Multi-differential resummation with SCET+

Wouter Waalewijn

UNIVERSITY OF AMSTERDAM

Motivation

- Resummation has mostly been restricted to single variables
- Classic example of joint resummation: threshold and transverse momentum [Li; Laenen, Sterman, Vogelsang; ...]
- In this talk, joint resummation of:
 - beam thrust $\mathcal{T}_{0} = \sum_{i} p_{iT} e^{-|y_{i}|} = \sum_{i} \min\{p_{i}^{+}, p_{i}^{-}\}$ transverse momentum $\vec{p}_{T} = \sum_{i} \vec{p}_{iT}$ threshold $1 z = 1 \frac{Q^{2}}{\hat{s}} \quad \begin{array}{c} \text{Drell-Yan invariant mass} \\ \text{partonic c.o.m. energy} \end{array}$
- Achieved by adding modes to SCET = SCET+
- Consider $pp \rightarrow color-singlet + X$ for definiteness

Outline

- 1. Resummation in SCET
- 2. p_T and beam thrust resummation
- 3. p_T and threshold resummation
- 4. Conclusions

1. Resummation in SCET

Factorization in SCET

Effective theory of QCD for collinear and soft radiation

[Bauer, Fleming, Luke, Pirjol, Rothstein, Stewart,]

$$\mathcal{L}_{\text{SCET}} = \mathcal{L}_{\text{coll}} + \mathcal{L}_{\text{coll}} + \mathcal{L}_{\text{soft}} + \sum_{i} C_{i}O_{i}$$

- Hard virtual corrections are integrated out
- Factorize collinear and soft modes in Lagrangian

Beam thrust factorization

$$\frac{d\sigma}{d\mathcal{T}_0} = H(Q,\mu) \int d\mathcal{T}_0^{\text{coll}} B_a(Q\mathcal{T}_0^{\text{coll}}, x_a, \mu) \int d\mathcal{T}_0^{\text{coll}} B_b(Q\mathcal{T}_0^{\text{coll}}, x_b, \mu)$$
$$\times \int d\mathcal{T}_0^{\text{soft}} S(\mathcal{T}_0^{\text{soft}}, \mu) \,\delta(\mathcal{T}_0 - \mathcal{T}_0^{\text{coll}} - \mathcal{T}_0^{\text{coll}} - \mathcal{T}_0^{\text{soft}})$$

- Hard function contains hard virtual corrections at the scale Q
- Beam functions describe the contribution from collinear radiation at scale $\sqrt{QT_0}$ and parton distribution functions

$$B_{i}(t = Q\mathcal{T}_{0}^{\text{coll}}, x, \mu) = \sum_{i'} \int \frac{dx'}{x'} \mathcal{I}_{ii'}\left(t, \frac{x}{x'}, \mu\right) f_{i'}(x', \mu)$$
[Stewart, Tackmann, WW]

- Soft function captures the soft radiation effects at scale \mathcal{T}_0

Resummation in SCET

 Achieve resummation by evaluating each ingredient at its natural scale and RG evolving to a common scale

$$\mu \frac{d}{d\mu} H(Q,\mu) = \gamma_H(Q,\mu) H(Q,\mu) \qquad Q$$

$$\mu \frac{d}{d\mu} B_i(t,x,\mu) = \int dt' \, \gamma_B^i(t-t',\mu) \, B_i(t',x,\mu) \qquad \sqrt{QT_0}$$

$$\tau$$

 μ

J ()

Resummation in SCET

 Achieve resummation by evaluating each ingredient at its natural scale and RG evolving to a common scale

- Features of SCET:
 - Manifest gauge invariance
 - Matrix element definitions of ingredients. E.g. Wilson lines $S(\mathcal{T}_{0}^{\text{soft}}, \mu) = \frac{1}{N_{c}} \operatorname{tr} \langle 0 | \bar{T} \begin{bmatrix} Y_{n}^{\dagger} Y_{\bar{n}} \end{bmatrix} \delta(\mathcal{T}_{0}^{\text{soft}} - \hat{\mathcal{T}}_{0}) T \begin{bmatrix} Y_{\bar{n}}^{\dagger} Y_{n} \end{bmatrix} | 0 \rangle$ measurement

Modes and power counting

	SCET _I
n-collinear	$Q(\lambda^2, 1, \lambda)$
\bar{n} -collinear	$Q(1, \lambda^2, \lambda)$
soft	$Q(\lambda^2, \lambda^2, \lambda^2)$

Light cone coordinates

$$p^{\mu} = (p^+, p^-, p^{\mu}_{\perp}) = (n \cdot p, \bar{n} \cdot p, p^{\mu}_{\perp})$$

- Measurement determines modes:
 - Beam thrust is described by SCET with $\lambda^2 = \mathcal{T}_0/Q$

Modes and power counting

	SCET _I	SCET _{II}
<i>n</i> -collinear	$Q(\lambda^2, 1, \lambda)$	$Q(\lambda^2, 1, \lambda)$
\bar{n} -collinear	$Q(1, \boldsymbol{\lambda^2}, \lambda)$	$Q(1,\lambda^2,oldsymbol{\lambda})$
soft	$Q(\pmb{\lambda^2},\pmb{\lambda^2},\pmb{\lambda^2})$	$Q(\lambda,\lambda,oldsymbol{\lambda})$

Light cone coordinates

$$p^{\mu} = (p^+, p^-, p^{\mu}_{\perp}) = (n \cdot p, \bar{n} \cdot p, p^{\mu}_{\perp})$$

- Measurement determines modes:
 - Beam thrust is described by SCET with $\lambda^2 = \mathcal{T}_0/Q$
 - p_T is a SCET_{II} observables, $\lambda^2 = p_T^2/Q^2$

Transverse momentum resummation

SCET_{II} involves rapidity divergences

$$S^{(1)}(p_T) \propto \alpha_s \frac{\mu^{2\epsilon}}{p_T^{1+2\epsilon}} \int dy$$

Transverse momentum resummation

• SCET_{II} involves rapidity divergences

$$S^{(1)}(p_T) \propto \alpha_s \, rac{\mu^{2\epsilon} \, \nu^{\eta}}{p_T^{1+2\epsilon+\eta}} \int dy \, |2 \sinh y|^{-\eta}$$
[Chiu, Jain, Neill, Rothstein]

• Many other choices for rapidity regulator [Collins; Chiu, Fuhrer, Hoang, Kelley, Manohar; Becher, Bell; ...]

Transverse momentum resummation

SCET_{II} involves rapidity divergences

$$S^{(1)}(p_T) \propto lpha_s \, rac{\mu^{2\epsilon} \,
u^{\eta}}{p_T^{1+2\epsilon+\eta}} \int dy \, |2 \sinh y|^{-\eta}$$
[Chiu, Jain, Neill, Rothstein]

• Many other choices for rapidity regulator [Collins; Chiu, Fuhrer, Hoang, Kelley, Manohar; Becher, Bell; ...]

Rapidity resummation encoded in rapidity RG evolution

$$\begin{aligned} \frac{d\sigma}{d\vec{p}_T} &= H(Q,\mu) \int d\vec{p}_T^{\text{ coll}} B_a(\vec{p}_T^{\text{ coll}}, x_a, \mu, \nu) \int d\vec{p}_T^{\text{ coll}} B_b(\vec{p}_T^{\text{ coll}}, x_b, \mu, \nu) \\ & \times \int d\vec{p}_T^{\text{ soft}} S(\vec{p}_T^{\text{ soft}}, \mu, \nu) \,\delta(\vec{p}_T - \vec{p}_T^{\text{ coll}} - \vec{p}_T^{\text{ coll}} - \vec{p}_T^{\text{ soft}}) \end{aligned}$$

• E.g.
$$\nu \frac{d}{d\nu} B_i(\vec{p}_T, x, \mu, \nu) = \int d\vec{p}_T' \gamma_B^{\nu} (\vec{p}_T - \vec{p}_T', \mu) B_i(\vec{p}_T', x, \mu, \nu)$$

2. p_T and beam thrust resummation

Based on arXiv:1410.6483 (Procura, WW, Zeune)

Beam thrust and transverse momentum resummation

• Make \mathcal{T}_0 or p_T factorization formulas more differential

 $\frac{d\sigma}{d\vec{p_T} \, d\mathcal{T}_0} = H(Q)B(Q\mathcal{T}_0, \vec{p_T}) \otimes B(Q\mathcal{T}_0, \vec{p_T}) \otimes S(\mathcal{T}_0) \text{ [Jain, Procura, WW]}$

• Structure dictated by power counting $SCET_{I}: \ \vec{p}_{T} = \vec{p}_{T}^{coll} + \vec{p}_{T}^{coll} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad Q\mathcal{T}_{0} \sim \vec{p}_{T}^{2}$

 \mathcal{I}

Beam thrust and transverse momentum resummation

S

 \mathcal{I}

• Make \mathcal{T}_0 or p_T factorization formulas more differential

 $\frac{d\sigma}{d\vec{p_T} \, d\mathcal{T}_0} = H(Q)B(Q\mathcal{T}_0, \vec{p_T}) \otimes B(Q\mathcal{T}_0, \vec{p_T}) \otimes S(\mathcal{T}_0) \text{ [Jain, Procura, WW]}$

$$\frac{d\sigma}{d\vec{p_T} \, d\mathcal{T}_0} = H(Q)B(\vec{p_T}) \otimes B(\vec{p_T}) \otimes S(\mathcal{T}_0, \vec{p_T}) \quad \text{[Larkoski, Moult, Neill]}$$

• Structure dictated by power counting $SCET_{I}: \ \vec{p}_{T} = \vec{p}_{T}^{coll} + \vec{p}_{T}^{coll} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad Q\mathcal{T}_{0} \sim \vec{p}_{T}^{2}$ $SCET_{II}: \ \mathcal{T}_{0} = \mathcal{T}_{0}^{soft} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}$

0-jettiness and transverse momentum resummation

 $f \models S$

 \mathcal{I}

- Make \mathcal{T}_0 or p_T factorization formulas more differential

 $\frac{d\sigma}{d\vec{p}_{T} d\mathcal{T}_{0}} = H(Q)B(Q\mathcal{T}_{0}, \vec{p}_{T}) \otimes B(Q\mathcal{T}_{0}, \vec{p}_{T}) \otimes S(\mathcal{T}_{0}) \text{ [Jain, Procura, WW]}$ $\frac{d\sigma}{d\vec{p}_{T} d\mathcal{T}_{0}} = H(Q)B(\vec{p}_{T}) \otimes B(\vec{p}_{T}) \otimes S(\mathcal{T}_{0}) \qquad ????$ $\frac{d\sigma}{d\vec{p}_{T} d\mathcal{T}_{0}} = H(Q)B(\vec{p}_{T}) \otimes B(\vec{p}_{T}) \otimes S(\mathcal{T}_{0}, \vec{p}_{T}) \text{ [Larkoski, Moult, Neill]}$

• Structure dictated by power counting $SCET_{I}: \ \vec{p}_{T} = \vec{p}_{T}^{coll} + \vec{p}_{T}^{coll} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad Q\mathcal{T}_{0} \sim \vec{p}_{T}^{2}$ $SCET_{II}: \ \mathcal{T}_{0} = \mathcal{T}_{0}^{soft} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}$

Beam thrust and transverse momentum resummation

• Make \mathcal{T}_0 or p_T factorization formulas more differential

$$\frac{d\sigma}{d\vec{p}_{T} d\mathcal{T}_{0}} = H(Q)B(Q\mathcal{T}_{0}, \vec{p}_{T}) \otimes B(Q\mathcal{T}_{0}, \vec{p}_{T}) \otimes S(\mathcal{T}_{0}) \text{ [Jain, Procura, WW]}$$

$$\frac{d\sigma}{d\vec{p}_{T} d\mathcal{T}_{0}} = H(Q)B(\vec{p}_{T}) \otimes B(\vec{p}_{T}) \otimes S_{+}(\mathcal{T}_{0}, \vec{p}_{T}) \otimes S_{+}(\mathcal{T}_{0}, \vec{p}_{T}) \otimes S(\mathcal{T}_{0}) \text{ [Procura, WW, Zeune]}$$

$$\frac{d\sigma}{d\vec{p}_{T} d\mathcal{T}_{0}} = H(Q)B(\vec{p}_{T}) \otimes B(\vec{p}_{T}) \otimes S(\mathcal{T}_{0}, \vec{p}_{T}) \text{ [Larkoski, Moult, Neill]}$$

- Structure dictated by power counting $SCET_{I}: \ \vec{p}_{T} = \vec{p}_{T}^{coll} + \vec{p}_{T}^{coll} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad Q\mathcal{T}_{0} \sim \vec{p}_{T}^{2}$ $SCET_{II}: \ \mathcal{T}_{0} = \mathcal{T}_{0}^{soft} + \mathcal{O}(\lambda^{2}) \qquad \rightarrow \qquad \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}$
- Intermediate regime requires additional collinear-soft functions

I /

Modes in SCET+

• Collinear-soft mode uniquely fixed by p_T, \mathcal{T}_0 measurement

Modes in SCET+

- Collinear-soft mode uniquely fixed by p_T, \mathcal{T}_0 measurement
- *n*-collinear-soft modes behaves for factorization like a
 - soft mode with respect to the *n*-collinear mode
 - collinear mode with respect to the rest

[Bauer, Tackmann, Walsh, Zuberi]

Ingredients of factorization formulas

$$\frac{d\sigma}{d\vec{p}_T \, d\mathcal{T}_0} = H(Q)B(Q\mathcal{T}_0, \vec{p}_T) \otimes B(Q\mathcal{T}_0, \vec{p}_T) \otimes S(\mathcal{T}_0) \qquad Q\mathcal{T}_0 \sim \vec{p}_T^2
\frac{d\sigma}{d\vec{p}_T \, d\mathcal{T}_0} = H(Q)B(\vec{p}_T) \otimes B(\vec{p}_T) \otimes S_+(\mathcal{T}_0, \vec{p}_T) \otimes S_+(\mathcal{T}_0, \vec{p}_T) \otimes S(\mathcal{T}_0)
\frac{d\sigma}{d\vec{p}_T \, d\mathcal{T}_0} = H(Q)B(\vec{p}_T) \otimes B(\vec{p}_T) \otimes S(\mathcal{T}_0, \vec{p}_T) \qquad \mathcal{T}_0^2 \sim \vec{p}_T^2$$

- $B(\vec{p_T}, x, \mu, \nu)$ transverse momentum beam function
- $S(\mathcal{T}_0,\mu)$ beam thrust soft function
- $B(Q\mathcal{T}_0, \vec{p}_T, x, \mu)$ double differential beam function
- $S(\mathcal{T}_0, \vec{p}_T, \mu, \nu)$ double differential soft function
- $S_+(\mathcal{T}_0, \vec{p}_T, \mu, \nu)$ collinear-soft function Note: p_T beam function without p_T soft function

Collinear-soft function

- Matrix-element of eikonal collinear-soft Wilson lines $S_{+}(\mathcal{T}_{0}^{\text{csoft}}, \vec{p}_{T}^{\text{csoft}}) = \frac{1}{N_{c}} \operatorname{tr} \langle 0 | \bar{T} \left[X_{n}^{\dagger} V_{\bar{n}} \right] \delta(\mathcal{T}_{0}^{\text{soft}} - \hat{p}^{+}) \, \delta(\vec{p}_{T}^{\text{csoft}} - \hat{\vec{p}}_{T}) T \left[V_{n}^{\dagger} X_{n} \right] | 0 \rangle$
- Differs from soft function $S(\mathcal{T}_0^{\text{soft}}, \vec{p}_T^{\text{soft}})$ because the collinear-soft radiation goes into one hemisphere, $\hat{\mathcal{T}}_0 \to \hat{p}^+$

Collinear-soft function

- Matrix-element of eikonal collinear-soft Wilson lines $S_{+}(\mathcal{T}_{0}^{\text{csoft}}, \vec{p}_{T}^{\text{csoft}}) = \frac{1}{N_{c}} \operatorname{tr} \langle 0 | \bar{T} \left[X_{n}^{\dagger} V_{\bar{n}} \right] \delta(\mathcal{T}_{0}^{\text{soft}} - \hat{p}^{+}) \, \delta(\vec{p}_{T}^{\text{csoft}} - \hat{\vec{p}}_{T}) T \left[V_{n}^{\dagger} X_{n} \right] | 0 \rangle$
- Differs from soft function $S(\mathcal{T}_0^{\text{soft}}, \vec{p}_T^{\text{soft}})$ because the collinear-soft radiation goes into one hemisphere, $\hat{\mathcal{T}}_0 \to \hat{p}^+$
- At one loop $S_{+}^{(1)}(k^{+}, \vec{k}_{T}, \mu, \nu) = \frac{\alpha_{s}C_{F}}{\pi^{2}} \left\{ \frac{1}{\mu^{3}} \frac{1}{(k^{+}/\mu)_{+}} \frac{1}{(k_{T}^{2}/\mu^{2})_{+}} + \delta(k^{+}) \left[-\frac{1}{\mu^{2}} \left[\frac{\ln(k_{T}^{2}/\mu^{2})}{k_{T}^{2}/\mu^{2}} \right]_{+} + \frac{1}{\mu^{2}} \frac{1}{(k_{T}^{2}/\mu^{2})_{+}} \ln \frac{\nu}{\mu} - \frac{\pi^{2}}{12} \delta(k_{T}^{2}) \right] \right\}$

Consistency relations

• Consistency between SCET_I and SCET+ $B(Q\mathcal{T}_0, \vec{p}_T) = B(\vec{p}_T) \otimes S_+(\mathcal{T}_0, \vec{p}_T)$ $\times \left[1 + \mathcal{O}\left(\frac{p_T^2}{Q\mathcal{T}_0}\right)\right]$

 p_T

- Consistency between SCET_{II} and SCET+ $S(\mathcal{T}_0, \vec{p}_T) = S_+(\mathcal{T}_0, \vec{p}_T) \otimes S_+(\mathcal{T}_0, \vec{p}_T) \otimes S(\mathcal{T}_0) \left[1 + \mathcal{O}\left(\frac{\mathcal{T}_0^2}{p_T^2}\right)\right]$
- Verified for anomalous dimensions and NLO ingredients

Scales choices and matching

Natural scales of the ingredients are

$$\mu_H = Q,$$

$$\mu_B = p_T, \quad \nu_B = Q,$$

$$\mu_{S+} = p_T, \quad \nu_{S+} = p_T^2 / \mathcal{T}_0,$$

$$\mu_S = \mathcal{T}_0$$

- Scales / resummation smoothly connect all regimes
- SCET+ sums all logarithms but has more power corrections
- Starting at NNLL/NLO there are corrections from the SCET_I, SCET_II and fixed-order boundaries that must be included

3. p_T and threshold resummation

Based on arXiv:1605.02740 (Lustermans, WW, Zeune)

Transverse momentum and threshold resummation

• Start from p_T or threshold factorization

1.
$$\frac{d\sigma}{d\vec{p}_T} = H(Q)B(\vec{p}_T, z) \otimes B(\vec{p}_T, z) \otimes S(\vec{p}_T) \qquad 1 - z \sim 1$$

3.
$$\frac{d\sigma}{d\vec{p}_T} = H(Q)f(z) \otimes f(z) \otimes S(\vec{p}_T, z) \qquad p_T \sim (1-z)Q$$

where the threshold parameter is $1 - z = 1 - \frac{Q^2}{\hat{s}}$

Transverse momentum and threshold resummation

• Start from p_T or threshold factorization

1.
$$\frac{d\sigma}{d\vec{p}_T} = H(Q)B(\vec{p}_T, z) \otimes B(\vec{p}_T, z) \otimes S(\vec{p}_T) \qquad 1 - z \sim 1$$

2.
$$\frac{d\sigma}{d\vec{p}_T} = H(Q)f(z) \otimes f(z) \otimes S_+(\vec{p}_T, z) \otimes S_+(\vec{p}_T, z) \otimes S(\vec{p}_T)$$

3.
$$\frac{d\sigma}{d\vec{p}_T} = H(Q)f(z) \otimes f(z) \otimes S(\vec{p}_T, z) \qquad p_T \sim (1 - z)Q$$

where the threshold parameter is $1 - z = 1 - \frac{Q^2}{\hat{c}}$

Intermediate regime 2 described by SCET+ with

$$p_T/Q \ll 1 - z \ll 1$$

 \hat{s}

Modes

Collinear-soft function

- Measures other light-cone component than before, $p^+ \to p^ S_+(p^-, \vec{p}_T) = \frac{1}{N_c} \operatorname{tr} \langle 0 | \bar{T} [X_n^{\dagger} V_{\bar{n}}] \, \delta(p^- - \hat{p}^-) \, \delta(\vec{p}_T - \hat{\vec{p}}_T) T [V_n^{\dagger} X_n] | 0 \rangle$
- The $p^+ \leftrightarrow p^-$ symmetry broken by rapidity regulator or due to double counting with soft radiation

$$S_+(p^+, \vec{p}_T) = [S_+(p^-, \vec{p}_T) \text{ with } p^- \to p^+] \otimes S(\vec{p}_T)$$

Collinear-soft function and consistency relations

- Measures other light-cone component than before, $p^+ \to p^ S_+(p^-, \vec{p}_T) = \frac{1}{N_c} \operatorname{tr} \langle 0 | \bar{T} [X_n^{\dagger} V_{\bar{n}}] \, \delta(p^- - \hat{p}^-) \, \delta(\vec{p}_T - \hat{\vec{p}}_T) T [V_n^{\dagger} X_n] | 0 \rangle$
- The $p^+ \leftrightarrow p^-$ symmetry broken by rapidity regulator or due to double counting with soft radiation

$$S_+(p^+, \vec{p}_T) = [S_+(p^-, \vec{p}_T) \text{ with } p^- \to p^+] \otimes S(\vec{p}_T)$$

Consistency relations

 $B(\vec{p}_T, z) = S_+(\vec{p}_T, z) \otimes f(z) \left[1 + \mathcal{O}(1-z) \right]$ $S(\vec{p}_T, z) = S_+(\vec{p}_T, z) \otimes S_+(\vec{p}_T, z) \otimes S(\vec{p}_T) \left[1 + \mathcal{O}\left(\frac{p_T^2}{(1-z)^2 Q^2}\right) \right]$

SCET_{II} and SCET+

$$B_{i}(\vec{p_{T}}, \boldsymbol{z}) = \sum_{j} I_{ij}(\vec{p_{T}}, \boldsymbol{z}) \otimes f_{j}(\boldsymbol{z})$$
$$= S_{i+}(\vec{p_{T}}, \boldsymbol{z}) \otimes f_{i}(\boldsymbol{z}) [1 + \mathcal{O}(1 - \boldsymbol{z})]$$

Dictates structure of coefficients I_{ij} in the threshold limit:

• Logarithms of p_T and z predicted by RG evolution

$$\mu_{S_+} = p_T, \quad \nu_{S_+} = (1-z)Q,$$

Proves conjecture by Echevarria, Scimemi, Vladimirov [arXiv:1604.07869]

SCET_{II} and SCET+

$$B_{i}(\vec{p_{T}}, \boldsymbol{z}) = \sum_{j} I_{ij}(\vec{p_{T}}, \boldsymbol{z}) \otimes f_{j}(\boldsymbol{z})$$
$$= S_{i+}(\vec{p_{T}}, \boldsymbol{z}) \otimes f_{i}(\boldsymbol{z}) [1 + \mathcal{O}(1 - \boldsymbol{z})]$$

Dictates structure of coefficients I_{ij} in the threshold limit:

• Logarithms of p_T and z predicted by RG evolution

$$\mu_{S_+} = p_T, \quad \nu_{S_+} = (1-z)Q,$$

Proves conjecture by Echevarria, Scimemi, Vladimirov [arXiv:1604.07869]

- Can obtain SCET+ from SCET_I: $\nu_B = Q \rightarrow (1-z)Q = \nu_{S_+}$
- Corrections from SCET_I and fixed-order start at NNLL

Conclusions

- Collisions involve many scales
 → additional collinear-soft modes = SCET+
- SCET+ enables the simultaneous resummation of
 - Jet resolution parameters (this talk)
 - Jet kinematic logarithms [Bauer, Tackmann, Walsh, Zuberi; Larkoski, Neill, Moult; Pietrulewicz, Tackmann, WW]
 - Jet radius logarithms [Chien, Hornig, Lee; Kolodrubetz, Pietrulewicz, Stewart, Tackmann, WW]
 - Non-global logarithms [Larkoski, Moult, Neill; Becher, Neubert, Rothen, Shao]

Stay tuned!