Multi-differential resummation with SCET+

Wouter Waalewijn

爻爻
University of Amsterdam

Delta

Motivation

- Resummation has mostly been restricted to single variables
- Classic example of joint resummation: threshold and transverse momentum [Li; Laenen, Sterman, Vogelsang; ...]
- In this talk, joint resummation of:
- beam thrust

$$
\begin{aligned}
& \mathcal{T}_{0}=\sum_{i} p_{i T} e^{-\left|y_{i}\right|}=\sum_{i} \min \left\{p_{i}^{+}, p_{i}^{-}\right\} \\
& \vec{p}_{T}=\sum_{i} \vec{p}_{i T} \\
& 1-z=1-\frac{Q^{2}}{\hat{s}} \quad \begin{array}{l}
\text { Drell-Yan invariant mass } \\
\text { partonic c.o.m. energy }
\end{array}
\end{aligned}
$$

- transverse momentum
- threshold
- Achieved by adding modes to SCET = SCET+
- Consider pp \rightarrow color-singlet $+X$ for definiteness

Outline

1. Resummation in SCET
2. p_{T} and beam thrust resummation
3. p_{T} and threshold resummation
4. Conclusions

1. Resummation in SCET

Factorization in SCET

- Effective theory of QCD for collinear and soft radiation [Bauer, Fleming, Luke, Pirjol, Rothstein, Stewart,]
$\mathcal{L}_{\text {SCET }}=\mathcal{L}_{\text {coll }}+\mathcal{L}_{\text {coll }}+\mathcal{L}_{\text {soft }}+\sum_{i} C_{i} O_{i}$

- Hard virtual corrections are integrated out
- Factorize collinear and soft modes in Lagrangian

Beam thrust factorization

$$
\begin{aligned}
\frac{d \sigma}{d \mathcal{T}_{0}}= & H(Q, \mu) \int d \mathcal{T}_{0}^{\text {coll }} B_{a}\left(Q \mathcal{T}_{0}^{\text {coll }}, x_{a}, \mu\right) \int d \mathcal{T}_{0}^{\text {coll }} B_{b}\left(Q \mathcal{T}_{0}^{\text {coll }}, x_{b}, \mu\right) \\
& \times \int d \mathcal{T}_{0}^{\text {soft }} S\left(\mathcal{T}_{0}^{\text {soft }}, \mu\right) \delta\left(\mathcal{T}_{0}-\mathcal{T}_{0}^{\text {coll }}-\mathcal{T}_{0}^{\text {coll }}-\mathcal{T}_{0}^{\text {soft }}\right)
\end{aligned}
$$

- Hard function contains hard virtual corrections at the scale Q
- Beam functions describe the contribution from collinear radiation at scale $\sqrt{Q \mathcal{T}_{0}}$ and parton distribution functions

$$
B_{i}\left(t=Q \mathcal{T}_{0}^{\text {coll }}, x, \mu\right)=\sum_{i^{\prime}} \int \frac{d x^{\prime}}{x^{\prime}} \mathcal{I}_{i i^{\prime}}\left(t, \frac{x}{x^{\prime}}, \mu\right) f_{i^{\prime}}\left(x^{\prime}, \mu\right)
$$

- Soft function captures the soft radiation effects at scale \mathcal{T}_{0}

Resummation in SCET

- Achieve resummation by evaluating each ingredient at its natural scale and RG evolving to a common scale

$$
\begin{array}{rlr}
\mu \frac{d}{d \mu} H(Q, \mu) & =\gamma_{H}(Q, \mu) H(Q, \mu) & Q \\
\mu \frac{d}{d \mu} B_{i}(t, x, \mu) & =\int d t^{\prime} \gamma_{B}^{i}\left(t-t^{\prime}, \mu\right) B_{i}\left(t^{\prime}, x, \mu\right) & \sqrt{Q \mathcal{T}_{0}}- \\
& \ldots & \mathcal{\tau}_{0}
\end{array}
$$

Resummation in SCET

- Achieve resummation by evaluating each ingredient at its natural scale and $R G$ evolving to a common scale

$$
\begin{array}{rlr}
\mu \frac{d}{d \mu} H(Q, \mu) & =\gamma_{H}(Q, \mu) H(Q, \mu) & Q \\
\mu \frac{d}{d \mu} B_{i}(t, x, \mu) & =\int d t^{\prime} \gamma_{B}^{i}\left(t-t^{\prime}, \mu\right) B_{i}\left(t^{\prime}, x, \mu\right) & \sqrt{Q \mathcal{T}_{0}} \\
& \ldots & \mathcal{T}_{0}
\end{array}
$$

- Features of SCET:
- Manifest gauge invariance
- Matrix element definitions of ingredients. E.g. $S\left(\mathcal{T}_{0}^{\text {soft }}, \mu\right)=\frac{1}{N_{c}} \operatorname{tr}\langle 0| \bar{T}\left[Y_{n}^{\dagger} Y_{\bar{n}}\right] \delta\left(\mathcal{T}_{0}^{\text {soft }}-\hat{\mathcal{T}}_{0}\right) T\left[Y_{\bar{n}}^{\dagger} Y_{n}\right]|0\rangle$

Modes and power counting

	SCET $_{\mathrm{I}}$
n-collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$
\bar{n}-collinear	$Q\left(1, \lambda^{2}, \lambda\right)$
soft	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$

- Light cone coordinates

$p^{\mu}=\left(p^{+}, p^{-}, p_{\perp}^{\mu}\right)=\left(n \cdot p, \bar{n} \cdot p, p_{\perp}^{\mu}\right)$
- Measurement determines modes:
- Beam thrust is described by SCET। with $\lambda^{2}=\mathcal{T}_{0} / Q$

Modes and power counting

	SCET $_{\text {I }}$	SCET $_{\text {II }}$
n-collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q\left(\lambda^{2}, 1, \lambda\right)$
\bar{n}-collinear	$Q\left(1, \lambda^{2}, \lambda\right)$	$Q\left(1, \lambda^{2}, \lambda\right)$
soft	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$Q(\lambda, \lambda, \lambda)$

- Light cone coordinates
$p^{\mu}=\left(p^{+}, p^{-}, p_{\perp}^{\mu}\right)=\left(n \cdot p, \bar{n} \cdot p, p_{\perp}^{\mu}\right)$
- Measurement determines modes:
- Beam thrust is described by SCETI with $\lambda^{2}=\mathcal{T}_{0} / Q$
- p_{T} is a SCET $_{\text {II }}$ observables, $\lambda^{2}=p_{T}^{2} / Q^{2}$

Transverse momentum resummation

- SCETII involves rapidity divergences
$S^{(1)}\left(p_{T}\right) \propto \alpha_{s} \frac{\mu^{2 \epsilon}}{p_{T}^{1+2 \epsilon}} \int d y$

Transverse momentum resummation

- SCETII involves rapidity divergences

$$
S^{(1)}\left(p_{T}\right) \propto \alpha_{s} \frac{\mu^{2 \epsilon} \nu^{\eta}}{p_{T}^{1+2 \epsilon+\eta}} \int \underset{\text { [Chiu, Jain, Neill, Rothstein] }}{\int} d y|2 \sinh y|^{-\eta}
$$

- Many other choices for rapidity regulator [Collins; Chiu, Fuhrer, Hoang, Kelley, Manohar; Becher, Bell; ...]

Transverse momentum resummation

- SCET॥ involves rapidity divergences

$$
S^{(1)}\left(p_{T}\right) \propto \alpha_{s} \frac{\mu^{2 \epsilon} \nu^{\eta}}{p_{T}^{1+2 \epsilon+\eta}} \int \frac{d y|2 \sinh y|^{-\eta}}{\text { [Chiu, Jain, Neill, Rothstein] }}
$$

- Many other choices for rapidity regulator [Collins; Chiu, Fuhrer, Hoang, Kelley, Manohar; Becher, Bell; ...]

- Rapidity resummation encoded in rapidity RG evolution

$$
\begin{aligned}
\frac{d \sigma}{d \vec{p}_{T}}= & H(Q, \mu) \int d \vec{p}_{T}^{\text {coll }} B_{a}\left(\vec{p}_{T}^{\text {coll }}, x_{a}, \mu, \nu\right) \int d \vec{p}_{T}^{\text {coll }} B_{b}\left(\vec{p}_{T}^{\text {coll }}, x_{b}, \mu, \nu\right) \\
& \times \int d \vec{p}_{T}^{\text {soft }} S\left(\vec{p}_{T}^{\text {soft }}, \mu, \nu\right) \delta\left(\vec{p}_{T}-\vec{p}_{T}^{\text {coll }}-\vec{p}_{T}^{\text {coll }}-\vec{p}_{T}^{\text {soft }}\right)
\end{aligned}
$$

- E.g. $\nu \frac{d}{d \nu} B_{i}\left(\vec{p}_{T}, x, \mu, \nu\right)=\int d \vec{p}_{T}^{\prime} \gamma_{B}^{\nu}\left(\vec{p}_{T}-\vec{p}_{T}^{\prime}, \mu\right) B_{i}\left(\vec{p}_{T}^{\prime}, x, \mu, \nu\right)$

2. p_{T} and beam thrust resummation

Based on arXiv:1410.6483 (Procura, WW, Zeune)

Beam thrust and transverse momentum resummation

- Make \mathcal{T}_{0} or p_{T} factorization formulas more differential
$\frac{d \sigma}{d \vec{p}_{T} d T_{0}}=H(Q) B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right)[$ Jain, Procura, ww $]$
- Structure dictated by power counting

$$
\operatorname{SCET}_{\mathrm{I}}: \vec{p}_{T}=\vec{p}_{T}^{\text {coll }}+\vec{p}_{T}^{\text {coll }}+\mathcal{O}\left(\lambda^{2}\right) \quad \rightarrow \quad Q \mathcal{T}_{0} \sim \vec{p}_{T}^{2}
$$

Beam thrust and transverse momentum resummation

- Make \mathcal{T}_{0} or p_{T} factorization formulas more differential
$\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right)$ [Jain, Procura, ww]
$\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}, \vec{p}_{T}\right)$ [Larkoski, Moult, Neill]
- Structure dictated by power counting

$$
\begin{array}{lllr}
\mathrm{SCET}_{\mathrm{I}}: \vec{p}_{T}=\vec{p}_{T}^{\text {coll }}+\vec{p}_{T}^{\text {coll }}+\mathcal{O}\left(\lambda^{2}\right) & & \rightarrow & Q \mathcal{T}_{0} \sim \vec{p}_{T}^{2} \\
\mathrm{SCET}_{\mathrm{II}}: \mathcal{T}_{0}=\mathcal{T}_{0}^{\text {soft }}+\mathcal{O}\left(\lambda^{2}\right) & \rightarrow & \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}
\end{array}
$$

0-jettiness and transverse momentum resummation

- Make \mathcal{T}_{0} or p_{T} factorization formulas more differential
$\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right)$ [Jain, Procura, wn $]$
$\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right) \quad$????
$\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}, \vec{p}_{T}\right)$ [Larkoski, Moult, Neill]
- Structure dictated by power counting $\operatorname{SCET}_{\mathrm{I}}: \vec{p}_{T}=\vec{p}_{T}^{\text {coll }}+\vec{p}_{T}^{\text {coll }}+\mathcal{O}\left(\lambda^{2}\right) \quad \rightarrow \quad Q \mathcal{T}_{0} \sim \vec{p}_{T}^{2}$ $\operatorname{SCET}_{\text {II }}: \mathcal{T}_{0}=\mathcal{T}_{0}^{\text {soft }}+\mathcal{O}\left(\lambda^{2}\right)$

$$
\rightarrow \quad \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}
$$

Beam thrust and transverse momentum resummation

- Make \mathcal{T}_{0} or p_{T} factorization formulas more differential

$$
\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right) \text { [Jain, Procura, ww] }
$$

$$
\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \underset{\text { [Procura, ww, Zeune] }}{\otimes S\left(\mathcal{T}_{0}\right)}
$$

$$
\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \text { [Larkoski, Moult, Neill] }
$$

- Structure dictated by power counting

$$
\begin{array}{rlrr}
\mathrm{SCET}_{\mathrm{I}}: \vec{p}_{T}=\vec{p}_{T}^{\text {coll }}+\vec{p}_{T}^{\text {coll }}+\mathcal{O}\left(\lambda^{2}\right) & & \rightarrow & Q \mathcal{T}_{0} \sim \vec{p}_{T}^{2} \\
\mathrm{SCET}_{\mathrm{II}}: \mathcal{T}_{0}=\mathcal{T}_{0}^{\text {soft }}+\mathcal{O}\left(\lambda^{2}\right) & & \rightarrow & \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}
\end{array}
$$

- Intermediate regime requires additional collinear-soft functions

Modes in SCET+

- Collinear-soft mode uniquely fixed by p_{T}, \mathcal{T}_{0} measurement

Modes in SCET+

- Collinear-soft mode uniquely fixed by p_{T}, \mathcal{T}_{0} measurement
- n-collinear-soft modes behaves for factorization like a
- soft mode with respect to the n-collinear mode
- collinear mode with respect to the rest
[Bauer, Tackmann, Walsh, Zuberi]

Ingredients of factorization formulas

$$
\begin{array}{ll}
\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right) & Q \mathcal{T}_{0} \sim \vec{p}_{T}^{2} \\
\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right) & \\
\frac{d \sigma}{d \vec{p}_{T} d \mathcal{T}_{0}}=H(Q) B\left(\vec{p}_{T}\right) \otimes B\left(\vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}, \vec{p}_{T}\right) & \mathcal{T}_{0}^{2} \sim \vec{p}_{T}^{2}
\end{array}
$$

- $B\left(\vec{p}_{T}, x, \mu, \nu\right)$ transverse momentum beam function
- $S\left(\mathcal{T}_{0}, \mu\right)$ beam thrust soft function
- $B\left(Q \mathcal{T}_{0}, \vec{p}_{T}, x, \mu\right)$ double differential beam function
- $S\left(\mathcal{T}_{0}, \vec{p}_{T}, \mu, \nu\right)$ double differential soft function
- $S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}, \mu, \nu\right)$ collinear-soft function

Note: p_{T} beam function without p_{T} soft function

Collinear-soft function

- Matrix-element of eikonal collinear-soft Wilson lines
$S_{+}\left(\mathcal{T}_{0}^{\mathrm{csoft}}, \vec{p}_{T}^{\mathrm{csoft}}\right)=\frac{1}{N_{c}} \operatorname{tr}\langle 0| \bar{T}\left[X_{n}^{\dagger} V_{\bar{n}}\right] \delta\left(\mathcal{T}_{0}^{\mathrm{soft}}-\hat{p}^{+}\right) \delta\left(\vec{p}_{T}^{\mathrm{csoft}}-\hat{\vec{p}}_{T}\right) T\left[V_{n}^{\dagger} X_{n}\right]|0\rangle$
- Differs from soft function $S\left(\mathcal{T}_{0}^{\text {soft }}, \vec{p}_{T}^{\text {soft }}\right)$ because the collinear-soft radiation goes into one hemisphere, $\hat{\mathcal{T}}_{0} \rightarrow \hat{p}^{+}$

Collinear-soft function

- Matrix-element of eikonal collinear-soft Wilson lines
$S_{+}\left(\mathcal{T}_{0}^{\mathrm{csoft}}, \vec{p}_{T}^{\mathrm{csoft}}\right)=\frac{1}{N_{c}} \operatorname{tr}\langle 0| \bar{T}\left[X_{n}^{\dagger} V_{\bar{n}}\right] \delta\left(\mathcal{T}_{0}^{\mathrm{soft}}-\hat{p}^{+}\right) \delta\left(\vec{p}_{T}^{\mathrm{csoft}}-\hat{\vec{p}}_{T}\right) T\left[V_{n}^{\dagger} X_{n}\right]|0\rangle$
- Differs from soft function $S\left(\mathcal{T}_{0}^{\text {soft }}, \vec{p}_{T}^{\text {soft }}\right)$ because the collinear-soft radiation goes into one hemisphere, $\hat{\mathcal{T}}_{0} \rightarrow \hat{p}^{+}$
- At one loop

$$
S_{+}^{(1)}\left(k^{+}, \vec{k}_{T}, \mu, \nu\right)=\frac{\alpha_{s} C_{F}}{\pi^{2}}\left\{\frac{1}{\mu^{3}} \frac{1}{\left(k^{+} / \mu\right)_{+}} \frac{1}{\left(k_{T}^{2} / \mu^{2}\right)_{+}}\right.
$$

$$
\left.+\delta\left(k^{+}\right)\left[-\frac{1}{\mu^{2}}\left[\frac{\ln \left(k_{T}^{2} / \mu^{2}\right)}{k_{T}^{2} / \mu^{2}}\right]_{+}+\frac{1}{\mu^{2}} \frac{1}{\left(k_{T}^{2} / \mu^{2}\right)_{+}} \ln \frac{\nu}{\mu}-\frac{\pi^{2}}{12} \delta\left(k_{T}^{2}\right)\right]\right\}
$$

Consistency relations

- Consistency between SCETI and SCET+

$$
\begin{aligned}
B\left(Q \mathcal{T}_{0}, \vec{p}_{T}\right)= & B\left(\vec{p}_{T}\right) \otimes S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \\
& \times\left[1+\mathcal{O}\left(\frac{p_{T}^{2}}{Q \mathcal{T}_{0}}\right)\right]
\end{aligned}
$$

- Consistency between SCET ${ }_{\|}$and SCET+

$$
S\left(\mathcal{T}_{0}, \vec{p}_{T}\right)=S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S_{+}\left(\mathcal{T}_{0}, \vec{p}_{T}\right) \otimes S\left(\mathcal{T}_{0}\right)\left[1+\mathcal{O}\left(\frac{\mathcal{T}_{0}^{2}}{p_{T}^{2}}\right)\right]
$$

- Verified for anomalous dimensions and NLO ingredients

Scales choices and matching

- Natural scales of the ingredients are

$$
\begin{aligned}
\mu_{H} & =Q \\
\mu_{B} & =p_{T}, \quad \nu_{B}=Q \\
\mu_{S_{+}} & =p_{T}, \quad \nu_{S_{+}}=p_{T}^{2} / \mathcal{T}_{0} \\
\mu_{S} & =\mathcal{T}_{0}
\end{aligned}
$$

- Scales / resummation smoothly connect all regimes
- SCET+ sums all logarithms but has more power corrections
- Starting at NNLL/NLO there are corrections from the SCET, SCET ${ }_{\|}$and fixed-order boundaries that must be included

3. p_{T} and threshold resummation

Based on arXiv:1605.02740 (Lustermans, WW, Zeune)

Transverse momentum and threshold resummation

- Start from p_{T} or threshold factorization

1. $\frac{d \sigma}{d \vec{p}_{T}}=H(Q) B\left(\vec{p}_{T}, z\right) \otimes B\left(\vec{p}_{T}, z\right) \otimes S\left(\vec{p}_{T}\right) \quad 1-z \sim 1$
2. $\frac{d \sigma}{d \vec{p}_{T}}=H(Q) f(z) \otimes f(z) \otimes S\left(\vec{p}_{T}, z\right) \quad \quad p_{T} \sim(1-z) Q$
where the threshold parameter is $1-z=1-\frac{Q^{2}}{\hat{s}}$

Transverse momentum and threshold resummation

- Start from p_{T} or threshold factorization

1. $\frac{d \sigma}{d \vec{p}_{T}}=H(Q) B\left(\vec{p}_{T}, z\right) \otimes B\left(\vec{p}_{T}, z\right) \otimes S\left(\vec{p}_{T}\right) \quad 1-z \sim 1$
2. $\frac{d \sigma}{d \vec{p}_{T}}=H(Q) f(z) \otimes f(z) \otimes S_{+}\left(\vec{p}_{T}, z\right) \otimes S_{+}\left(\vec{p}_{T}, z\right) \otimes S\left(\vec{p}_{T}\right)$
3. $\frac{d \sigma}{d \vec{p}_{T}}=H(Q) f(z) \otimes f(z) \otimes S\left(\vec{p}_{T}, z\right) \quad \quad p_{T} \sim(1-z) Q$
where the threshold parameter is $1-z=1-\frac{Q^{2}}{\hat{s}}$

- Intermediate regime 2 described by SCET+ with

$$
p_{T} / Q \ll 1-z \ll 1
$$

Modes

Regime:	$1: 1 \sim 1-z \gg p_{T} / Q$	$2: 1 \gg 1-z \gg p_{T} / Q$	$3: 1 \gg 1-z \sim p_{T} / Q$
n-collinear	$\left(\Lambda_{\mathrm{QCD}}^{2} / Q, Q, \Lambda_{\mathrm{QCD}}\right)$	$\left(\Lambda_{\mathrm{QCD}}^{2} / Q, Q, \Lambda_{\mathrm{QCD}}\right)$	$\left(\Lambda_{\mathrm{QCD}}^{2} / Q, Q, \Lambda_{\mathrm{QCD}}\right)$
	$\left(p_{T}^{2} / Q, Q, p_{T}\right)$	$\left(\Lambda_{\mathrm{QCD}}^{2} /[(1-z) Q],(1-z) Q, \Lambda_{\mathrm{QCD}}\right)$	$\left(\Lambda_{\mathrm{QCD}}^{2} /[(1-z) Q],(1-z) Q, \Lambda_{\mathrm{QCD}}\right)$
\bar{n}-collinear	$\left(Q, \Lambda_{\mathrm{QCD}}^{2} / Q, \Lambda_{\mathrm{QCD}}\right)$	$\left(Q, \Lambda_{\mathrm{QCD}}^{2} / Q, \Lambda_{\mathrm{QCD}}\right)$	$\left(Q, \Lambda_{\mathrm{QCD}}^{2} / Q, \Lambda_{\mathrm{QCD}}\right)$
	$\left(Q, p_{T}^{2} / Q, p_{T}\right)$	$\left((1-z) Q, \Lambda_{\mathrm{QCD}}^{2} /[(1-z) Q], \Lambda_{\mathrm{QCD}}\right)$	$\left((1-z) Q, \Lambda_{\mathrm{QCD}}^{2} /[(1-z) Q], \Lambda_{\mathrm{QCD}}\right)$
n-csoft		$\left(p_{T}^{2} /[(1-z) Q],(1-z) Q, p_{T}\right)$	
\bar{n}-csoft		$\left((1-z) Q, p_{T}^{2} /[(1-z) Q], p_{T}\right)$	
soft	$\left(p_{T}, p_{T}, p_{T}\right)$	$\left(p_{T}, p_{T}, p_{T}\right)$	$\left(p_{T}, p_{T}, p_{T}\right)$

Collinear-soft function

- Measures other light-cone component than before, $p^{+} \rightarrow p^{-}$
$S_{+}\left(p^{-}, \vec{p}_{T}\right)=\frac{1}{N_{c}} \operatorname{tr}\langle 0| \bar{T}\left[X_{n}^{\dagger} V_{\bar{n}}\right] \delta\left(p^{-}-\hat{p}^{-}\right) \delta\left(\vec{p}_{T}-\hat{\vec{p}}_{T}\right) T\left[V_{n}^{\dagger} X_{n}\right]|0\rangle$
- The $p^{+} \leftrightarrow p^{-}$symmetry broken by rapidity regulator or due to double counting with soft radiation

$$
S_{+}\left(p^{+}, \vec{p}_{T}\right)=\left[S_{+}\left(p^{-}, \vec{p}_{T}\right) \text { with } p^{-} \rightarrow p^{+}\right] \otimes S\left(\vec{p}_{T}\right)
$$

Collinear-soft function and consistency relations

- Measures other light-cone component than before, $p^{+} \rightarrow p^{-}$

$$
S_{+}\left(p^{-}, \vec{p}_{T}\right)=\frac{1}{N_{c}} \operatorname{tr}\langle 0| \bar{T}\left[X_{n}^{\dagger} V_{\bar{n}}\right] \delta\left(p^{-}-\hat{p}^{-}\right) \delta\left(\vec{p}_{T}-\hat{\vec{p}}_{T}\right) T\left[V_{n}^{\dagger} X_{n}\right]|0\rangle
$$

- The $p^{+} \leftrightarrow p^{-}$symmetry broken by rapidity regulator or due to double counting with soft radiation

$$
S_{+}\left(p^{+}, \vec{p}_{T}\right)=\left[S_{+}\left(p^{-}, \vec{p}_{T}\right) \text { with } p^{-} \rightarrow p^{+}\right] \otimes S\left(\vec{p}_{T}\right)
$$

- Consistency relations

$$
\begin{aligned}
& B\left(\vec{p}_{T}, z\right)=S_{+}\left(\vec{p}_{T}, z\right) \otimes f(z)[1+\mathcal{O}(1-z)] \\
& S\left(\vec{p}_{T}, z\right)=S_{+}\left(\vec{p}_{T}, z\right) \otimes S_{+}\left(\vec{p}_{T}, z\right) \otimes S\left(\vec{p}_{T}\right)\left[1+\mathcal{O}\left(\frac{p_{T}^{2}}{(1-z)^{2} Q^{2}}\right)\right]
\end{aligned}
$$

SCET ${ }_{\|}$and SCET+

$$
\begin{aligned}
B_{i}\left(\vec{p}_{T}, z\right) & =\sum_{j} I_{i j}\left(\vec{p}_{T}, z\right) \otimes f_{j}(z) \\
& =S_{i+}\left(\vec{p}_{T}, z\right) \otimes f_{i}(z)[1+\mathcal{O}(1-z)]
\end{aligned}
$$

Dictates structure of coefficients $I_{i j}$ in the threshold limit:

- Logarithms of p_{τ} and z predicted by RG evolution

$$
\mu_{S_{+}}=p_{T}, \quad \nu_{S_{+}}=(1-z) Q,
$$

Proves conjecture by Echevarria, Scimemi, Vladimirov [arXiv:1604.07869]

SCET ${ }_{\|}$and SCET+

$$
\begin{aligned}
B_{i}\left(\vec{p}_{T}, z\right) & =\sum_{j} I_{i j}\left(\vec{p}_{T}, z\right) \otimes f_{j}(z) \\
& =S_{i+}\left(\vec{p}_{T}, z\right) \otimes f_{i}(z)[1+\mathcal{O}(1-z)]
\end{aligned}
$$

Dictates structure of coefficients $I_{i j}$ in the threshold limit:

- Logarithms of p_{τ} and z predicted by RG evolution

$$
\mu_{S_{+}}=p_{T}, \quad \nu_{S_{+}}=(1-z) Q,
$$

Proves conjecture by Echevarria, Scimemi, Vladimirov [arxiv:1604.07869]

- Can obtain SCET+ from SCET ${ }_{\|}: \nu_{B}=Q \rightarrow(1-z) Q=\nu_{S_{+}}$
- Corrections from SCET। and fixed-order start at NNLL

Conclusions

- Collisions involve many scales
\rightarrow additional collinear-soft modes = SCET+
- SCET+ enables the simultaneous resummation of
- Jet resolution parameters (this talk)
- Jet kinematic logarithms [Bauer, Tackmann, Walsh, Zuberi; Larkoski, Neill, Moult; Pietrulewicz, Tackmann, WW]
- Jet radius logarithms [Chien, Hornig, Lee; Kolodrubetz, Pietrulewicz, Stewart, Tackmann, WW]
- Non-global logarithms [Larkoski, Moult, Neill; Becher, Neubert, Rothen, Shao]

Stay tuned!

