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QCD in the High-Energy Regime

Confinement: fundamental building blocks of QCD — quarks and
gluons — do not exist as free particles

Running coupling: the strong coupling as changes with the
characteristic energy

Asymptotic freedom: at small distance the quarks and gluons are
(almost) free particles and the perturbative approach is applicable

Factorization: enables the separation of large- [essentially
nonperturbative] and small-distance [perturbative hard scattering
matrix elements] contributions

Parton distribution functions [pdfs]: accumulate information about
intrinsic structure of hadrons
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Parton Distribution Functions

pdfs must be

Gauge-invariant
Universal

Renormalizable
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Parton Distribution Functions
Issues

Wilson lines: save gauge invariance; universality questioned;
complicate renormalizability

Path-dependence: the structure of the Wilson lines is too
complicated; universality may be broken

Factorization scale is arbitrary: transition from one scale to another
(different experiments have different characteristic scales) by means
of evolution equations

Evolution: DGLAP, BFKL, CCFM... TMD; development of
dedicated Monte-Carlo needed [in progress]
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Why TMD Factorization?

low-q7 DY: do%(qr) in the range 60 GeV < M < 120 GeV —
High-g1 (102 GeV), the ‘peak region' (10 GeV), low-q7 (1 GeV).
pQCD convoluted with the collinear pdf — dodi (q7) diverges at
small gr.

high-energy DIS: rise of the proton structure function at small-x. As
parton longitudinal momentum fractions (Bojrken-x) become small,
the transverse degrees of freedom becomes increasingly important.
The strong corrections at small-x come from multiple radiation of
gluons over long intervals in rapidity, in regions not ordered in the
gluon transverse momenta k , and are present in all higher orders of
perturbation theory. TMD evolution provides an appropriate
framework to resum such corrections.
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Definitions of TMD /updfs

Factorization — operator definition

updfs via evolution/resummation: DGLAP, BFKL, CCFM

Effective theories: SCET

High-energy /small-x: Balitsky, Kovchegov

— Looking for the a unifying approach
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Operator structure of TMD

» ‘Standard’ approach:
factorization in a convenient gauge — gauge-dependent PDF
— gluon resummation — gauge-invariant PDF with Wilson
lines, path-dependence as prescribed by the factorisation

> Alternative approach:
generic gauge-invariant path-dependent object — evolution in
the coordinate space to fit the factorization scheme — operator
structure related to a given PDF — gauge-invariant PDF with
Wilson lines, path-dependence as prescribed by the factorization
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Path-Dependent Correlation Functions: Issues

F(k), =F.T. (h| ¥(z) W,[z,0] ¥(0) |h)

Gauge invariance is guaranteed by the Wilson line

W, =P exp {iig /OZ dC”Au(C)]

~

Issues:

Gauge invariance — complicated structure of the Wilson lines
Path dependence — universality is geopardized
Singularities — problems with renormalization

Factorization — evolution
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Gluon TMD: from Small-x to Large-x
@ [Mulders, Rodrigues (2001); Collins (2011); Dominguez, Marquet, Xiao, Yuan (2011); Balitsky, Tarasov
(2014, 2015)]

Small-x

Gsmall x( ki;P, 5 /dz /d2Z eikrzL

(h| DWrc(z7, 2z ) Wine(z7, 21 ) DWre(07,0.) WiLe(07,0,) | h)

/ /d2z elkJ_ZJ_

(h| F(z=, 2z )W'Lc(2) Wee(0) Fi(07,0.) |h)
:/dz— /dQZJ_eikLZ¢<h| FN2)W,,0(2,0) F1(0) |h)

Rapidity cutoff: In x; single-logs s In x; non-linear dynamics, BK Eq.
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Gluon TMD: from Small-x to Large-x

@ [Mulders, Rodrigues (2001); Collins (2011); Dominguez, Marquet, Xiao, Yuan (2011); Balitsky, Tarasov

(2014, 2015)]

Large/Moderate-x

Ggmallfx()@ kL; P75) = /dZ_ /d2ZLe_iXp+27JrikLZL
(h| F(z=, 2z )W'Lc(2) Wee(0) Fi(07,0.) |h)

_ /dz— /dzae-fxp*f+"km<h| FH(2)Wyo(2,0) FU(0) |h)

Rapidity cutoff: 1 # In x; double-logs are possible asn In x; linear
evolution.
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Gluon TMD: from Small-x to Large-x

Two definitions in two regimes—Iook so similar, but in fact very different:

small = / dz- / 2z, -2 (b F(2)W,, . (2,0) FI(0) |h)
VS

large = / dz~ / a2z, e P2 ez (g Fl ()W, (2,0) FY(0) |h)

Factorization schemes are different, evolution is different: how to relate?

Connection can be stablished e [Balitsky, Tarasov (2014, 2015)]
However: the operator structure is the same. Let us start with it and

forget (for a while) about the factorization issues.
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Quark and Gluon TMD: Generic Operator Definitions
@ [Mulders, Rodrigues (2001); Collins (2011)]

Highly gauge-dependent quark correlator for a hadron h with a
momentum P and spin S

Quualxikii P.S) = [d*z e (k] 3(2)u(0) [h)

Highly gauge-dependent gluon correlator for a hadron h with a
momentum P and spin S

G (x, k1 P, S) = / dz e (h A"(2)A"(0) |h)
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Fully Unintegrated Gluon PDF: Gauge-Invariant Operator
Definition
@ [Mulders, Rodrigues (2001); Collins (2011)]

GV (K P, S) = /d“z e~ (h| F*(z) W, ' (0) |h)

Wilson line (system of lines) W, in the adjoint representation

Fuw=F2,T?

Respects the desirable operator structure

Knows nothing about any factorization scheme: maximally
path-dependent, ~ is entirely arbitrary

Still difficult to evaluate
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Gluon TMD: Several Operator Definitions
@ [Mulders, Rodrigues (2001); Collins (2011)]

Gluon TMD from the generic gauge-invariant correlator

G (k; P, S) =

/ dz ¢ (b FP(2) Wy, FHV(0) |y

Gi(x, k1 ;P,S) ~ /dk‘ GHIH(k, P,S) =

/ dz=d?zy e~ ™ (h| F*(z) W, F(0) |h)
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Loop Space Approach

Try the opposite direction: start from a generic object in a loop space
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Equations of Motion in the Loop Space
@ [Polyakov (1979); Makeenko, Migdal (1979, 1981); Kazakov, Kostov (1980); Brandt et al. (1981, 1982)]

Wilson loops as the (fundamental) gauge-invariant degrees of
freedom:

W) = Presp § dGuAM(O)

W) = (T W)

Y1s---Un
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Loop space and differential operators

Area derivative:

o o . <W'76'Yx> - <W7>
(SO'MV(Z) <W’Y>

= li
600(2)| =0 |60,,(2)]

Path derivative:

Differential operators in the loop space — evolution of the Wilson
loops in the coordinate representation = equations of motion
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Loop space and differential operators

The Wilson functionals obey the Makeenko-Migdal loop
equations:

o0 Wi =g 7{ dz" 63 (x — z)(W?

5O-p,l/ (X) ~ YxzVzx >
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Stokes-Mandelstam uPDF

Non-Abelian Stokes' theorem
@ [Arefeva (1980) etc.]

P.exp M dgpAP(g)} = P, Poexp [ /g do,y (Q)F(€)

Mandelstam formula
@ [Mandelstam (1968)]

Mf( P e V dC, A7 4)] = P, FH(x)exp []f dcpAf’(o}
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Stokes-Mandelstam uPDF

~ ! / 6 5
GIn'v (5. p =
5 53) = 5@ 50,0 0)

) )
AW’ .
60,#11(2) 60“/1//(0) ZX: < ‘W ~l2]

(AW, a1 ) =

X)(XIW o |h)

Non-Abelian exponentiation

(W,z0) = exp {Z an W(”)} , WM = hadronic correlators

Gauge invariance, Path dependence, Universality
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Evolution in the Coordinate Space: Abelian Case

Abelian exponentiation

00} = (1P, exp | f e, ()] I} =

2
exp |:_ij€ dguﬁ dC,/, D,ut/(C _C/):|

Basic hadronic correlator

D (¢ = ') = (Au(OAL()
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Evolution in the Coordinate Space: Abelian Case

Parameterization

Dpp(2) =
gpp' Dl(Z, P) —|—8p8p/ D2(Z, P) —|— {Ppap/} D?,(Z7 P) + PpPpl D4(Z7 P)

In general, the hadronic correlator contains all necessary information

Dppr (€ = ¢') = (P, S|A(QA(C)IP, S)

1.0. Cherednikov, M. Pieters Gluon TMD in the Loop Space Approach




Evolution in the Coordinate Space: Abelian Case

Area derivative

1)
00, (2)
g’ [ )

s § 969G D] s

(W, |h) =

Non-vanishing terms after taking the path-derivative 0,
— standard Makeenko-Migdal term

N]{ d¢” 0% Di(2%, P?)
.
— hadron momentum-dependent term

~ f d¢” (PO)? Dy(22, P?)
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Evolution in the Coordinate Space: Abelian Case

Shape evolution equation

o
?————(h h) =
ap, 5U/L,,(Z)< ‘W’Y| >

- [ e (7 016e.p) + (PO i) (0021

Consistency check: Wilson loops in vacuum

9?Dy(z) = —6®(2), D4 =0

z J _ 2 v 5(4) o
%oy 10 =87 f 4 89z )

= Makeenko-Migdal Eq. in the LO.
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Some Explicit Results I: A 2D Model

v is a circle with the radius R in 2D-Euclidean space

Gauge-field vacuum correlator

Du(2) = 6,0D(2) ,D(z) = % In [22A7]

Loop integral
1 1
O § 4Dz =) = 5 gt

“Fully unintegrated pdf”

. =2
G(e) = EF(2R) (Wa) L F(2R) = 5=
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Some Explicit Results I: Evolution from the MM Eq.

The Wilson loop is a function of the area o,:

(W) = W(o) = exp | - 3%,

Evolution in the coordinate space:

d 1_
do, W(o,) = *§g2 W(a)
uPDF
—2
-~ _ gf 1
62 =& W)
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Some Explicit Results II: A 4D Model

uPDF

52

C(2) = ¢ F(z.R) (W)

1

F(z,R) = — 5
(2ztz— — 725 + R?)

(W,) is not a simple function of the area

More realistic case: (i) non-Abelian; (ii) (34 1)D Minkowkian; (iii)
on the light-cone
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Outlook:

A fully unintegrated gluon TMD distribution function can be
formulated within fully gauge-invariant, generically path-dependent
framework based on the loop space formalism in the coordinate
representation. It is not associated with any factorization framework
but respects the needed operator structure

This approach goes ‘in the opposite direction’ to the standard one:
one starts with a maximally general object and then extracts a gluon
TMD which is adjustable to any specific factorization scheme by
means of the geometrical evolution in the coordinate space

The main ingredients of this approach are the hadronic matrix
elements of Wilson loops (h| W, |h).

Non-Abelian exponentiation enables separation of the non-local
path-dependence and local UV-divergent contributions and
appropriate parameterisation of various gTMD functions?
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