}=\bar{\chi}_{\bar{n}} \Gamma^{\mu} \chi_{n}
\end{aligned}
$$

rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Massless Factorization

hard $\mu \sim Q$:
hard function $H^{\left(n_{l}\right)}(Q)$

TMD/beam function

$$
B_{i}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right) \otimes f_{k}^{\left(n_{l}\right)}(x)
$$

soft

$$
\mu \sim p_{T}:
$$

soft function $S^{\left(n_{l}\right)}\left(\vec{p}_{T}\right)$
rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Massless Factorization

hard $\mu \sim Q$:
hard function $H^{\left(n_{l}\right)}(Q)$

TMD/beam function

$$
B_{i}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right) \otimes f_{k}^{\left(n_{l}\right)}(x)
$$

$$
\begin{aligned}
& B_{q}\left(\vec{p}_{T}, x\right)=\theta(x)\langle P| \bar{\chi}_{n}(0) \frac{\not \hbar}{2}\left[\delta\left(p^{-} x-\mathcal{P}^{-}\right) \delta^{(2)}\left(\vec{p}_{T}-\overrightarrow{\mathcal{P}}_{T}\right) \chi_{n}(0)\right]|P\rangle \\
& f_{q}(x)=\theta(x)\langle P| \bar{\chi}_{n}(0) \frac{\not \hbar}{2}\left[\delta\left(p^{-} x-\mathcal{P}^{-}\right) \chi_{n}(0)\right]|P\rangle
\end{aligned}
$$

rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Massless Factorization

hard $\mu \sim Q$:
hard function $H^{\left(n_{l}\right)}(Q)$

TMD/beam function

$$
B_{i}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right) \otimes f_{k}^{\left(n_{l}\right)}(x)
$$

soft

$$
\mu \sim p_{T}:
$$

soft function $S^{\left(n_{l}\right)}\left(\vec{p}_{T}\right)$
rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Massless Factorization

$$
\text { (non-pert. modes (PDF) not shown) } \left.S\left(\vec{p}_{T}\right)=\frac{1}{N_{C}} \operatorname{tr}\langle 0| \overline{\mathrm{T}}\left[S_{n}^{\dagger}(0) S_{\bar{n}}(0)\right]\right] \delta^{(2)}\left(\vec{p}_{T}-\overrightarrow{\mathcal{P}}_{T}\right) \mathrm{T}\left[S_{n}^{\dagger}(0) S_{n}(0)\right]|0\rangle
$$

rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Massless Factorization

hard $\mu \sim Q$:
hard function $H^{\left(n_{l}\right)}(Q)$

TMD/beam function

$$
B_{i}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}^{\left(n_{l}\right)}\left(\vec{p}_{T}, x\right) \otimes f_{k}^{\left(n_{l}\right)}(x)
$$

soft

$$
\mu \sim p_{T}:
$$

soft function $S^{\left(n_{l}\right)}\left(\vec{p}_{T}\right)$
rapidity divergences cancel between soft and beam functions/TMDs.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}}{Q}\right)
$$

Outline

(1) Motivation

(2) Massless Factorization

(3) Factorization with Massive Quarks

Massive Quarks

- massive quarks introduce a new scale into the calculation that leads to new logarithms: $\log \left(\mu_{m}^{2} / \mu_{i}^{2}\right)$
- to resum those logs we set up a VFNS
[Aivazis, Collins, Olness, Tung (1994)]
- massive particles contribute at scales above the mass, are integrated out for scales below the mass
- VFNS for all components: H, B, S

```
e+}\mp@subsup{e}{}{-}->2\mathrm{ jets: [Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz (2014)]
DIS at large x: [Hoang, Pietrulewicz, D.S. (2016)]
```

- mass dependent matching factors calculated perturbatively

Massive Quarks

primary and secondary massive quarks.

- start at $\mathcal{O}\left(\alpha_{s}^{2}\right)$, relevant for NNLL' resummation
- rapidity logarithms due to (secondary) massive quarks
- secondary massive quarks can contribute to all components: H, B_{q}, S, change structure of rapidity divergences
- heavy flavor TMDs/PDFs for primary massive quarks for $m \lesssim p_{T}$: $B_{Q}\left(f_{Q}\right)$

Massive Quarks

primary and secondary massive quarks.

- introduce new mass-modes: fluctuations around the the mass shell
- integrate out mass-modes at their natural scale $\mu \sim m$
\Rightarrow additional mass dependent structures in the factorization theorem
- different hierarchies between the mass and the other scales possible
- first assume large hierarchies to derive factorization theorem
- include power corrections between the different theories if necessary

$m \sim Q$

$$
\begin{aligned}
& \text {-MM } \mu \sim Q \sim m: \\
& \left(J_{\mathrm{QCD}}^{\mu}\right)^{\left(n_{l}+1\right)}=C(Q, m) \times\left(J_{\mathrm{SCET}}^{\mu}\right)^{\left(n_{l}\right)}
\end{aligned}
$$

hard function with contributions from primary and secondary massive quarks

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}(m) \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{p_{T}^{2}}{m^{2}}\right)
$$

$Q \gg m \gg p_{T}$

hard $\quad \mu \sim Q$:

$\left(J_{\mathrm{SCET}}^{\mu}\right)^{\left(n_{l}+1\right)}=C_{n}(m) \times C_{\bar{n}}(m) \times C_{s}(m) \times\left(J_{\mathrm{SCE}}^{\mu}\right)^{n}\left(n_{l}\right)$

$$
H_{i}(m)=\left|C_{i}(m)\right|^{2}
$$

[Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz (2014)]
[Hoang, Pietrulewicz, D.S. (2016)]

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times H_{n}(m) \times H_{\bar{n}}(m) \times H_{s}(m) \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{p_{T}^{2}}{m^{2}}\right)
$$

$Q \gg m \gg p_{T}$

$$
\left(J_{\mathrm{SCE}}^{\mu}\right)^{\left(n_{l}+1\right)}=\mathrm{C}_{n}(m) \times \mathrm{C}_{n}(m) \times \mathrm{C}_{s}(m) \times\left(J_{\mathrm{SCET}}^{\mu}\right)\left(n_{l}\right)
$$

$$
H_{i}(m)=\left|C_{i}(m)\right|^{2}
$$

[Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz (2014)]
[Hoang, Pietrulewicz, D.S. (2016)]

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times H_{n}(m) \times H_{\bar{n}}(m) \times H_{s}(m) \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{p_{T}^{2}}{m^{2}}\right)
$$

$Q \gg m \gg p_{T}$

hard $\quad \mu \sim Q$:

$\left(J_{\mathrm{SCET}}^{\mu}\right)^{\left(n_{l}+1\right)}=C_{n}(m) \times C_{\bar{n}}(m) \times C_{s}(m) \times\left(J_{\mathrm{SCE}}^{\mu}\right)^{n}\left(n_{l}\right)$

$$
H_{i}(m)=\left|C_{i}(m)\right|^{2}
$$

[Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz (2014)]
[Hoang, Pietrulewicz, D.S. (2016)]

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times H_{n}(m) \times H_{\bar{n}}(m) \times H_{s}(m) \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}\right)}+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{p_{T}^{2}}{m^{2}}\right)
$$

$m \sim p_{T}$

(non-pert. modes (PDF) not shown)

$B_{i}^{\left(n_{l}+1\right)}\left(\vec{p}_{T}, x, m\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}\left(\vec{p}_{T}, x, m\right) \otimes f_{k}^{\left(n_{l}\right)}(x)$
$i \in\{q, Q\}$
one-loop primary massive: $\quad \mathcal{I}_{Q g}\left(\vec{p}_{T}, x, m\right)$ new two-loop secondary massive: $\mathcal{I}_{q q}\left(\vec{p}_{T}, x, m\right)$ new

two-loop secondary massive

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

$m \sim p_{T}$


```
\(n-\mathrm{MM} \quad \mu \sim p_{T} \sim m:\)
\[
B_{i}^{\left(n_{l}+1\right)}\left(\vec{p}_{T}, x, m\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}\left(\vec{p}_{T}, x, m\right) \otimes f_{k}^{\left(n_{l}\right)}(x)
\]
\[
i \in\{q, Q\}
\]
```

one-loop primary massive: $\quad \mathcal{I}_{Q g}\left(\vec{p}_{T}, x, m\right)$ new two-loop secondary massive: $\mathcal{I}_{q q}\left(\vec{p}_{T}, x, m\right)$ new

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

$m \sim p_{T}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

$m \sim p_{T}$

(non-pert. modes (PDF) not shown)

$B_{i}^{\left(n_{l}+1\right)}\left(\vec{p}_{T}, x, m\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}\left(\vec{p}_{T}, x, m\right) \otimes f_{k}^{\left(n_{l}\right)}(x)$
$i \in\{q, Q\}$
one-loop primary massive: $\quad \mathcal{I}_{Q g}\left(\vec{p}_{T}, x, m\right)$ new two-loop secondary massive: $\mathcal{I}_{q q}\left(\vec{p}_{T}, x, m\right)$ new

two-loop secondary massive

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

$m \sim p_{T}$

(non-pert. modes (PDF) not shown)

two-loop secondary massive

new

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

$m \sim p_{T}$

(non-pert. modes (PDF) not shown)

$B_{i}^{\left(n_{l}+1\right)}\left(\vec{p}_{T}, x, m\right)=\sum_{k \in\{q, g\}} \mathcal{I}_{i k}\left(\vec{p}_{T}, x, m\right) \otimes f_{k}^{\left(n_{l}\right)}(x)$
$i \in\{q, Q\}$
one-loop primary massive: $\quad \mathcal{I}_{Q g}\left(\vec{p}_{T}, x, m\right)$ new two-loop secondary massive: $\mathcal{I}_{q q}\left(\vec{p}_{T}, x, m\right)$ new

two-loop secondary massive

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

$m \ll p_{T}$

n-coll. $\mu \sim p_{T}$:

$$
B_{i}^{\left(n_{l}+1\right)}\left(\vec{p}_{T}, x\right)=\sum_{k \in\{q, Q, g\}} \mathcal{I}_{i k}^{\left(n_{l}+1\right)}\left(\vec{p}_{T}, x\right) \otimes f_{k}^{\left(n_{l}+1\right)}(x)
$$

beam function with ($n_{l}+1$) massless flavors

```
soft }\mu~\mp@subsup{p}{T}{}\mathrm{ :
S (\mp@subsup{n}{l}{}+1)}(\mp@subsup{\vec{p}}{T}{}
```

soft function with $\left(n_{l}+1\right)$ massless flavors

```
\(n-\mathrm{MM} \quad \mu \sim m\) :
\(f_{i}^{\left(n_{l}+1\right)}(x, m)=\sum_{k \in\{q, g\}} \mathcal{M}_{i k}(x, m) \otimes f_{k}^{\left(n_{l}\right)}(x)\)
```

$i \in\{q, Q\}$
one-loop primary massive: $\quad \mathcal{M}_{Q g}(x, m)$
two-loop secondary massive: $\mathcal{M}_{q q}(x, m)$
[Buza, Matiounine, Smith, van Neerven (1998)]

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{m, k} \mathcal{I}_{i m}^{\left(n_{l}+1\right)} \otimes \mathcal{M}_{m k}(m) \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}+\mathcal{O}\left(\frac{m^{2}}{p_{T}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m^{2}}\right)
$$

Summary of all Modes

Summary of all Modes

Relations between Hierarchies

components for the different hierarchies are related.
e.g. beam function matching coefficients:

$$
\begin{aligned}
& \mathcal{I}_{i k}(m)=\mathcal{I}_{i k}^{\left(n_{l}\right)} \times H_{n}(m) \times\left[1+\mathcal{O}\left(\frac{p_{T}^{2}}{m^{2}}\right)\right] \\
& \mathcal{I}_{i k}(m)=\sum_{j \in\{q, Q, g\}} \mathcal{I}_{i j}^{\left(n_{l}+1\right)} \otimes \mathcal{M}_{j k}(m) \times\left[1+\mathcal{O}\left(\frac{m^{2}}{p_{T}^{2}}\right)\right]
\end{aligned}
$$

can be used to systematically include all power corrections between the different theories.
\Rightarrow GM-VFNS

GM-VFNS for $m \lesssim p_{T}$:

Relations between ingredients:

$$
\mathcal{I}_{i k}(m)=\sum_{j} \mathcal{I}_{i j}^{\left(n_{l}+1\right)} \otimes \mathcal{M}_{j k}(m)\left[1+\mathcal{O}\left(\frac{m^{2}}{p_{T}^{2}}\right)\right], \quad S^{\left(n_{l}+1\right)}(m)=S^{\left(n_{l}+1\right)}\left[1+\mathcal{O}\left(\frac{m^{2}}{p_{T}^{2}}\right)\right]
$$

checked explicitly at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ with known massless results
[Gehrmann, Luebbert, Yang (2012); Luebbert, Oredsson, Stahlhofen (2016)]
define:

$$
\mathcal{I}_{i k}^{\left(n_{l}+1\right)}(m)=\sum_{j} \mathcal{I}_{i j}^{\left(n_{l}+1\right)} \otimes \mathcal{M}_{j k}(m)+\left(\mathcal{I}_{i k}(m)-\left.\sum_{j} \mathcal{I}_{i j}^{\left(n_{l}+1\right)} \otimes \mathcal{M}_{j k}(m)\right|_{\mathrm{FO}}\right)
$$

Factorization theorem for $m \lesssim p_{T}$:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{T}^{2}} \sim \sum_{i, j} H_{i j}^{\left(n_{l}+1\right)} \times\left[\sum_{k} \mathcal{I}_{i k}^{\left(n_{l}+1\right)} \otimes f_{k}^{\left(n_{l}\right)}\right]^{2} \otimes S^{\left(n_{l}+1\right)}(m)
$$

\Rightarrow resums $\ln \left(m^{2} / p_{T}^{2}\right) \&$ includes all power corrections of $\mathcal{O}\left(m^{2} / p_{T}^{2}\right)$

Outline

(1) Motivation

(2) Massless Factorization

(3) Factorization with Massive Quarks
(4) Resummation with Massive Quarks

(5) Outlook and Conclusions

Resummation of Logs from Massive Quarks

- logs of the form $\ln \frac{\mu_{m}}{\mu_{i}}$ with $i=H, B, S$ are resummed in the evolution of the matching factors
- e.g. hard function for $\mu_{H} \gg \mu_{m} \gg \mu_{B}, \mu<\mu_{m}$:

$$
\begin{aligned}
& U_{H}^{n_{l}+1}\left(\mu_{H}, \mu\right) \times \underbrace{U_{H_{n}}\left(\mu_{m}, \mu\right) \times U_{H_{\bar{n}}}\left(\mu_{m}, \mu\right) \times U_{H_{S}}\left(\mu_{m}, \mu\right)}_{U_{H}^{n_{l}}\left(\mu_{m}, \mu\right) \times\left(U_{H}^{n_{l}+1}\left(\mu_{m}, \mu\right)\right)^{-1}} \\
= & U_{H}^{n_{l}+1}\left(\mu_{H}, \mu_{m}\right) \times U_{H}^{n_{l}}\left(\mu_{m}, \mu\right)
\end{aligned}
$$

additional flavor in the running above μ_{m} resums $\ln \frac{\mu_{m}}{\mu_{H}}$.

- secondary massive quarks introduce new rapidity logarithms
- rapidity logarithms resummed via rapidity RGE
[Chiu, Jain, Neill, Rothstein (2012)]
- e.g. hard matching functions $H_{i}, i=n, \bar{n}, s$:

$$
H_{i}(m, \nu)=V_{H_{i}}\left(\nu, \nu_{i}\right) \times H_{i}\left(m, \nu_{i}\right)
$$

[Hoang, Pathak, Pietrulewicz, Stewart (2015)]

Resummation for $m \lesssim p_{T}$

- μ-evolution with $n_{l}=4$ quark flavors below the mass scale
- μ-evolution with $n_{l}+1=5$ quark flavors above the mass scale

Resummation for $m \lesssim p_{T}$

$$
\Lambda_{\mathrm{QCD}} \ll m \sim p_{T} \ll Q:
$$

- μ-evolution with $n_{l}=4$ quark flavors below the mass scale
- μ-evolution with $n_{l}+1=5$ quark flavors above the mass scale
- ν-evolution affected by quark mass for $p_{T} \sim m$ (due to secondary effects)

Resummation of Rapidity Logarithms

- solution of rapidity RGE straight forward for local matching functions.
- large logarithms of μ in rapidity anomalous dimension γ_{ν} for TMD and soft function
- can be resummed in impact parameter space $\left(\overrightarrow{p_{T}} \leftrightarrow \vec{b}\right)$

$$
\tilde{\gamma}_{\nu}(b, m, \mu)=\int_{\ln \mu_{0}}^{\ln \mu} \mathrm{d} \ln \mu^{\prime} \frac{\mathrm{d} \tilde{\gamma}_{\mu}\left(b, \mu^{\prime}, \nu\right)}{\mathrm{d} \ln \nu}+\tilde{\gamma}_{\nu}^{\mathrm{FO}}\left(b, m, \mu_{0}\right)
$$

- choose μ_{0} such that logs in $\tilde{\gamma}_{\nu}^{\mathrm{FO}}$ are minimized.

Resummation of γ_{ν}

one-loop soft function with massive gauge boson:

$$
\begin{array}{ll}
\text { massless: } \tilde{\gamma}_{\nu}^{\mathrm{FO}}\left(b, \mu_{0}\right)=-\frac{\alpha_{s}\left(\mu_{0}\right) C_{F}}{2 \pi^{3}} \ln \left(\frac{b^{2} \mu_{0}^{2} \mathrm{e}^{2 \gamma_{E}}}{4}\right) & \Rightarrow \mu_{0} \sim \frac{2 \mathrm{e}^{-\gamma_{E}}}{b} \\
\text { massive: } \tilde{\gamma}_{\nu}^{\mathrm{FO}}\left(b, M, \mu_{0}\right)=\frac{\alpha_{s}\left(\mu_{0}\right) C_{F}}{2 \pi^{3}}\left(\ln \frac{M^{2}}{\mu_{0}^{2}}+2 K_{0}(b M)\right) & \Rightarrow \mu_{0} \sim M \mathrm{e}^{K_{0}(b M)}
\end{array}
$$

$$
\begin{aligned}
\mu_{0}(M, b \rightarrow 0) & \rightarrow \frac{2 \mathrm{e}^{-\gamma_{E}}}{b} \\
\mu_{0}(M, b \rightarrow \infty) & \rightarrow M
\end{aligned}
$$

mass introduces IR cutoff no Landau pole for $b \rightarrow \infty$
similar behavior for effects of secondary massive quarks.
correct scheme choice for α_{s} required in the two limits $b \rightarrow 0, b \rightarrow \infty$.

Outline

(1) Motivation

(2) Massless Factorization

(3) Factorization with Massive Quarks
(4) Resummation with Massive Quarks
(5) Outlook and Conclusions

Outlook and Conclusions

Conclusions:

- included massive quarks into the factorization theorem for small p_{T} region of the spectrum for Drell-Yan +0 jets
- resummation of all mass related logarithms at NNLL' accuracy (one and two loop matrix elements with massive quarks)
- same also for beam thrust

Outlook:

- phenomenological analysis of m_{b} effects in p_{T}-spectrum
- application to other processes, e.g. $b \bar{b} H$ production

Outlook and Conclusions

Conclusions:

- included massive quarks into the factorization theorem for small p_{T} region of the spectrum for Drell-Yan +0 jets
- resummation of all mass related logarithms at NNLL' accuracy (one and two loop matrix elements with massive quarks)
- same also for beam thrust

Outlook:

- phenomenological analysis of m_{b} effects in p_{T}-spectrum
- application to other processes, e.g. $b \bar{b} H$ production

Thank you for your attention!

Rapidity Anomalous Dimension

soft function rapidity anomalous dimensions at 1-loop:
massless:

$$
\gamma_{\nu}\left(\vec{p}_{T}, \mu\right)=\frac{\alpha_{s}(\mu) C_{F}}{4 \pi} \times 16 \mathcal{L}_{0}\left(\vec{p}_{T}, \mu\right) \quad \mathcal{L}_{0}\left(\vec{p}_{T}, \mu\right)=\frac{1}{2 \pi \mu^{2}}\left[\frac{\mu^{2}}{p_{T}^{2}}\right]_{+}
$$

massive gluon:

$$
\gamma_{\nu}\left(\vec{p}_{T}, M, \mu\right)=\frac{\alpha_{s}(\mu) C_{F}}{4 \pi} \times 8\left[\delta^{(2)}\left(\vec{p}_{T}\right) \ln \frac{M^{2}}{\mu^{2}}+\frac{1}{\pi\left(p_{T}^{2}+M^{2}\right)}\right]
$$

