



### Accessing gluon TMDs with quarkonium production

#### J.P. Lansberg

IPN Orsay – Paris-Sud U. –CNRS/IN2P3 QCD Evolution 2016 workshop May 30 - June 3, 2016 – Amsterdam, The Netherlands

Results obtained in collaboration with W. den Dunnen, M. Echevarria, C. Lorcé, C. Pisano, A. Signori, F. Scarpa, M. Schlegel, H.S. Shao

A (1) < A (1) < A (1) </p>

### Part I

# Generalities on gluon TMDs

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 2 / 28

イロト イポト イヨト イヨト

・ロト ・回ト ・ヨト ・ヨト

Observed final-state q<sub>T</sub> from
 "intrinsic" k<sub>T</sub> from initial partons



・ロット (雪) ・ ( 回)

< E

- Observed final-state q<sub>T</sub> from
   "intrinsic" k<sub>T</sub> from initial partons
- TMD factorisation from gluon-gluon process :  $q_T \ll Q$





- Observed final-state q<sub>T</sub> from
   "intrinsic" k<sub>T</sub> from initial partons
- TMD factorisation from gluon-gluon process :  $q_T \ll Q$





**H** is free of  $q_T$ 

- Observed final-state q<sub>T</sub> from
   "intrinsic" k<sub>T</sub> from initial partons
- TMD factorisation from gluon-gluon process :  $q_T \ll Q$





$$d\sigma = \frac{(2\pi)^4}{8s^2} \int d^2 \mathbf{k}_{1T} d^2 \mathbf{k}_{2T} \delta^2 (\mathbf{k}_{1T} + \mathbf{k}_{2T} - \mathbf{q}_T) H_{\mu\rho} (H_{\nu\sigma})^* \times \Phi_g^{\mu\nu} (x_1, \mathbf{k}_{1T}, \zeta_1, \mu) \Phi_g^{\rho\sigma} (x_2, \mathbf{k}_{2T}, \zeta_2, \mu) d\mathcal{R} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

- Observed final-state q<sub>T</sub> from
   "intrinsic" k<sub>T</sub> from initial partons
- TMD factorisation from gluon-gluon process :  $q_T \ll Q$





$$d\sigma = \frac{(2\pi)^4}{8s^2} \int d^2 \mathbf{k}_{1T} d^2 \mathbf{k}_{2T} \delta^2 (\mathbf{k}_{1T} + \mathbf{k}_{2T} - \mathbf{q}_T) H_{\mu\rho} (H_{\nu\sigma})^* \times \Phi_g^{\mu\nu}(x_1, \mathbf{k}_{1T}, \zeta_1, \mu) \Phi_g^{\rho\sigma}(x_2, \mathbf{k}_{2T}, \zeta_2, \mu) d\mathcal{R} + \mathcal{O}\left(\frac{q_T^2}{O^2}\right)$$

• Should work for SIDIS + *pp* reactions with colour singlet final states

Collins; Ji, Ma, Qiu; Rogers, Mulders, ...

Image: A matrix



| J.P. Lansberg 🗉 | (IPNO) |
|-----------------|--------|
|-----------------|--------|

Accessing gluon TMDs with onia

э June 3, 2016 4/28

< E



 $\bullet \ \mathcal{U} \ \text{and} \ \mathcal{U}'$  are process dependent gauge links

(1日) (1日) (日)



 $\bullet \ \mathcal{U} \ \text{and} \ \mathcal{U}'$  are process dependent gauge links

• Parametrisation:  

$$\Phi_{g}^{\mu\nu}(x, k_{T}, \zeta, \mu) = -\frac{1}{2x} \left\{ g_{T}^{\mu\nu} f_{1}^{g}(x, k_{T}, \mu) - \left( \frac{k_{T}^{\mu} k_{T}^{\nu}}{M_{p}^{2}} + g_{T}^{\mu\nu} \frac{k_{T}^{2}}{2M_{p}^{2}} \right) h_{1}^{\perp g}(x, k_{T}, \mu) \right\} + \text{suppr.}$$



•  $\mathcal{U}$  and  $\mathcal{U}'$  are process dependent gauge links

• Parametrisation:  

$$\Phi_{g}^{\mu\nu}(x, \boldsymbol{k}_{T}, \zeta, \mu) = -\frac{1}{2x} \left\{ g_{T}^{\mu\nu} f_{1}^{g}(x, \boldsymbol{k}_{T}, \mu) - \left( \frac{k_{T}^{\mu} k_{T}^{\nu}}{M_{p}^{2}} + g_{T}^{\mu\nu} \frac{\boldsymbol{k}_{T}^{2}}{2M_{p}^{2}} \right) h_{1}^{\perp g}(x, \boldsymbol{k}_{T}, \mu) \right\} + \text{suppr.}$$

- $f_1^g$ : TMD distribution of unpolarised gluons
- $h_1^{\perp g}$ : TMD distribution of linearly polarised gluons

[Helicity-flip distribution]

A = A = A = A = A = A
 A
 A

 $d\sigma^{gg} \propto$ 



< **1** → **1** → **1** → **1** 



< **1** → **1** → **1** → **1** 



 $\Rightarrow$  double helicity flip, azimuthally independent



$$+ \left(\sum_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{\lambda_a,\lambda_b} \hat{\mathcal{M}}_{-\lambda_a,\lambda_b}^*\right) \mathcal{C}[w_2 \times f_1^g h_1^{\downarrow g}] + \{a \leftrightarrow b\}$$
  

$$\Rightarrow \text{ single helicity flip, } \cos(2\phi) \text{-modulation}$$



$$+ \left(\sum_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{-\lambda_{a},\lambda_{b}}^{*}\right) \mathcal{C}[w_{2} \times f_{1}^{g} h_{1}^{\downarrow g}] + \{a \leftrightarrow b\}$$
  

$$\Rightarrow \text{ single helicity flip, } \cos(2\phi) \text{-modulation}$$

+ 
$$\left(\sum_{\lambda} \hat{\mathcal{M}}_{\lambda,-\lambda} \hat{\mathcal{M}}_{-\lambda,\lambda}^*\right) \mathcal{C}[w_4 \times h_1^{\perp g} h_1^{\perp g}]$$
  
 $\Rightarrow$  double helicity flip, cos(4 $\phi$ )-modulation

(日) (四) (三) (三)

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

◆ロ〉 ◆御〉 ◆理〉 ◆理〉 三語

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

• Gaussian form for  $h_1^{\perp g}$  [left:  $h_1^{\perp g} > 0$ ; right:  $h_1^{\perp g} < 0$ ]

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

• Gaussian form for  $h_1^{\perp g}$  [left:  $h_1^{\perp g} > 0$ ; right:  $h_1^{\perp g} < 0$ ]



• The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

• Gaussian form for  $h_1^{\perp g}$  [left:  $h_1^{\perp g} > 0$ ; right:  $h_1^{\perp g} < 0$ ]



- The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction
- A single constraint: a positivity bound  $|h_1^{\perp g}| \le (2M_p^2/\vec{k}_T^2)f_1^g$

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

• Gaussian form for  $h_1^{\perp g}$  [left:  $h_1^{\perp g} > 0$ ; right:  $h_1^{\perp g} < 0$ ]



- The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction
- A single constraint: a positivity bound  $|h_1^{\perp g}| \le (2M_p^2/\vec{k}_T^2)f_1^g$
- This bound is saturated by a number of models

J.P. Lansberg (IPNO)

A ⊡ ► < ∃ ►</p>

•  $h_1^{\perp g}$  receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)

・ 同 ト ・ ヨ ト ・ ヨ

- *h*<sub>1</sub><sup>⊥g</sup> receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make  $h_1^{\perp g}$  process dependent and even break factorisation
- Different independent h<sub>1</sub><sup>⊥g</sup> functions correspond to specific colour structures. Depending on the process, one extracts different combinations
   Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- $h_1^{\perp g}$  receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make  $h_1^{\perp g}$  process dependent and even break factorisation
- Different independent h<sub>1</sub><sup>⊥g</sup> functions correspond to specific colour structures. Depending on the process, one extracts different combinations
   Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027)
- Quarkonium production in *pp* collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches) as opposed to Colour-Singlet contributions

イロト イヨト イヨト

- $h_1^{\perp g}$  receives contributions from Initial-State Interactions (ISI) and Final-State Interactions (FSI)
- These can make  $h_1^{\perp g}$  process dependent and even break factorisation
- Different independent h<sub>1</sub><sup>⊥g</sup> functions correspond to specific colour structures. Depending on the process, one extracts different combinations
   Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027)
- Quarkonium production in *pp* collisions might face factorisation breaking effects if the bleaching of the heavy-quark pair occurs over long times (COM-NRQCD and CEM approaches) as opposed to Colour-Singlet contributions
- CS vs. CO contributions should be analysed case by case

[reactions and kinematics]

・ロン ・雪 と ・ ヨ と

### Advantages of $2 \rightarrow 2$ processes

#### Advantages of $2 \rightarrow 2$ processes

#### • $2 \rightarrow 1$ process :

- Resulting particle has to be at small  $q_T$
- $\rightarrow$  likely difficult to measure at colliders, in particular for mesons (less for H, W, Z)
- Hard scale has to be the particle mass :  $Q^2 = M^2$

 $\rightarrow$  does not help to study TMD evolution

#### Advantages of $2 \rightarrow 2$ processes

#### • $2 \rightarrow 1$ process :

- Resulting particle has to be at small  $q_T$
- $\rightarrow$  likely difficult to measure at colliders, in particular for mesons (less for H, W, Z)
- Hard scale has to be the particle mass :  $Q^2 = M^2$  $\rightarrow$  does not help to study TMD evolution
- Back-to-back (low  $q_T$ ) 2  $\rightarrow$  2 process :
  - Produced particles can each have a large  $\vec{p}_T$  adding up to make a small  $\vec{q}_T$  for the pair. One can impose  $\vec{p}_T$  large enough for the particle to be detectable
  - This renders the TMD "region" ( $q_T \ll Q$ ) as wide as we wish
  - Hard scale  $Q^2 = (k_1 + k_2)^2$  can be tuned to study the

QCD evolution of the TMDs

## Part II

# Ideas to extract gluon TMDs at colliders

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 9 / 28

< 3 ×

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

◆ロ〉 ◆御〉 ◆理〉 ◆理〉 三語

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

ヘロト ヘヨト ヘヨト ヘヨト

• Beside being the QCD background for  $H^0$  studies in the  $\gamma\gamma$  channel,  $pp \rightarrow \gamma\gamma X$  is an interesting process to study gluon TMDs

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Beside being the QCD background for  $H^0$  studies in the  $\gamma\gamma$  channel,  $pp \rightarrow \gamma\gamma X$  is an interesting process to study gluon TMDs
- Only colour-singlet particles in the final state

(also true for *ZZ* and  $\gamma Z$ )

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Beside being the QCD background for  $H^0$  studies in the  $\gamma\gamma$  channel,  $pp \rightarrow \gamma\gamma X$  is an interesting process to study gluon TMDs
- Only colour-singlet particles in the final state

(also true for *ZZ* and  $\gamma Z$ )

• But contaminations from the  $q\bar{q}$  channel (particularly at RHIC)

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

(D) (A) (A) (A) (A)

- Beside being the QCD background for  $H^0$  studies in the  $\gamma\gamma$  channel,  $pp \rightarrow \gamma\gamma X$  is an interesting process to study gluon TMDs
- Only colour-singlet particles in the final state

(also true for *ZZ* and  $\gamma Z$ )

• But contaminations from the  $q\bar{q}$  channel (particularly at RHIC)


### Di-photon

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

• At  $\sqrt{s} = 500$  GeV, for  $p_T^{\gamma} \ge 1$  GeV,  $4 \le Q^2 \le 30$  GeV,  $0 \le q_T \le 1$  GeV



• = •

4 円

### Di-photon

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

• At  $\sqrt{s} = 500$  GeV, for  $p_T^{\gamma} \ge 1$  GeV,  $4 \le Q^2 \le 30$  GeV,  $0 \le q_T \le 1$  GeV



• Only  $F_4$  (*i.e.* the  $cos(4\phi)$  modulation) is purely gluonic

### Di-photon

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

• At  $\sqrt{s} = 500$  GeV, for  $p_T^{\gamma} \ge 1$  GeV,  $4 \le Q^2 \le 30$  GeV,  $0 \le q_T \le 1$  GeV



• Only  $F_4$  (*i.e.* the  $cos(4\phi)$  modulation) is purely gluonic

• Huge background from  $\pi^0 \rightarrow$  isolation cuts are needed

J.P. Lansberg (IPNO)

| J.P. Lansberg 🗉 | (IPNO) |
|-----------------|--------|
|-----------------|--------|

・ロト ・回ト ・ヨト ・ヨト

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer\* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano<sup>†</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer<sup>®</sup> Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano<sup>†</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

- Low P<sub>T</sub> C-even quarkonium production is a good probe of h<sup>1g</sup><sub>1</sub>
- In general, heavy-flavor prod. selects out gg channels

<ロ> (日) (日) (日) (日) (日)

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer<sup>®</sup> Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano<sup>†</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low P<sub>T</sub> C-even quarkonium production is a good probe of h<sup>1g</sup><sub>1</sub>
- In general, heavy-flavor prod. selects out gg channels
- Affect the low  $P_T$  spectra:

 $\left(R = \frac{\mathcal{C}\left[w_0^{mn} h_1^{-s} h_1^{-s}\right]}{\mathcal{C}\left[f_1^g f_1^g\right]}\right)$ 

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$$



(D) (A) (A) (A) (A)

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer<sup>®</sup> Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano<sup>†</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low *P<sub>T</sub> C*-even quarkonium production is a good probe of *h*<sub>1</sub><sup>⊥g</sup>
- In general, heavy-flavor prod. selects out gg channels
- Affect the low  $P_T$  spectra:

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$$



• Cannot tune  $Q: Q \simeq m_Q$ 



June 3, 2016 12 / 28

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

PHYSICAL REVIEW D 86, 094007 (2012) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer<sup>\*</sup> Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano<sup>†</sup> Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

- Low *P<sub>T</sub> C*-even quarkonium production is a good probe of *h*<sub>1</sub><sup>⊥g</sup>
- In general, heavy-flavor prod. selects out gg channels
- Affect the low  $P_T$  spectra:

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$$
$$(R = \frac{\mathcal{C}[w_0^{hh} h_1^{\perp g} h_1^{\perp g}]}{\mathcal{C}[f_1^g f_1^g]})$$

• Cannot tune  $Q: Q \simeq m_Q$ 

• Low *P<sub>T</sub>*: Experimentally very difficult First *η<sub>c</sub>* production study at collider ever, only released in 2014

for  $P_T^{\eta_c} > 6$  GeV LHCb, EPJC75 (2015) 311



#### • $\eta_c$ production at one-loop : everything works fine

PHYSICAL REVIEW D 88, 014027 (2013)

#### Transverse momentum dependent factorization for quarkonium production at low transverse momentum

J. P. Ma,1,2 J. X. Wang,3 and S. Zhao1

<sup>1</sup>Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100190, China <sup>2</sup>Center for High-Energy Physics, Peking University, Beijing 100871, China <sup>3</sup>Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4), Beijing 100049, China

#### Pheno at NLO: M. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori, work in progress

イロト イポト イヨト イヨト

#### • *η<sub>c</sub>* **production at one-loop** : everything works fine

PHYSICAL REVIEW D 88, 014027 (2013)

#### Transverse momentum dependent factorization for quarkonium production at low transverse momentum

J. P. Ma,1,2 J. X. Wang,3 and S. Zhao1

<sup>1</sup>Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100190, China <sup>2</sup>Center for High-Energy Physics, Peking University, Beijing 100871, China <sup>3</sup>Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4), Beijing 100049, China

#### Pheno at NLO: M. Echevarria, T. Kasemets, JPL, C. Pisano, A. Signori, work in progress

#### • $\chi_{c0,2}$ factorisation issue ? $\leftrightarrow$ Colour Octet - Colour Singlet mixing

Physics Letters B 737 (2014) 103-108



Breakdown of QCD factorization for P-wave quarkonium production at low transverse momentum

J.P. Ma<sup>a,b,\*</sup>, J.X. Wang<sup>c</sup>, S. Zhao<sup>a</sup>

\* State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100190, China

<sup>b</sup> Center for High-Energy Physics, Peking University, Beijing 100871, China

<sup>c</sup> Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4), Beijing 100049, China

Accessing gluon TMDs with onia

June 3, 2016 13 / 28

CrossMark

# Part III

# Going further with associated-quarkonium production

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 14 / 28

. . . . . . .

#### • Unique candidate to pin down the gluon TMDs



#### $Q + \gamma$

# $Q + \gamma$ at low $P_T^{\psi - \gamma}$

#### • Unique candidate to pin down the gluon TMDs

• Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned



イロト イボト イヨト イヨト

#### • Unique candidate to pin down the gluon TMDs

- Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned
- gluon sensitive process (see next page)



#### $Q + \gamma$

- Unique candidate to pin down the gluon TMDs
  - Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned
  - gluon sensitive process (see next page)
  - colourless final state for  $\Upsilon + \gamma$ : TMD factorisation ok (see next page)

Q + v



・ ロ ト ・ 同 ト ・ 三 ト ・ 三 三

- Unique candidate to pin down the gluon TMDs
  - Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned
  - gluon sensitive process (see next page)



- colourless final state for Υ + *y*: TMD factorisation ok (see next page)
- colourless final state for  $J/\psi + \gamma$  once the  $J/\psi$  is isolated like the photon

#### $Q + \gamma$

- Unique candidate to pin down the gluon TMDs
  - Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned
  - gluon sensitive process (see next page)



• colourless final state for Υ + *y*: TMD factorisation ok (see next page)

Q + v

- colourless final state for  $J/\psi + \gamma$  once the  $J/\psi$  is isolated like the photon
- Looking at low  $P_T^{\psi-\gamma}$ , i.e. "back-to-back", limits the DPS contributions [a priori evenly distributed in  $\Delta \phi$ ]

イロト イボト イヨト イヨト

- Unique candidate to pin down the gluon TMDs
  - Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned
  - gluon sensitive process (see next page)



• colourless final state for Υ + *y*: TMD factorisation ok (see next page)

Q + v

- colourless final state for  $J/\psi + \gamma$  once the  $J/\psi$  is isolated like the photon
- Looking at low  $P_T^{\psi-\gamma}$ , i.e. "back-to-back", limits the DPS contributions [a priori evenly distributed in  $\Delta \phi$ ]
- The photon isolation should also limit DPS events with back-to-back configurations

<ロ> (日) (日) (日) (日) (日)

- Unique candidate to pin down the gluon TMDs
  - Hard scale  $M_{\psi-\gamma}$  (or  $Q_{\psi-\gamma}$ ) can be tuned
  - gluon sensitive process (see next page)



- colourless final state for Υ + *γ*: TMD factorisation ok (see next page)
- colourless final state for  $J/\psi + \gamma$  once the  $J/\psi$  is isolated like the photon
- Looking at low  $P_T^{\psi-\gamma}$ , i.e. "back-to-back", limits the DPS contributions [a priori evenly distributed in  $\Delta \phi$ ]
- The photon isolation should also limit DPS events with back-to-back configurations
- TMD factorisation could still hold with CO contributions owing to the presence of the final-state γ
  See Higgs+jet: D. Boer, C. Pisano, PRD 91 (2015) 7 074024 See Higgs+jet: D. Boer, C. Pisano, PRD 91 (2015) 7 074024

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 15 / 28

 $Q + \gamma$ 

### Expected rates for back-to-back $Q + \gamma$



### Expected rates for back-to-back $Q + \gamma$



• *qq* contribution negligible;

### Expected rates for back-to-back $Q + \gamma$



• *qq* contribution negligible;

• CO (orange) smaller than CS (blue): isolation not needed for Υ

### Expected rates for back-to-back $Q + \gamma$



• *qq* contribution negligible;

- CO (orange) smaller than CS (blue): isolation not needed for Υ
- At 14 TeV,  $\sigma(J/\psi|\Upsilon + \gamma, Q > 20 \text{GeV}) \simeq 100 \text{fb}$ ; about half at 7 TeV

### Expected rates for back-to-back $Q + \gamma$



- *qq* contribution negligible;
- CO (orange) smaller than CS (blue): isolation not needed for Υ
- At 14 TeV,  $\sigma(J/\psi|\Upsilon + \gamma, Q > 20 \text{GeV}) \simeq 100 \text{fb}$ ; about half at 7 TeV
- With the  $\mathcal{L} \simeq 20 \text{ fb}^{-1}$  of *pp* data on tape, one expects up to 2000 events.

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 16 / 28

### back-to-back $Q + \gamma$ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

<ロ> (日) (日) (日) (日) (日)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_r\mathrm{d}\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s\,Q^3D} \left\{ F_1\mathcal{C}\left[f_1^gf_1^g\right] + F_3\mathrm{cos}(2\phi_{CS})\mathcal{C}\left[w^{fh}f_1^gh_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4\mathrm{cos}(4\phi_{CS})\mathcal{C}\left[w_4^{fh}h_1^{\perp g}h_1^{\perp g}\right] \right\} \\ + \mathcal{O}\left(\frac{q_r^2}{Q^2}\right) \left[g_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{\mu}h_1^{$$

### back-to-back $Q + \gamma$ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

ヘロト ヘヨト ヘヨト ヘヨト

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_{T}\mathrm{d}\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s\,Q^3D} \left\{ F_1\mathcal{C}\left[f_1^g f_1^g\right] + F_3 \cos(2\boldsymbol{\phi}_{CS})\mathcal{C}\left[w^{fh}_1 f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4 \cos(4\boldsymbol{\phi}_{CS})\mathcal{C}\left[w^{fh}_4 h_1^{\perp g} h_1^{\perp g}\right] \right\} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \left\{ \frac{1}{2} \left(\frac{1}{2} \right(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}$$

• We define: 
$$S_{q_T}^{(n)} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}\cos\theta_{CS}}\right)^{-1} \int \mathrm{d}\phi_{CS}\pi \cos(n\phi_{CS}) \frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2} \boldsymbol{q}_T\mathrm{d}\Omega$$

### back-to-back $Q + \gamma$ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

<ロ> (日) (日) (日) (日) (日)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_r\mathrm{d}\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D} \left\{ F_1\mathcal{C}\left[f_1^g f_1^g\right] + F_3 \cos(2\phi_{CS})\mathcal{C}\left[w^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4 \cos(4\phi_{CS})\mathcal{C}\left[w^{4h} h_1^{\perp g} h_1^{\perp g}\right] \right\} \\ + \mathcal{O}\left(\frac{q_1^2}{Q^2}\right) \left[ \frac{1}{q} + \frac{1}{q} +$$

• We define: 
$$S_{q_T}^{(n)} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}\cos\theta_{CS}}\right)^{-1} \int \mathrm{d}\phi_{CS}\pi \cos(n\phi_{CS}) \frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_T\mathrm{d}\Omega}$$

• 
$$S_{q_T}^{(0)} = \frac{C[f_1^g f_1^g]}{\int dq_T^2 C[f_1^g f_1^g]}$$
: does not involve  $h_1^{\perp g} (F_2 = 0)$  [not always the case]

### back-to-back $Q + \gamma$ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

<ロ> (日) (日) (日) (日) (日)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_r\mathrm{d}\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D} \left\{ F_1\mathcal{C}\left[f_1^g f_1^g\right] + F_3 \cos(2\phi_{CS})\mathcal{C}\left[w^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4 \cos(4\phi_{CS})\mathcal{C}\left[w^{4h} h_1^{\perp g} h_1^{\perp g}\right] \right\} \\ + \mathcal{O}\left(\frac{q_1^2}{Q^2}\right) \left[ \frac{1}{q} + \frac{1}{q} +$$

• We define: 
$$S_{q_T}^{(n)} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{Q}\mathrm{d}\mathrm{Y}\mathrm{d}\cos\theta_{CS}}\right)^{-1} \int \mathrm{d}\phi_{CS}\pi \cos(n\phi_{CS}) \frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{Q}\mathrm{d}\mathrm{Y}\mathrm{d}^2\boldsymbol{q}_T\mathrm{d}\Omega}$$

• 
$$S_{q_T}^{(0)} = \frac{\mathcal{C}[f_1^g f_1^g]}{\int dq_T^2 \mathcal{C}[f_1^g f_1^g]}$$
: does not involve  $h_1^{\perp g} (F_2 = 0)$  [not always the case]

• 
$$S_{q_T}^{(2)} = \frac{F_3 C[w_2^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2]}{2F_1 \int dq_T^2 C[f_1^g f_1^g]}$$

### back-to-back $Q + \gamma$ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

• The  $\boldsymbol{q}_T$ -differential cross section involves  $f_1^g(\boldsymbol{x}, \boldsymbol{k}_T, \boldsymbol{\mu}_F)$  and  $h_1^{\perp g}(\boldsymbol{x}, \boldsymbol{k}_T, \boldsymbol{\mu}_F)$ 

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_r\mathrm{d}\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D} \left\{ F_1\mathcal{C}\left[f_1^g f_1^g\right] + F_3 \cos(2\phi_{CS})\mathcal{C}\left[w^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4 \cos(4\phi_{CS})\mathcal{C}\left[w^{4h} h_1^{\perp g} h_1^{\perp g}\right] \right\} \\ + \mathcal{O}\left(\frac{q_1^2}{Q^2}\right) \left[ \frac{1}{q} + \frac{1}{q} +$$

• We define: 
$$S_{q_T}^{(n)} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}\cos\theta_{CS}}\right)^{-1} \int \mathrm{d}\phi_{CS}\pi \cos(n\phi_{CS}) \frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2} \boldsymbol{q}_T\mathrm{d}\Omega$$

•  $S_{q_T}^{(0)} = \frac{\mathcal{C}[f_1^g f_1^g]}{\int dq_T^2 \mathcal{C}[f_1^g f_1^g]}$ : does not involve  $h_1^{\perp g} (F_2 = 0)$  [not always the case]

• 
$$S_{q_T}^{(2)} = \frac{F_3 C[w_2^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2]}{2F_1 \int dq_T^2 C[f_1^g f_1^g]}$$

• 
$$S_{q_T}^{(4)} = \frac{F_4 C [w_4^{hh} h_1^{\perp g} h_1^{\perp g}]}{2F_1 \int dq_T^2 C [f_1^g f_1^g]}$$

### back-to-back $Q + \gamma$ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

イロト イポト イヨト イヨ

• The  $\boldsymbol{q}_T$ -differential cross section involves  $f_1^g(\boldsymbol{x}, \boldsymbol{k}_T, \boldsymbol{\mu}_F)$  and  $h_1^{\perp g}(\boldsymbol{x}, \boldsymbol{k}_T, \boldsymbol{\mu}_F)$ 

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_r\mathrm{d}\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D} \left\{ F_1\mathcal{C}\left[f_1^g f_1^g\right] + F_3 \cos(2\phi_{CS})\mathcal{C}\left[w^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4 \cos(4\phi_{CS})\mathcal{C}\left[w^{fh} h_1^{\perp g} h_1^{\perp g}\right] \right\} \\ + \mathcal{O}\left(\frac{q_r^2}{Q^2}\right) \left[ \frac{1}{q} + \frac{1}{q} +$$

• We define: 
$$S_{q_T}^{(n)} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}\cos\theta_{CS}}\right)^{-1} \int \mathrm{d}\phi_{CS}\pi \cos(n\phi_{CS}) \frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2} \boldsymbol{q}_T\mathrm{d}\Omega$$

• 
$$S_{q_T}^{(0)} = \frac{\mathcal{C}[f_1^g f_1^g]}{\int dq_T^2 \mathcal{C}[f_1^g f_1^g]}$$
: does not involve  $h_1^{\perp g} (F_2 = 0)$  [not always the case]

• 
$$S_{q_T}^{(2)} = \frac{F_3 C[w_2^{fh} f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2]}{2F_1 \int dq_T^2 C[f_1^g f_1^g]}$$

• 
$$S_{q_T}^{(4)} = \frac{F_4 C [w_4^{hh} h_1^{\perp g} h_1^{\perp g}]}{2F_1 \int dq_T^2 C [f_1^g f_1^g]}$$

 $S_{q_T}^{(2)}, S_{q_T}^{(4)} \neq 0 \Rightarrow$  nonzero gluon polarisation in unpolarised protons !

### Results with UGDs as Ansätze for TMDs



W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

# • $S_{q_T}^{(0)}: f_1^g(x, k_T)$ from the $q_T$ -dependence of the yield.

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 18 / 28

### Results with UGDs as Ansätze for TMDs



•  $S_{q_T}^{(0)}: f_1^g(x, k_T)$  from the  $q_T$ -dependence of the yield. •  $S_{q_T}^{(4)}: \int dq_T S_{q_T}^{(4)}$  should be measurable [ $\mathcal{O}(1-2\%)$ : ok with 2000 events]

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Q + v

### Results with UGDs as Ansätze for TMDs



•  $S_{q_T}^{(4)}$  :  $\int dq_T S_{q_T}^{(4)}$  should be measurable [ $\mathcal{O}(1-2\%)$ : ok with 2000 events] •  $\mathcal{S}_{a_{T}}^{(2)}$ : slightly larger than  $\mathcal{S}_{a_{T}}^{(4)}$ 

J.P. Lansberg (IPNO)

June 3, 2016 18 / 28

A (1) > A (2) > A (3) >

### Already measured ?

PRL 114, 121801 (2015)

#### Search for Higgs and Z Boson Decays to $J/\psi\gamma$ and $\Upsilon(nS)\gamma$ with the ATLAS Detector

G. Aad et al.\*

(ATLAS Collaboration)

(Received 15 January 2015; published 26 March 2015)

A search for the decays of the Higgs and Z bosons to  $J/\psi\gamma$  and  $\Upsilon(nS)\gamma$  (n = 1, 2, 3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3 fb<sup>-1</sup> collected at  $\sqrt{s} = 8$  TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the  $J/\psi\gamma$  final state the limits are  $1.5 \times 10^{-3}$  and  $2.6 \times 10^{-6}$  for the Higgs and Z boson decays, respectively, while in the  $\Upsilon(1S, 2S, 3S)\gamma$  final states the limits are  $(1.3, 1.9, 1.3) \times 10^{-3}$  and  $(3.4, 6.5, 5.4) \times 10^{-6}$ , respectively.



J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 19 / 28

### Same at AFTER@LHC

AFTER@LHC : a fixed-target experiment using the LHC beams

• 
$$\sqrt{2 \times m_N \times E_p} \stackrel{7TeV}{=} 115 \text{ GeV}$$
### Same at AFTER@LHC

AFTER@LHC : a fixed-target experiment using the LHC beams

- $\sqrt{2 \times m_N \times E_p} \stackrel{7TeV}{=} 115 \text{ GeV}$
- Experimental coverage of ALICE or LHCb is about y<sub>cms</sub> ∈ [-3:0]
  down to x<sub>F</sub> → -1 for Q ≥ 5 GeV

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Same at AFTER@LHC

AFTER@LHC : a fixed-target experiment using the LHC beams

- $\sqrt{2 \times m_N \times E_p} \stackrel{7TeV}{=} 115 \text{ GeV}$
- Experimental coverage of ALICE or LHCb is about  $y_{cms} \in [-3:0]$ down to  $x_F \rightarrow -1$  for  $Q \gtrsim 5$  GeV
- For  $\psi + \gamma$ , smaller yield (14 TeV  $\rightarrow$  115 GeV) compensated

by an access to lower  $P_T$ 

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Same at AFTER@LHC

AFTER@LHC : a fixed-target experiment using the LHC beams

- $\sqrt{2 \times m_N \times E_p} \stackrel{7TeV}{=} 115 \text{ GeV}$
- Experimental coverage of ALICE or LHCb is about  $y_{cms} \in [-3:0]$ down to  $x_F \rightarrow -1$  for  $Q \gtrsim 5$  GeV
- For  $\psi + \gamma$ , smaller yield (14 TeV  $\rightarrow$  115 GeV) compensated

by an access to lower  $P_T$ 



J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 20 / 28

### Same at AFTER@LHC

AFTER@LHC : a fixed-target experiment using the LHC beams

- $\sqrt{2 \times m_N \times E_p} \stackrel{7TeV}{=} 115 \text{ GeV}$
- Experimental coverage of ALICE or LHCb is about  $y_{cms} \in [-3:0]$ down to  $x_F \rightarrow -1$  for  $Q \gtrsim 5$  GeV
- For  $\psi + \gamma$ , smaller yield (14 TeV  $\rightarrow$  115 GeV) compensated

by an access to lower  $P_T$ 



### $\Upsilon + Z$ cross sections

B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

• Rates similar for  $\Upsilon + Z$  and  $J/\psi + Z$  [Same for  $Q + \gamma$  for  $Q \gtrsim 20$  GeV]



(日) (四) (三) (三)

#### $\Upsilon + Z$ cross sections

B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

• Rates similar for  $\Upsilon + Z$  and  $J/\psi + Z$  [Same for  $Q + \gamma$  for  $Q \gtrsim 20$  GeV]



June 3, 2016 21 / 28

### $\Upsilon + Z$ cross sections

B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

• Rates similar for  $\Upsilon + Z$  and  $J/\psi + Z$  [Same for  $Q + \gamma$  for  $Q \gtrsim 20$  GeV]



• Potential probe of gluon TMDs as well

### $\Upsilon + Z$ cross sections

B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

• Rates similar for  $\Upsilon + Z$  and  $J/\psi + Z$  [Same for  $Q + \gamma$  for  $Q \gtrsim 20$  GeV]



- Potential probe of gluon TMDs as well
- Rate clearly smaller than  $Q + \gamma$  even at low  $P_T$

### $\Upsilon + Z$ and TMDs

JPL, C. Pisano, M. Schlegel

- $\Upsilon + Z @\sqrt{s} = 14$  TeV;
- Q = 120 GeV, Y = 0,  $\theta = \pi/2$



 $Q + \gamma$ 

(日) (四) (三) (三)

### $\Upsilon + Z$ and TMDs

JPL, C. Pisano, M. Schlegel

- $\Upsilon + Z @\sqrt{s} = 14$  TeV;
- Q = 120 GeV, Y = 0,  $\theta = \pi/2$



Q + v

•  $S_{q_T}^{(n)}$  smaller than for  $Q + \gamma$ 

[one can integrate up to larger  $q_T$ , though]

### $\Upsilon + Z$ and TMDs

JPL, C. Pisano, M. Schlegel

- $\Upsilon + Z @\sqrt{s} = 14$  TeV;
- Q = 120 GeV,  $Y = 0, \theta = \pi/2$



Q + v

- $S_{q_T}^{(n)}$  smaller than for  $Q + \gamma$  [one can integrate up to larger  $q_T$ , though]
- Naturally large Q: interest to study the scale evolution ?

イロト イポト イヨト イヨト

# Part IV

# The case of quarkonium pair production

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 23 / 28

A. E. K.

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

- $\eta_c + \eta_c$  at low  $P_T^{\eta_c \eta_c}$
- Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

・ロト ・日ト ・ヨト ・ヨト

• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

• At high energies, the  $q\bar{q}$  contribution is negligible;

• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

- At high energies, the  $q\bar{q}$  contribution is negligible;
- No reason for significant CO contribution and no final state gluon needed



• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

- At high energies, the  $q\bar{q}$  contribution is negligible;
- No reason for significant CO contribution and no final state gluon needed



• For  $J/\psi + \eta_c$ , a final state gluon is needed

JPL, H.S. Shao PRL 111, 122001 (2013)

• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

JPL, H.S. Shao PRL 111, 122001 (2013)

A (1) < A (1) < A (1) </p>

- At high energies, the qq contribution is negligible;
- No reason for significant CO contribution and no final state gluon needed



• For  $J/\psi + \eta_c$ , a final state gluon is needed

• All 4 possible terms are nonzero:  $\frac{d\sigma}{dyd\rho/2_{a,dO}} = \frac{\pi^2 c_{*}^4 (\mathcal{O}_{!}^{(1)}(S_0))^2 \rho}{n^{2}(N^2 - 1)M^6 SO} \int \left( B_1[f_{1a}^g f_{1B}^g] + B_2 \cos 2\phi \left[ \frac{w_b}{2m^2} f_{1a}^g h_{1B}^{la} + \frac{w_a}{2m^2} h_{1A}^{la} f_{1B}^g \right] \right)$ 

 $+B_{3}\left[\frac{C_{1}+C_{3}}{4m^{2}m^{2}_{z}}h_{1A}^{\perp g}h_{1B}^{\perp g}\right]+B_{4}\cos 4\phi\left[\frac{C_{1}-C_{3}}{4m^{2}m^{2}}h_{1A}^{\perp g}h_{1B}^{\perp g}\right]\right),$ 

June 3, 2016 24/28

• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

JPL, H.S. Shao PRL 111, 122001 (2013)

- At high energies, the qq contribution is negligible;
- No reason for significant CO contribution and no final state gluon needed



- For  $J/\psi + \eta_c$ , a final state gluon is needed
- Expected (weighted) cross sections



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

TABLE I. The weighted differential cross sections obtained from the Gaussian model at  $\sqrt{S} = 7$  TeV and y = 0, as defined in Eq. (20). In the calculation, we choose  $\alpha_s = 0.15$ ,  $M_n = 3.0$  GeV and ignore all scale dependence.

|                                                                | $Q({\rm GeV}) \in (6.0,10.0)$          | (10.0, 15.0)                               | (15.0, 20.0)                            | (20.0, 40.0)                            |
|----------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|
| $\langle 1 \rangle (pb)$<br>$ \langle \cos 2\phi \rangle (pb)$ | $2.3 \times 10^4$<br>$2.4 \times 10^3$ | $1.7 \times 10^{3}$<br>$4.6 \times 10^{2}$ | $1.8 \times 10^2$<br>$0.72 \times 10^2$ | $1.3 \times 10^2$<br>$0.63 \times 10^2$ |
| $\langle \cos 4\phi \rangle (pb)$                              | $0.20 \times 10^{2}$                   | 9.1                                        | 2.5                                     | 3.3                                     |

June 3, 2016 24/28

• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

JPL, H.S. Shao PRL 111, 122001 (2013)

- At high energies, the qq contribution is negligible;
- No reason for significant CO contribution and no final state gluon needed



- For  $J/\psi + \eta_c$ , a final state gluon is needed
- Expected (weighted) cross sections



イロト イポト イヨト イヨト

TABLE I. The weighted differential cross sections obtained from the Gaussian model at  $\sqrt{S} = 7$  TeV and y = 0, as defined in Eq. (20). In the calculation, we choose  $\alpha_s = 0.15$ ,  $M_n = 3.0$  GeV and ignore all scale dependence.

|                                                                | $Q({\rm GeV}) \in (6.0,10.0)$          | (10.0, 15.0)                               | (15.0, 20.0)                            | (20.0, 40.0)                            |
|----------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|
| $\langle 1 \rangle (pb)$<br>$ \langle \cos 2\phi \rangle (pb)$ | $2.3 \times 10^4$<br>$2.4 \times 10^3$ | $1.7 \times 10^{3}$<br>$4.6 \times 10^{2}$ | $1.8 \times 10^2$<br>$0.72 \times 10^2$ | $1.3 \times 10^2$<br>$0.63 \times 10^2$ |
| $\langle \cos 4\phi \rangle (pb)$                              | $0.20 \times 10^{2}$                   | 9.1                                        | 2.5                                     | 3.3                                     |

• At  $\sqrt{s} = 14$  TeV, cross-sections will increase by a 2 factor ((1) ~  $\sigma$ )

J.P. Lansberg (IPNO)

• Theoretically, the simplest;

G.P. Zhang, Phys.Rev. D 90 (2014) 9 094011

JPL, H.S. Shao PRL 111, 122001 (2013)

- At high energies, the qq contribution is negligible;
- No reason for significant CO contribution and no final state gluon needed



- For  $J/\psi + \eta_c$ , a final state gluon is needed
- Expected (weighted) cross sections



TABLE I. The weighted differential cross sections obtained from the Gaussian model at  $\sqrt{S} = 7$  TeV and y = 0, as defined in Eq. (20). In the calculation, we choose  $\alpha_s = 0.15$ ,  $M_n = 3.0$  GeV and ignore all scale dependence.

|                                                                | $Q({\rm GeV}) \in (6.0,10.0)$          | (10.0, 15.0)                               | (15.0, 20.0)                            | (20.0, 40.0)                            |
|----------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|
| $\langle 1 \rangle (pb)$<br>$ \langle \cos 2\phi \rangle (pb)$ | $2.3 \times 10^4$<br>$2.4 \times 10^3$ | $1.7 \times 10^{3}$<br>$4.6 \times 10^{2}$ | $1.8 \times 10^2$<br>$0.72 \times 10^2$ | $1.3 \times 10^2$<br>$0.63 \times 10^2$ |
| $\langle \cos 4\phi \rangle (pb)$                              | $0.20 \times 10^{2}$                   | 9.1                                        | 2.5                                     | 3.3                                     |

• At  $\sqrt{s} = 14$  TeV, cross-sections will increase by a 2 factor ((1) ~  $\sigma$ )

• 
$$(1, \cos 2\phi) \times Br^2(\eta_c \to p\bar{p}) \simeq 1 - 50 \text{ fb}$$

observable at LHC Run Ib?

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 24/28

JPL, H.S. Shao PLB 751 (2015) 479

JPL, H.S. Shao PLB 751 (2015) 479

 J/ψ are much easier to detect. Pair production already studied by LHCb & CMS at the LHC and D0 at the Tevatron

LHCb PLB 707 (2012) 52; CMS JHEP 1409 (2014) 094; D0 PRD 90 (2014) 111101

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

JPL, H.S. Shao PLB 751 (2015) 479

 J/ψ are much easier to detect. Pair production already studied by LHCb & CMS at the LHC and D0 at the Tevatron

LHCb PLB 707 (2012) 52; CMS JHEP 1409 (2014) 094; D0 PRD 90 (2014) 111101

• Negligible qq̄ contributions at these energies

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

JPL, H.S. Shao PLB 751 (2015) 479

 J/ψ are much easier to detect. Pair production already studied by LHCb & CMS at the LHC and D0 at the Tevatron

LHCb PLB 707 (2012) 52; CMS JHEP 1409 (2014) 094; D0 PRD 90 (2014) 111101

- Negligible qq̄ contributions at these energies
- Similar graphs as for  $\eta_c + \eta_c$ . No final state gluon needed for the Born contribution. The expressions are more complex due to the  $J/\psi$  polarisation
- Negligible CO contributions, in particular at low  $P_T^{\psi\psi}$  [black/dashed curves vs. blue]



イロト イポト イヨト イヨト

JPL, H.S. Shao PLB 751 (2015) 479

 J/ψ are much easier to detect. Pair production already studied by LHCb & CMS at the LHC and D0 at the Tevatron

LHCb PLB 707 (2012) 52; CMS JHEP 1409 (2014) 094; D0 PRD 90 (2014) 111101

- Negligible qq̄ contributions at these energies
- Similar graphs as for η<sub>c</sub> + η<sub>c</sub>. No final state gluon needed for the Born contribution. The expressions are more complex due to the J/ψ polarisation
- Negligible CO contributions, in particular at low  $P_T^{\psi\psi}$  [black/dashed curves vs. blue]
- At low P<sup>ψψ</sup><sub>T</sub>, smaller DPS effects, otherwise needed to explain CMS data at large Δy



Image: A math a math

JPL, C. Pisano, F. Scarpa, work in progress

JPL, C. Pisano, F. Scarpa, work in progress

• All allowed terms are nonzero (unlike  $J/\psi + \gamma (A^h = 0)$ )

 $d\sigma \propto A^{f} C[f_{1}^{g} f_{1}^{g}] + A^{h} C[w_{0}^{hh} h_{1}^{\perp g} h_{1}^{\perp g}]$  $+ B \Big[ C[w_{2}^{fh} f_{1}^{g} h_{1}^{\perp g}] + C[w_{2}^{hf} h_{1}^{\perp g} f_{1}^{g}] \Big] \cos(2\phi) + C C[w_{4}^{hh} h_{1}^{\perp g} h_{1}^{\perp g}] \cos(4\phi)$ 

• The expressions for *A*-*D* are tractable (a little too long though to be shown in an useful manner)

(D) (A) (A) (A) (A)

JPL, C. Pisano, F. Scarpa, work in progress

• All allowed terms are nonzero (unlike  $J/\psi + \gamma (A^h = 0)$ )

 $d\sigma \propto A^{f} C[f_{1}^{g} f_{1}^{g}] + A^{h} C[w_{0}^{hh} h_{1}^{\perp g} h_{1}^{\perp g}]$  $+ B \Big[ C[w_{2}^{fh} f_{1}^{g} h_{1}^{\perp g}] + C[w_{2}^{hf} h_{1}^{\perp g} f_{1}^{g}] \Big] \cos(2\phi) + C C[w_{4}^{hh} h_{1}^{\perp g} h_{1}^{\perp g}] \cos(4\phi)$ 

- The expressions for *A*-*D* are tractable (a little too long though to be shown in an useful manner)
- For typical kinematical configurations, A<sup>h</sup> ≪ B ≪ A<sup>f</sup>, C. As what regards A<sup>h</sup>, the situation is similar to J/ψ + γ.

JPL, C. Pisano, F. Scarpa, work in progress

• All allowed terms are nonzero (unlike  $J/\psi + \gamma (A^h = 0)$ )

 $d\sigma \propto A^{f} \mathcal{C}[f_{1}^{g}f_{1}^{g}] + A^{h} \mathcal{C}[w_{0}^{hh} h_{1}^{\perp g} h_{1}^{\perp g}]$  $+ B \Big[ \mathcal{C}[w_{2}^{fh} f_{1}^{g} h_{1}^{\perp g}] + \mathcal{C}[w_{2}^{hf} h_{1}^{\perp g} f_{1}^{g}] \Big] \cos(2\phi) + C \mathcal{C}[w_{4}^{hh} h_{1}^{\perp g} h_{1}^{\perp g}] \cos(4\phi)$ 

• The expressions for *A*-*D* are tractable (a little too long though to be shown in an useful manner)

 For typical kinematical configurations, A<sup>h</sup> ≪ B ≪ A<sup>f</sup>, C. As what regards A<sup>h</sup>, the situation is similar to J/ψ + γ.

• For individual  $P_T^{\psi} \gg M_{\psi}$ , one has

$$A^f\sim 1\,;\,A^h\sim (M_\psi/P_T^\psi)^4\,;\,B\sim (M_\psi/P_T^\psi)^2\,;\,C\sim 1$$

## $J/\psi + J/\psi$ azimuthal effects

JPL, C. Pisano, F. Scarpa, work in progress

• Using a simple model (+ positivity bound) :

$$f_1^g(x,k_T) = \frac{1}{\pi\beta} e^{-\frac{k_T^2}{\beta}} f_1^g(x) \quad \text{with } \beta = \langle k_T^2 \rangle$$

• One gets for  $\mathcal{S}_{q_T}^{(n)}$ 



• TMD studies in the gluon sector are very promising

イロト イポト イヨト イヨト

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !
- Low  $P_T \eta_c$  production [below  $M_{\eta_c}/2$ ] is highly challenging,

maybe impossible with the current detectors

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !
- Low  $P_T \eta_c$  production [below  $M_{\eta_c}/2$ ] is highly challenging,

maybe impossible with the current detectors

• Di-photon production is perhaps more tractable

but very challenging where the rates are high

(4月) トイヨト イヨト
- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !
- Low  $P_T \eta_c$  production [below  $M_{\eta_c}/2$ ] is highly challenging,

maybe impossible with the current detectors

• Di-photon production is perhaps more tractable

but very challenging where the rates are high

- Back-to-back  $J/\psi + \gamma$ ,  $\Upsilon + \gamma$  and  $J/\psi + J/\psi$  is certainly at reach
  - Already a couple of thousand events on tapes
  - $f_1^g(x, k_T, \mu)$  and  $h_1^{\perp g}(x, k_T, \mu)$  can be determined separately
  - Q can even be tuned  $\rightarrow$  gluon TMD evolution

(D) (A) (A) (A) (A)

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !
- Low  $P_T \eta_c$  production [below  $M_{\eta_c}/2$ ] is highly challenging,

maybe impossible with the current detectors

• Di-photon production is perhaps more tractable

but very challenging where the rates are high

- Back-to-back  $J/\psi + \gamma$ ,  $\Upsilon + \gamma$  and  $J/\psi + \dot{J}/\psi$  is certainly at reach
  - Already a couple of thousand events on tapes
  - $f_1^g(x, k_T, \mu)$  and  $h_1^{\perp g}(x, k_T, \mu)$  can be determined separately
  - Q can even be tuned  $\rightarrow$  gluon TMD evolution
- No serious constraints on the gluon Sivers effects

See the recent review: D. Boer, C. Lorcé, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !
- Low  $P_T \eta_c$  production [below  $M_{\eta_c}/2$ ] is highly challenging,

maybe impossible with the current detectors

• Di-photon production is perhaps more tractable

but very challenging where the rates are high

- Back-to-back  $J/\psi + \gamma$ ,  $\Upsilon + \gamma$  and  $J/\psi + J/\psi$  is certainly at reach
  - Already a couple of thousand events on tapes
  - $f_1^g(x, k_T, \mu)$  and  $h_1^{\perp g}(x, k_T, \mu)$  can be determined separately
  - Q can even be tuned  $\rightarrow$  gluon TMD evolution
- No serious constraints on the gluon Sivers effects

See the recent review: D. Boer, C. Lorcé, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396

• Low  $P_T$  onium and  $Q + \gamma/Q + Q$  SSA studies could be done

with A Fixed-Target Experiment at the LHC: AFTER@LHC

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don't want to wait for 10 years, LHC can help, right now !
- Low  $P_T \eta_c$  production [below  $M_{\eta_c}/2$ ] is highly challenging,

maybe impossible with the current detectors

• Di-photon production is perhaps more tractable

but very challenging where the rates are high

- Back-to-back  $J/\psi + \gamma$ ,  $\Upsilon + \gamma$  and  $J/\psi + J/\psi$  is certainly at reach
  - Already a couple of thousand events on tapes
  - $f_1^g(x, k_T, \mu)$  and  $h_1^{\perp g}(x, k_T, \mu)$  can be determined separately
  - Q can even be tuned  $\rightarrow$  gluon TMD evolution
- No serious constraints on the gluon Sivers effects

See the recent review: D. Boer, C. Lorcé, C. Pisano, J. Zhou, Adv.High Energy Phys. 2015 (2015) 371396

• Low  $P_T$  onium and  $Q + \gamma/Q + Q$  SSA studies could be done

with A Fixed-Target Experiment at the LHC: AFTER@LHC

•  $J/\psi + \gamma$  SSA might also be possible with STAR in very favourable conditions

\_JPL, C Pisano, M. Schlegel, in progress 🔿

## Part V

Backup

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

 $\mathcal{S}^{(0)}_{q_T}$  : Model predictions for  $\Upsilon+\gamma$  production at  $\sqrt{s}=14$  TeV

 $Q = 20 \text{ GeV}, \qquad Y = 0, \qquad \theta_{CS} = \pi/2$ 



Models for  $f_1^g$ : assumed to be the same as for Unintegrated Gluon Distributions

- Set B: B0 solution to CCFM equation with input based on HERA data Jung et al., EPJC 70 (2010) 1237
- KMR: Formalism embodies both DGLAP and BFKL evolution equations Kimber, Martin, Ryskin, PRD 63 (2010) 114027
- CGC: Color Glass Condensate Model
   Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003
   Metz, Zhou, PRD 84 (2011) 051503

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 30 / 28

 $\mathcal{S}_{q_T}^{(2,4)}$  : Model predictions for  $\Upsilon+\gamma$  production at  $\sqrt{s}=14$  TeV

 $Q = 20 \text{ GeV}, \qquad Y = 0, \qquad \theta_{CS} = \pi/2$ 



 $h_1^{\perp g}$ : predictions only in the CGC: in the other models saturated to its upper bound

 $S_{q_T}^{(2,4)}$  smaller than  $S_{q_T}^{(0)}$ : can be integrated up to  $q_T = 10 \text{ GeV}$ 

 $\begin{array}{lll} 2.0\%\,({\rm KMR}) < & |\int\,{\rm d}q_T^2 \mathcal{S}_{q_T}^{(2)}| & < 2.9\%\,({\rm Gauss}) \\ \\ 0.3\%\,({\rm CGC}) < & \int\,{\rm d}q_T^2\,\mathcal{S}_{q_T}^{(4)} & < 1.2\%\,({\rm Gauss}) \end{array}$ 

Possible determination of the shape of  $f_1^g$  and verification of a non-zero  $h_1^{\perp g}$ 

J.P. Lansberg (IPNO)

Accessing gluon TMDs with onia

June 3, 2016 31 / 28