

Transverse Single Spin Asymmetries in Hard Processes Leonard Gamberg

Work done with
Zhong-Bo Kang and Alexei Prokudin

Overview

- We present the results of a combined TMD and twist-3 formalism analysis of single spin asymmetries in SIDIS, $e^{+} e^{-}$ annihilation into hadron pairs, and proton-proton scattering to explore what effect evolution has on predicting A_{N} in $p p \rightarrow \pi X$
- Short review of TSSAs theory \& experiment
- Can we explain data from RHIC on inclusive meson production in $p p$ scattering from Twist $-3 \&$ Twist -2 description of TSSAs? what we know
- Summary Challenges-way forward

Intro Remarks

- TSSAs are a central observables/tool to extract essential information to unfold "3-dimensional" partonic description sub-structure of the nucleon
- Study through semi-inclusive and inclusive scattering process: @ JLAB-6\&12, RHIC, HERMES, COMPASS, Fermi Lab-DY
- Impact for future EIC
- See RHIC Cold QCD Plan, arXiv:1602.03922

Transverse single spin asymmetries

Observables that provide a window to study the 3-dim. momentum structure of the nucleon

- Process: semi-inclusive processes (SIDIS, $\left.e^{+} e^{-}, D Y\right)$
- Information encoded in TMD PDFs-intrinsic properties of the nucleon
- TMDs contain intrinsic information on spin orbit correlations
- Information on spin \& momentum correlations in CS
- Process: single-inclusive meson production in proton-proton scattering e.g. $p p \rightarrow \pi X$
- Information encoded in quark-gluon-quark correlation functions
- Some attempts to test the relation between TSSAs in these processes

What is transverse single spin asymmetry TSSAs

$\sigma^{\downarrow}\left(x, P_{\perp}\right)=\sigma^{\uparrow}\left(x,-P_{\perp}\right)$ Rotational Invariance "Left-Right" Asymmetry

$$
A_{N}=\frac{\sigma^{\uparrow}\left(x, P_{\perp}\right)-\sigma^{\uparrow}\left(x,-P_{\perp}\right)}{\sigma^{\uparrow}\left(x, P_{\perp}\right)+\sigma^{\uparrow}\left(x,-P_{\perp}\right)} \equiv \Delta \sigma
$$

QCD is Parity Conserving TSSAs Scattering plane transverse to spin Naively "T-odd"

$\Delta \sigma \sim i S_{T} \cdot\left(\mathbf{P} \times P_{\perp}\right) \otimes(" T-$ odd" $\mathrm{QCD}-\mathrm{phases})$
need some mechanism dynamics
Spin orbit

TMD factorization: Process Dependence of Sivers and Universality of transverse momentum dependent Sivers function and Universality for Collins Function

T-odd TMDs provide info on color phase structure of the nucleon

$$
f_{1 T_{\text {(sidis) }}}^{\perp}\left(x, k_{\perp}\right)=-f_{1 T_{(D Y)}}^{\perp}\left(x, k_{\perp}\right)
$$

Collins PLB 02, Brodsky et al. NPB 02, Boer Mulders Pijlman NPB 03,

$$
H_{1_{(\text {sidis })}}^{\perp}\left(x, k_{\perp}\right)=H_{1_{\left(e^{+} e^{-}\right)}}^{\perp}\left(x, k_{\perp}\right)
$$

Metz PLB 2002, Collins, Metz PRL 2004; L.Gamberg, A. Mukherjee, P. Mulders PRD 2008,20II; F.Yuan PRL \& PRD 2008; A. Metz, S. Meissner PRL 2009, Boer, Kang,Vogelsang, Yuan-predictions on Lambda polarization in SIDIS

Motivation Use Universality of Collins and Study Process dependence of Sivers connection between SIDIS, Drell-Yan, e ${ }^{+} e^{-}$to study 3-D structure

RHIC , JLAB 12, Belle, BaBar in conjunction with Drell-Yan exp. Fermi LAB DY, AnDY, Compass, JPARC, NICA -JINR, \& EIC

Remarks on TSSAs

- Single inclusive hadron production in hadronic collisions largest/ oldest observed TSSAs
- From theory view notoriously challenging from partonic picture twist-3 power suppressed hard scale (vs. SIDIS, Drell Yan \& e ${ }^{+} e^{-}$)

Report to the NSAC sub-committee on performance measures

$$
8 / 11 / 2008
$$

| 2015 | HP13
 (new) $)$Test unique QCD predictions for relations between single-transverse spin
 phenomena in p-p scattering and those observed in deep-inelastic lepton
 scattering |
| :--- | :--- | :--- |

New Milestone HP13 reflects the intense activity and theoretical breakthroughs of recent years in understanding the parton distribution functions accessed in spin asymmetries for hard-scattering reactions involving a transversely polarized proton. This leads to new experimental opportunities to test all our concepts for analyzing hard scattering with perturbative QCD. New Milestone

Reaction Mechanism for TSSAs

Collinear factorized QCD parton dynamics

$$
\Delta \sigma^{p p^{\uparrow} \rightarrow \pi X} \sim f_{a} \otimes f_{b} \otimes \Delta \hat{\sigma} \otimes D^{q \rightarrow \pi}
$$

0) Interference of helicity flip and non-flip amps

1) Relative color phase require higher order correction α_{s}
2) QCD interactions conserve helicity up to correction requires breaking of chiral $\mathcal{O}\left(m_{q} / E_{q}\right)$
3) Thus, Twist three and trivial in chiral limit

$$
\Delta \sigma \propto \frac{m_{q}}{E} \alpha_{s} \rightarrow 0 \quad \text { chiral limit }
$$

Parton Mdl.Theory striking contrast TSSAs in Inclusive Reactions

Transverse Single-Spin Asymmetries:
From Low to High Energies!

AGS to RHIC Transverse SSA's at $\sqrt{ }$ s $=4.9--500 \mathrm{GeV}$

Figure 2-9: Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass energies as a function of Feynman-x.

Two methods to generate non trivial TSSA in QCD

- Depends on momentum of probe $q^{2}=-Q^{2}$ and momentum of produced hadron $P_{h \perp}$ relative to hadronic scale

- $k_{\perp}^{2} \sim P_{h \perp}^{2} \ll Q^{2} \quad$ two scales-twist 2 TMDs

Collins Soper (81), Collins, Soper, Sterman (85), Boer (01) (09) (13), Ji,Ma,Yuan (04), Collins-Cambridge University Press (11), Aybat Rogers PRD (11), Abyat, Collins, Qiu, Rogers (11), Aybat, Prokudin, Rogers (11), Bacchetta, Prokudin (13)

$$
\Delta \sigma\left(P_{h}, S\right) \sim \Delta f_{a / A}^{\perp}\left(x, k_{\perp}\right) \otimes D_{h / c}\left(z, K_{\perp}\right) \otimes \hat{\sigma}_{\text {parton }}
$$

- $k_{\perp}^{2} \ll P_{h \perp}^{2} \sim Q^{2}$ twist 3 factorization-ETQSs

$$
\Delta \sigma\left(P_{h}, S\right) \sim \frac{1}{Q} \Delta f_{a / A}^{\perp}(x) \otimes f_{b / B}(x) \otimes D_{h / c}(z) \otimes \hat{\sigma}_{\text {parton }}
$$

QCD phases in gauge link/Wilson line of TMD "T-odd" structure

Final -state interaction in SIDIS

Initial-state interaction in DY

Twist 3 Factorization ETQS \& T-odd Structure

$\Lambda_{\mathrm{QCD}} \ll P_{h \perp} \sim \sqrt{Q^{2}}$ one scale Collinear-Twist 3

$\Delta \sigma \sim f_{a} \otimes T_{F} \otimes H_{a b \rightarrow c d} \otimes D^{q \rightarrow h}$

$$
\frac{1}{x s+i \epsilon}=\mathcal{P}\left(\frac{1}{x s}\right) \pm i \pi \delta(x s)
$$

- Phases from interference two parton three parton scattering amplitudes Efremov \& Teryaev PLB 1982
- Net asymmetry after integration over parton's transverse momentum
-Twist three suppressed by hard scale but non-trival! $m_{q} \rightarrow M_{h}$
Qiu, Sterman 1991,1999..., Koike et al, 2000, ... 2010, Ji, Qiu, Vogelsang, Yuan, 2005 ... 2008 ..., Yuan, Zhou 2008, 2009,
Kang, Qiu, 2008, 2009 ... Kouvaris Ji, Qiu,Vogelsang 2006, Vogelsang and Yuan PRD 2007

Motivation Study Process dependence connection between SIDIS and inclusive processes in part motivated by

- relation btwn twist 2 "TMD" approach and twist 3 ETQS
we study process dependence in inclusive processes

$$
\begin{aligned}
g T_{F}(x, x) & =-\int d^{2} k_{T} \frac{\left|k_{T}^{2}\right|}{M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \text { Boer Piliman Mulders NPB } 2003 \\
& =-2 M f_{1 T}^{\perp(1)}(x) \quad \mathbf{+} \mathbf{U V} " \ldots
\end{aligned}
$$

Z. Kang, J.W. Qiu, W. Vogelsang, F. Yuan Phys. Rev D 2011 "compatibility study"
L. Gamberg, Z. Kang, Phys. Lett B696 "compatibility study"
L.Gamberg, Z. Kang, A. Prokudin, Phys. Rev. Lett 2013 "compatibility study" and others

Can use for a Gaussian-like/ parton model

Extract Sivers function from SIDIS data

CGI-GPM

1)Ingredients of Torino Model parametrization but w/ color factors ie Gauge links
2)Use GRV98LO for spin average collinear pdf
3)Use DSS for collinear FF
4) Enforce postivitity bound on Sivers and unpol

$$
f_{1 T}^{\perp(1)}(x)=\int d^{2} k_{\perp} \frac{k_{\perp}^{2}}{2 M} f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

-Indication on the process-dependence of the Sivers effect
L. Gamberg, Z. Kang, A. Prokudin, Phys. Rev. Lett. 110, 232301 (2013)

Calculate polarized cross section for $\quad P^{\Uparrow} P \rightarrow$ Jet X

We calculate jet A_{N} in twist- 3 :

$$
\begin{aligned}
E_{J} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{J}}= & \epsilon_{\alpha \beta} s_{\perp}^{\alpha} P_{J \perp}^{\beta} \frac{\alpha_{s}^{2}}{s} \sum_{a, b} \int \frac{d x}{x} \frac{d x^{\prime}}{x^{\prime}} f_{b / B}\left(x^{\prime}\right) \\
& \times\left[T_{a, F}(x, x)-x \frac{d}{d x} T_{a, F}(x, x)\right] \\
& \times \frac{1}{\hat{u}} H_{a b \rightarrow c}^{\text {Sivers }}(\hat{s}, \hat{t}, \hat{u}) \delta(\hat{s}+\hat{t}+\hat{u}),
\end{aligned}
$$

Use Sivers that describes SIDIS:

Gamberg, Kang, Prokudin (2013)

Twist-3 TMD relation

$$
A_{N}=E_{J} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{J}} / E_{J} \frac{d \sigma}{d^{3} P_{J}}
$$

Compare with AnDY data:

The sign is correct

\checkmark The size is correct
Result is indication
\checkmark TMD and twist-3 are compatible
\checkmark Sivers effect is process dependent

An Indication on the process dependence of Sivers Effect

We need Drell Yan Results
L. Gamberg, Z. Kang, A. Prokudin,

Phys. Rev. Lett. 110 (2013) 232301
w/ color factors

Anselmino et al. arXiv:1304.7691

w/o color factors

Problem with k_{T} moments

$$
f_{1 T}^{\perp(1)}(x)=\int d^{2} k_{T} \frac{k_{T}^{2}}{2 M} f_{1 T}^{\perp}\left(x, k_{T}\right)
$$

Problem with k_{T} moments

$$
f_{1 T}^{\perp(1)}(x)=\int d^{2} k_{T} \frac{k_{T}^{2}}{2 M} f_{1 T}^{\perp}\left(x, k_{T}\right)
$$

- power counting ... Sivers tail $f_{1 T}^{\perp}\left(x, k_{T}\right) \sim \frac{M^{2}}{\left(k_{T}^{2}+M^{2}\right)^{2}}$

Aybat, Collins, Rogers, Qiu PRD 2012

- "First Moment" diverges but not so if you generalize via Bessel moments Boer, Gamberg, Musch, Prokuding JHEP 201 I

Remarks

- Use the relation between Bessel Moments of Sivers and Collins function thru TMD evolution formalism
- And use TMD evolution in b-space to express these TMDs through the OPE
- Fit these moments from SIDIS and $\mathrm{e}^{+} \mathrm{e}^{-}$
- We use to determine the twist three as input for A_{N}

夫 Intuition from b-space interpretation--multipole expansion in terms of $b_{T}\left[\mathrm{GeV}^{-1}\right]$ conjugate to $\boldsymbol{P}_{h \perp}$ $\overline{d x_{B} d y d \phi_{S} d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}=$

$$
\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right) \int \frac{d\left|\boldsymbol{b}_{T}\right|}{(2 \pi)}\left|\boldsymbol{b}_{T}\right|\left\{J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U, T}+\varepsilon J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U, L}\right.
$$

$$
+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) J_{2}\left(\left|\boldsymbol{b}_{T} \| \boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U}^{\cos \left(2 \phi_{h}\right)}
$$

$$
+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L U}^{\sin \phi_{h}}
$$

$$
+\quad S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U L}^{\sin 2 \phi_{h}}\right]
$$

$$
+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} J_{0}\left(\left|\boldsymbol{b}_{T} \| \boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T} \| \boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L L}^{\cos \phi_{h}}\right]
$$

$$
\begin{aligned}
& +\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right)\left(\mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon \mathcal{F}_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right. \\
& \quad+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=-\mathcal{P}\left[\tilde{f}_{1 T}^{\perp(1)} \tilde{D}_{1}\right]
\end{aligned}
$$

$$
+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) J_{3}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\mathcal{F}_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}=-\mathcal{P}\left[\tilde{h}_{1} \tilde{H}_{1}^{\perp(1)}\right]
$$

$$
+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \phi_{S}}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right.
$$

$$
+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \phi_{S}}
$$

Bessel-Weighted Asymmetries in Semi

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

Review of TMD factorization

* Collins Soper (81), Collins, Soper, Sterman (85), Boer (01) (09) (13), Ji,Ma,Yuan (04), Collins-Cambridge University Press (11), Aybat Rogers PRD (11), Abyat, Collins, Qiu, Rogers (11), Aybat, Prokudin, Rogers (11), Bacchetta, Prokudin (13), Sun, Yuan (13),Echevarria, Idilbi, Scimemi JHEP 2012, Collins Rogers 2015 ...

-TMDs w/Gauge links: color invariant
- Soft factor w/Gauge links
- Hard cross section
-Divergences at one loop and higher
-Extra parameters needed to regulate light-cone, soft \& collinear divergences
- Modifies convolution integral introduction of soft factor

Review of TMD factorization

$\frac{d \sigma}{d P_{T}^{2}} \propto \sum_{j j^{\prime}} \mathcal{H}_{j j^{\prime}, \text { sIIII }}\left(\alpha_{s}(\mu), \mu / Q\right) \int d^{2} \boldsymbol{b}_{T} e^{i b_{T} \cdot P_{T}} \tilde{F}_{j / H_{1}}\left(x, b_{T} ; \mu, \zeta_{1}\right) \tilde{D}_{H_{2} / j^{\prime}}\left(z, b_{T} ; \mu, \zeta_{2}\right)+Y_{\text {SIDIS }}$

In full QCD, the auxiliary parameters are exactly arbitrary and this is reflected in the the Collins-Soper (CS) equations for the TMD PDF, and the renormalization group (RG) equations

JCC Cambridge Press 20I I, Collins arXiv: I2I2.5974, Collins, Gamberg, Prokudin, Sato, Wang

Elements of TMD Fact. Cross section

- Y term serves to correct expression for structure function when $P_{T} \sim Q$
- Evolution kernel contains both perturbative and non-perturbative content arising from TMD factorization \longleftrightarrow evolution
- This structure is based upon earlier CS 8I \& CSS 85 formalism \& new treatment of soft factor and CSS equations.
Also see Collins \& Rogers PRD 2015

Unpack the Transverse Polarized Target Structure Functions

$$
\begin{aligned}
F_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, z, q_{T}, Q\right)= & -H_{S I D I S}(Q, \mu=Q) \sum_{a} e_{q}^{2} \int_{k_{\perp}, p_{\perp}} f_{1 T}^{\perp}\left(x_{B}, k_{\perp}^{2} ; Q\right) \frac{\hat{P}_{h \perp} \cdot k_{\perp}}{M} D_{1}\left(z_{h}, p_{\perp}^{2} ; Q\right) \\
& \int_{k_{\perp}, p_{\perp}} \equiv \int d^{2} k_{\perp} d^{2} p_{\perp} \delta^{2}\left(z \vec{k}_{\perp}+\vec{p}_{\perp}-\vec{P}_{h \perp}\right)
\end{aligned}
$$

Fourier Bessel Moments of "Sivers Structure Function"

$$
\begin{aligned}
F_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(x, z, q_{T}, Q\right) & =-H_{S I D I S}(Q, \mu) \sum_{a} e_{q}^{2} \int \frac{d b}{2 \pi} b^{2} J_{1}\left(P_{h \perp} / z, b\right) \tilde{\mathcal{F}}_{U T}\left(x, z, b, Q^{2}\right) \\
& =-H_{S I D I S}(Q, \mu) \sum_{a} e_{q}^{2} \int \frac{d b}{2 \pi} b^{2} J_{1}\left(P_{h \perp} / z, b\right)\left(\frac{2}{M^{2}} \frac{\partial}{\partial b^{2}}\right) f_{1 T}^{\perp}\left(x_{B}, b ; Q\right) D_{1}\left(z_{h}, b ; Q\right) \\
& =-H_{S I D I S}(Q, \mu) \sum_{a} e_{q}^{2} \int \frac{d b}{2 \pi} b^{2} J_{1}\left(P_{h \perp} / z, b\right) f_{1 T}^{\perp(1)}\left(x_{B}, b ; Q\right) D_{1}\left(z_{h}, b ; Q\right)
\end{aligned}
$$

Boer, Gamberg, Musch, Prokudin JHEP 20II Bessel Moments Also Aybat, Collins, Qiu, Rogers PRD 2012

$$
\begin{aligned}
& \tilde{f}_{1 T}^{\perp(1)}(x, b ; Q) \equiv \frac{2}{M^{2}} \frac{\partial}{\partial b^{2}} \tilde{f}_{1 T}^{\perp}(x, b ; Q) \\
& \tilde{f}_{1 T}^{\perp(1)}(x, b ; Q)=\frac{2 \pi}{M^{2}} \frac{1}{b} \int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} J_{1}\left(k_{\perp} b\right) f_{1 T}^{\perp}\left(x, k_{\perp} ; Q\right)
\end{aligned}
$$

Sivers moment in b-space

$$
\begin{aligned}
& \mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=-\mathcal{P}\left[\tilde{f}_{1 T}^{\perp(1)} \tilde{D}_{1}\right] \\
& \mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}(x, z, b, Q)=H_{U T}(Q ; \mu) \sum_{q} \tilde{f}_{1 T i / P}^{q(1)}(x, b ; Q) \tilde{D}_{H}^{q}(z, b ; Q)
\end{aligned}
$$

TMDs are defined at a scale Q
Evolution is performed in Fourier space

Over short transverse distance scales, $1 / b$ is hard scale, and the b dependence of TMDs can be calculated in perturbation theory

TMD Evolution of unpolarized Structure Functions

Fourier Bessel Transform

$$
\begin{gathered}
F_{U U}\left(Q ; P_{h \perp}\right)=-H_{S I D I S}(Q, \mu) \sum_{a} e_{q}^{2} \int \frac{d b}{2 \pi} b J_{0}\left(P_{h \perp} / z, b\right) \tilde{f}_{1}\left(x_{B}, b ; Q\right) \tilde{D}_{1}\left(z_{h}, b ; Q\right) \\
\tilde{\mathcal{F}}_{U U}(x, z, b, Q)=H_{U U}(Q ; \mu) \sum_{q} e_{q}^{2} \tilde{f}_{1}^{q}(x, b ; Q) \tilde{D}_{1}^{q}(z, b ; Q)
\end{gathered}
$$

JCC formalism express evolution of TMDS OPE in terms of collinear pdfs

Elements of TMD Evolution

I.) Over short transverse distance scales, $1 / b$ is hard scale, and the b dependence of TMDs is calculated in perturbation theory

$$
\tilde{f}_{1}\left(x_{B}, b ; Q\right)=\tilde{f}_{1}\left(x_{B}, b ; \mu_{b}\right) e^{-S_{\mathrm{pert}}(b, Q)}, \quad b \ll 1 / \Lambda_{\mathrm{QCD}}
$$

Standard CSS formalism, evolution starts from

$$
\begin{aligned}
& S_{\text {pert }}(b, Q)=\int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \bar{\mu}}{\bar{\mu}^{2}}\left[A \left(\alpha_{s}(\bar{\mu}) \ln \frac{Q^{2}}{\bar{\mu}^{2}}+B\left(\alpha_{s}(\bar{\mu})\right] \quad \quad \mu_{b}=c / b, c=2 e^{-\gamma_{E}}\right.\right. \\
& \quad A=\sum_{n=1}\left(\frac{\alpha_{s}}{\pi}\right)^{n} A^{(n)} \quad B=\sum_{n=1}\left(\frac{\alpha_{s}}{\pi}\right)^{n} B^{(n)}
\end{aligned}
$$

Perturbative contribution CSS NPB 85 JCC 201I
II.) However Fourier transform space involves non-perturbative b region where perturbation theory breaks down

$$
f_{1}\left(x, k_{\perp} ; Q\right)=\int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(k_{\perp} b\right) \tilde{f}_{1}(x, b ; Q)
$$

Non perturbative region treated with b^{*} prescription

$$
\begin{aligned}
& \mathbf{b}_{*}=\frac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2} / b_{\text {max }}^{2}}}, \quad \mu_{b}=\frac{C_{1}}{b_{*}} . \\
& \tilde{f}_{1}(x, b ; Q)=\tilde{f}_{1}\left(x, b_{*} ; c / b_{*}\right) e^{-\frac{1}{2} S_{\text {pert }}\left(Q, b_{*}\right)-\frac{1}{2} S_{N P}^{\text {sivers }}(Q, b)}
\end{aligned}
$$

III.) With $1 / b$ as hard scale, the b dependence of TMDs is calculated in perturbation theory and related to their collinear parton distribution (PDFs), fragmentation functions (FFs), or multiparton correlation functions ,, ... OPE.

$$
\begin{aligned}
& \tilde{f}_{1}(x, b ; Q)=\tilde{f}_{1}\left(x, b_{*} ; c / b_{*}\right) e^{-\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-\frac{1}{2} S_{N P}^{f_{1}}(Q, b)} \\
& f_{1}^{i}(x, b ; Q)=C_{q \leftarrow i}^{f_{1}} \otimes f_{1}^{i}\left(x, \mu_{b_{*}}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{f_{1}}(Q, b)} \\
& C_{q \leftarrow i} \otimes f_{1}^{i}\left(x_{B}, \mu_{b}\right) \equiv \sum_{i} \int_{x_{B}}^{1} \frac{d x}{x} C_{q \leftarrow i}\left(\frac{x_{B}}{x}, \mu_{b}\right) f_{1}^{i}\left(x, \mu_{b}\right) \\
& C=\sum_{n=1}\left(\frac{\alpha_{s}}{\pi}\right)^{n} C^{(n)} \text { Wilson coefficient }
\end{aligned}
$$

Summary TMD Evolution of Structure Functions

$$
\begin{aligned}
\tilde{\mathcal{F}}_{U U}\left(x, z, b, Q^{2}\right) & =H_{U U}(Q, \mu=Q) \sum_{q} e_{q}^{2} \tilde{f}_{1}^{q}\left(x, b, \mu, \zeta_{F}\right) \tilde{D}_{1}^{q}\left(z_{h}, b, \mu, \zeta_{D}\right) \\
& =H_{U U}(Q, \mu=Q) \sum_{q} e_{q}^{2} \tilde{f}_{1}^{q}\left(x, b_{*}, \mu, \zeta_{F}\right) \tilde{D}_{1}^{q}\left(z_{h}, b_{*}, \mu, \zeta_{D}\right) e^{-S_{\mathrm{pert}}\left(b_{*}, Q\right)-S_{U U}^{N P}(b, Q)} \\
& =H_{U U}(Q, \mu=Q) \sum_{q} e_{q}^{2} C_{q \leftarrow i}^{\mathrm{SIDIS}} \otimes \tilde{f}_{1}^{i}\left(x, \mu_{b}\right) \hat{C}_{j \leftarrow q}^{\mathrm{SIDIS}} \otimes \tilde{D}_{h / j}^{q}\left(x, \mu_{b}\right) e^{-S_{\mathrm{pert}}\left(b_{*}, Q\right)-S_{U U}^{N P}(b, Q)}
\end{aligned}
$$

JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

...and what about Sivers Evolution ??

$$
\frac{k_{\perp}}{M^{2}} f_{1 T}^{\perp}\left(x, k_{\perp} ; Q\right)=\int_{0}^{\infty} \frac{d b}{2 \pi} b^{2} J_{1}\left(k_{\perp} b\right) \tilde{f}_{1 T}^{\perp(1)}(x, b ; Q)
$$

With TMD Evolution with, $b_{*} \&$ OPE

$$
\tilde{f}_{1 T}^{\perp(1)}(x, b ; Q)=\Delta \tilde{C}_{i \leftarrow q}^{\text {Sivers }} \otimes \tilde{f}_{1 T}^{\perp(1)}\left(x, \mu_{b}\right) e^{-\frac{1}{2} S_{\text {pert }}\left(Q, b_{*}\right)-\frac{1}{2} S_{N P}^{s i v e r s}}
$$

see also Kang, Xaio, Yuan PRL 2011
Aybat, Collins, Qiu, Rogers PRD 2012
Echevarria, Idilbi, Kang,Vitev PRD 2014

Transverse Polarized Target Structure Functions Collins Contribution

$$
\begin{gathered}
F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}\left(Q ; P_{h \perp}\right)=-H_{\mathrm{SIDIS}}(Q, \mu=Q) \sum_{q} e_{q}^{2} \int_{k_{\perp}, p_{\perp}} h_{1}\left(x_{B}, k_{\perp} ; Q\right) \frac{\hat{P}_{h \perp} \cdot p_{\perp}}{M_{h}} H_{1 h / q}^{\perp}\left(z_{h}, p_{\perp}^{2} ; Q\right) \\
\int_{k_{\perp}, p_{\perp}} \equiv \int d^{2} k_{\perp} d^{2} p_{\perp} \delta^{2}\left(z \vec{k}_{\perp}+\vec{p}_{\perp}-\vec{P}_{h \perp}\right)
\end{gathered}
$$

Fourier Bessel Transform

$$
\begin{aligned}
F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}\left(Q ; P_{h \perp}\right) & =-H_{\text {SIDIS }}(Q, \mu=Q) \sum_{a} e_{q}^{2} \int \frac{d b}{2 \pi} b^{2} J_{1}\left(P_{h \perp} / z, b\right) h_{1}\left(x_{B}, b ; Q\right)\left(\frac{2}{M_{h}} \frac{\partial}{\partial b^{2}}\right) H_{1}^{\perp}\left(z_{h}, b ; Q\right) \\
& =-H_{\text {SIDIS }}(Q, \mu=Q) \sum_{a} e_{q}^{2} \int \frac{d b}{2 \pi} b^{2} J_{1}\left(P_{h \perp} / z, b\right) h_{1}\left(x_{B}, b ; Q\right) H_{1}^{\perp(1)}\left(z_{h}, b ; Q\right)
\end{aligned}
$$

JCC formalism can express evolution of TMDS

 OPE in terms of collinear pdfs
JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

Kang-Prokudin-Sun-Yuan PRD 2016

$$
\frac{p_{\perp}}{z M_{h}} H_{1 h / q}^{\perp}\left(z, p_{\perp}^{2} ; Q\right)=\frac{1}{z^{2}} \int_{0}^{\infty} \frac{d b b^{2}}{(2 \pi)} J_{1}\left(p_{\perp} b / z\right) \delta C_{i \leftarrow q}^{\text {colins }} \otimes H_{1 h / i}^{\perp(1)}\left(z, \mu_{b}\right) e^{\frac{1}{2} S_{\mathrm{pert}}\left(Q, b_{*}\right)-S_{\mathrm{NP}}^{\text {collins }}(Q, b)}
$$

b-space OPE

$$
H_{1 h / q}^{\perp(1)}(z, b ; Q) \equiv \frac{1}{z^{2}} \frac{b^{2}}{2 \pi} \delta C_{i \leftarrow q}^{\text {collins }} \otimes H_{1 h / i}^{\perp(1)}\left(z, \mu_{b}\right) e^{\frac{1}{2} S_{\text {pert }}\left(Q, b_{*}\right)-S_{\mathrm{NP}}^{\text {collins }}(Q, b)}
$$

JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

$$
h_{1}^{q}\left(x, k_{\perp}^{2} ; Q\right)=\int_{0}^{\infty} \frac{d b b}{2 \pi} J_{0}\left(k_{\perp} b\right) \delta C_{q \leftarrow i} \otimes h_{1}^{i}\left(x, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{h_{1}}(Q, b)}
$$

b-space OPE

$$
h_{1}^{q}(x, b ; Q)=\frac{b}{2 \pi} J_{0}\left(k_{\perp} b\right) \delta C_{q \leftarrow i} \otimes h_{1}^{i}\left(x, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{h_{1}}(Q, b)}
$$

Coefficient functions b-space OPE

Kang, Prokudin, Sun, Yuan PRD 2016

$$
\begin{aligned}
& C_{q \leftarrow q^{\prime}}^{(\mathrm{SIDIS})}\left(x, \mu_{b}\right)=\delta_{q^{\prime} q}\left[\delta(1-x)+\frac{\alpha_{s}}{\pi}\left(\frac{C_{F}}{2}(1-x)-2 C_{F} \delta(1-x)\right)\right], \\
& C_{q \leftarrow g}^{(\mathrm{SIDIS})}\left(x, \mu_{b}\right)=\frac{\alpha_{s}}{\pi} T_{R} x(1-x), \quad \delta C_{q \leftarrow q^{\prime}}\left(x, \mu_{b}\right)=\delta_{q^{\prime} q}\left[\delta(1-x)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right], \\
& \hat{C}_{q^{\prime} \leftarrow q}^{(\mathrm{SIIS})}\left(z, \mu_{b}\right)=\delta_{q^{\prime} q}\left[\delta(1-z)+\frac{\alpha_{s}}{\pi}\left(\frac{C_{F}}{2}(1-z)-2 C_{F} \delta(1-z)+P_{q \leftarrow q}(z) \ln z\right)\right], \\
& \hat{C}_{g \leftarrow q}^{(\mathrm{SIDIS})}\left(z, \mu_{b}\right)=\frac{\alpha_{s}}{\pi}\left(\frac{C_{F}}{2} z+P_{g \leftarrow q}(z) \ln z\right) \\
& \delta \hat{C}_{q^{\prime} \leftarrow q}^{(\mathrm{SIDIS})}\left(z, \mu_{b}\right)=\delta_{q^{\prime} q}\left[\delta(1-z)+\frac{\alpha_{s}}{\pi}\left(\hat{P}_{q \leftarrow q}^{c}(z) \ln z\right)\right]
\end{aligned}
$$

For twist 3 keep only homogeneous or diagonal terms in splitting kernal, Kang plb 201I and for Sivers, Sun Yuan PRD 2013

NLL' extraction from the data $\quad A^{(1,2)} \quad B^{(1)}$

Parametrizations:
Transversity

$$
h_{1}^{q}\left(x, Q_{0}\right) \propto N_{q}^{h} x^{a_{q}}(1-x)^{b_{q}} \frac{1}{2}\left(f_{1}\left(x, Q_{0}\right)+g_{1}\left(x, Q_{0}\right)\right)
$$

Favoured and unfavoured Collins FF

$$
\begin{aligned}
& \hat{H}_{f a v}^{(3)}\left(z, Q_{0}\right)=N_{u}^{c} z^{\alpha_{u}}(1-z)^{\beta_{u}} D_{\pi^{+} / u}\left(z, Q_{0}\right) \\
& \hat{H}_{u n f}^{(3)}\left(z, Q_{0}\right)=N_{d}^{c} z^{\alpha_{d}}(1-z)^{\beta_{d}} D_{\pi^{+} / d}\left(z, Q_{0}\right)
\end{aligned}
$$

Total 13 parameters: $\quad N_{u}^{h}, N_{d}^{h}, a_{u}, a_{d}, b_{u}, b_{d}, N_{u}^{c}, N_{d}^{c}, \alpha_{u}, \alpha_{d}, \beta_{d}, \beta_{u}, g_{c}$

SIDIS data used: HERMES, COMPASS, JLAB - 140 points
e+e- data used: BELLE, BABAR including PT dependence - 122 points

$$
\chi^{2} / \text { d.o.f. } \simeq .88
$$

$$
\ell P \rightarrow \pi^{ \pm} X
$$

HERMES

$1 \lesssim\left\langle Q^{2}\right\rangle \lesssim 6 \mathrm{GeV}^{2}$

$$
e^{+} e^{-} \rightarrow \pi \pi X
$$

JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

$$
\frac{p_{\perp}}{z M_{h}} H_{1 h / q}^{\perp}\left(z, p_{\perp}^{2} ; Q\right)=\frac{1}{z^{2}} \int_{0}^{\infty} \frac{d b b^{2}}{(2 \pi)} J_{1}\left(p_{\perp} b / z\right) \delta C_{i \leftarrow q}^{\text {collins }} \otimes H_{1 h / i}^{\perp(1)}\left(z, \mu_{b}\right) e^{\frac{1}{2} S_{\text {pert }}\left(Q, b_{*}\right)-S_{N P}^{\text {collins }}(Q, b)}
$$

b-space OPE

$$
H_{1 h / q}^{\perp(1)}(z, b ; Q) \equiv \frac{1}{z^{2}} \frac{b^{2}}{2 \pi} \delta C_{i \leftarrow q}^{\text {collins }} \otimes H_{1 h / i}^{\perp(1)}\left(z, \mu_{b}\right) e^{\frac{1}{2} S_{\mathrm{pert}}\left(Q, b_{*}\right)-S_{\mathrm{NP}}^{\text {collins }}(Q, b)}
$$

Kang-Prokudin-Sun-Yuan PRD 2016

FIG. 11. Collins FF $u \rightarrow \pi^{+}$as a function of b (a) and as a function of $p_{\perp}(\mathrm{b})$ at three different scales, $Q^{2}=2.4$ (dotted lines), $Q^{2}=10$ (solid lines), and $Q^{2}=1000$ (dashed lines) GeV^{2}.

JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

$$
h_{1}^{q}\left(x, k_{\perp}^{2} ; Q\right)=\int_{0}^{\infty} \frac{d b b}{2 \pi} J_{0}\left(k_{\perp} b\right) \delta C_{q \leftarrow i} \otimes h_{1}^{i}\left(x, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{h_{1}}(Q, b)}
$$

b-space OPE

$$
\begin{array}{r}
h_{1}^{q}(x, b ; Q)=\frac{b}{2 \pi} J_{0}\left(k_{\perp} b\right) \delta C_{q \leftarrow i} \otimes h_{1}^{i}\left(x, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{h_{1}}(Q, b)} \\
\text { Kang-Prokudin-Sun-Yuan PRD } 2016
\end{array}
$$

FIG. 9. Transversity u-quark distribution as a function of b (a) and as a function of k_{\perp} (b) at three different scales, $Q^{2}=2.4$ (dotted lines), $Q^{2}=10$ (solid lines), and $Q^{2}=1000$ (dashed lines) GeV^{2}.

JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

$$
\begin{gathered}
f_{1}^{q}\left(x, k_{\perp}^{2} ; Q\right)=\int_{0}^{\infty} \frac{d b b}{2 \pi} J_{0}\left(k_{\perp} b\right) C_{q \leftarrow i}^{f_{1}} \otimes \tilde{f}_{1}^{i}\left(x, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{f_{1}}(Q, b)} \\
\text { b-Space OPE } \\
f_{1}^{q}(x, b ; Q)=\frac{b}{2 \pi} C_{q \leftarrow i}^{f_{1}} \otimes \tilde{f}_{1}^{i}\left(x, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{f_{1}}(Q, b)}
\end{gathered}
$$

Kang-Prokudin-Sun-Yuan PRD 2016

FIG. 8. Unpolarized u-quark distribution as a function of b (a) and as a function of k_{\perp} (b) at three different scales, $Q^{2}=2.4$ (dotted lines), $Q^{2}=10$ (solid lines), and $Q^{2}=1000$ (dashed lines) GeV^{2}.

TMD Evolution of Structure Functions \& TMDs

JCC formalism can express evolution of TMDS OPE in terms of collinear pdfs

$$
\begin{gathered}
D_{h / q}\left(z, p_{\perp}^{2} ; Q\right)=\frac{1}{z^{2}} \int_{0}^{\infty} \frac{d b b}{(2 \pi)} J_{0}\left(p_{\perp} b / z\right) \hat{C}_{i \leftarrow q}^{D_{1}} \otimes D_{h / i}\left(z, \mu_{b}\right) e^{-\frac{1}{2} S_{\mathrm{pert}}\left(Q, b_{*}\right)-S_{\mathrm{NP}}^{D_{1}}(Q, b)}, \\
\quad \text { b-Space OPE } \\
D_{1}^{q}(z, b ; Q) \equiv \frac{1}{z^{2}} \frac{b}{2 \pi} \hat{C}_{i \leftarrow q}^{D_{1}} \otimes D_{h / i}\left(z, \mu_{b}\right) e^{\frac{1}{2} S_{p e r t}\left(Q, b_{*}\right)-S_{N P}^{D_{1}(Q, b)}}
\end{gathered}
$$

Kang-Prokudin-Sun-Yuan PRD 2016

FIG. 10. Unpolarized FF $u \rightarrow \pi^{+}$as a function of b (a) and as a function of p_{\perp} (b) at three different scales, $Q^{2}=2.4$ (dotted lines), $Q^{2}=10$ (solid lines), and $Q^{2}=1000$ (dashed lines) GeV^{2}.

What are evolution effects?
$e^{+} e^{-} \rightarrow \pi \pi X$
Kang-Prokudin-Sun-Yuan PRD 2016

No evolution:

$$
Q^{2}=2.4 \mathrm{GeV}^{2}
$$

NLL' evolution:

$$
Q^{2}=110 \mathrm{GeV}^{2}
$$

$Q_{1}^{2} / Q_{2}^{2} \simeq 50$

Asymmetry ratio ~ 3.5

Sivers fit Preliminary under TMD evolution

$\tilde{f}_{1 T}^{\perp(1)}(x, b ; Q)=\frac{b^{2}}{(2 \pi)} \Delta \tilde{C}_{i \leftarrow q}^{\text {Sivers }} \otimes \tilde{f}_{1 T}^{\perp(1)}\left(x, \mu_{b}\right) e^{-\frac{1}{2} S_{\text {pert }}\left(Q, b_{*}\right)-\frac{1}{2} S_{N P}^{\text {sivers }}}$

Input to A_{N}

$$
\begin{aligned}
& \left.E_{h} \frac{d^{3} \Delta \sigma\left(S_{\perp}\right)}{d^{3} P_{h}}\right|_{\text {forward }} \\
& =\epsilon_{\perp \alpha \beta} S_{\perp}^{\alpha} P_{h \perp}^{\beta} \frac{2 \alpha_{s}^{2}}{S} \sum_{a, b, c_{x_{\min }^{\prime}}} \int_{x^{\prime}}^{1} \frac{d x^{\prime}}{x_{b}\left(x^{\prime}\right) \frac{1}{x} h_{a}(x)} \\
& \quad \times \int_{z_{\min }}^{1} \frac{d z}{z}\left[-z \frac{\partial}{\partial z}\left(\frac{\hat{H}(z)}{z^{2}}\right)\right] \quad \text { Collins like } \\
& \quad \times \frac{1}{x^{\prime} S+T / z} \frac{1}{-z \hat{u}} H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u}) .
\end{aligned}
$$

$$
\begin{aligned}
E_{h} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{h}}= & \frac{\alpha_{s}^{2}}{S} \sum_{a, b, c} \int \frac{d z}{z^{2}} D_{c \rightarrow h}(z) \int \frac{d x^{\prime}}{x^{\prime}} f_{b / B}\left(x^{\prime}\right) \int \frac{d x}{x} \sqrt{4 \pi \alpha_{s}}\left(\frac{\epsilon^{P_{h \perp} s_{\perp} n \bar{n}}}{z \hat{u}}\right)\left[T_{a, F}(x, x)\right. \\
& \left.-x \frac{d}{d x} T_{a, F}(x, x)\right] H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u}) \delta(\hat{s}+\hat{t}+\hat{u}),
\end{aligned}
$$

Sivers like

$$
E_{h} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{h}} / E_{h} \frac{d \sigma}{d^{3} P_{h}} \equiv A_{N}
$$

$$
E_{h} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{h}} / E_{h} \frac{d \sigma}{d^{3} P_{h}} \equiv A_{N}
$$

$$
E_{h} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{h}} / E_{h} \frac{d \sigma}{d^{3} P_{h}} \equiv A_{N}
$$

Metz, Pitonyak PLB 2013

Kanazawa, Koike, Metz, Pitonyak PRD 2014

$$
\begin{aligned}
& \frac{P_{h}^{0} d \sigma\left(\vec{S}_{\perp}\right)}{d^{3} \vec{P}_{h}}=-\frac{2 \alpha_{s}^{2} M_{h}}{S} \epsilon_{\perp, \alpha \beta} S_{\perp}^{\alpha} P_{h \perp}^{\beta} \sum_{i} \sum_{a, b, c} \int_{z_{m i n}}^{1} \frac{d z}{z^{3}} \\
& \quad \times \int_{x_{\min }^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x} \frac{1}{x^{\prime} S+T / z} \frac{1}{-x^{\prime} \hat{t}-x \hat{u}} h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right) \\
& \quad \times\left\{\left[\hat{H}^{C / c}(z)-z \frac{d \hat{H}^{C / c}(z)}{d z}\right] S_{\hat{H}}^{i}+\frac{1}{z} H^{C / c}(z) S_{H}^{i}\right. \\
& \left.\quad+2 z^{2} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{C / c, \Im}\left(z, z_{1}\right) \frac{1}{\xi} S_{\hat{H}_{F U}}^{i}\right\},
\end{aligned}
$$

FIG. 1 (color online). Fit results for $A_{N}^{\pi^{0}}$ (data from [35-37]) and $A_{N}^{\pi^{ \pm}}$(data from [38]) for the SV1 input. The dashed line (dotted line in the case of π^{-}) means $\hat{H}_{F U}^{\Im}$ switched off.

$$
\begin{aligned}
& \hat{H}^{h / q}(z)=z^{2} \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{2 M_{h}^{2}} H_{1}^{\perp h / q}\left(z, z^{2} \vec{k}_{\perp}^{2}\right)
\end{aligned}
$$

Summary

- Many interesting theory issues to address
- Are twist 2 - twist 3 Sivers/Collins interpretation for TSSAs compatible ?
- What is mechanism underlying inclusive meson production?
- QCD Evolution workshop series has and will play essential role in addressing these questions. THANK YOU from an organizers

Consider direct Photon

$$
\Delta \sigma^{p p^{\uparrow} \rightarrow \gamma X} \sim \Delta f_{a} \otimes f_{b} \otimes \hat{\sigma}
$$

Color factor dictates process dependence

The FT transform of the e.g. Sivers asympt. reduces to first Bessel moment of Sivers TMD

$$
\begin{aligned}
\tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T}\right) & \equiv \frac{2}{M^{2}} \frac{\partial}{\partial b_{T}^{2}} \tilde{f}_{1 T}^{\perp}\left(x, b_{T}\right) \\
\tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T}\right) & =\frac{2 \pi}{M^{2}} \frac{1}{b_{T}} \int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} J_{1}\left(k_{T} b_{T}\right) f_{1 T}^{\perp}\left(x, k_{T}\right) \\
\lim _{b_{T} \rightarrow 0} \tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T}\right) & \approx \frac{2 \pi}{M^{2}} \int_{0}^{\infty} d k_{T} \frac{k_{T}^{2}}{b_{T}} \frac{k_{T} b_{T}}{2} f_{1 T}^{\perp}\left(x, k_{T}\right) \\
\lim _{b_{T} \rightarrow 0} \tilde{f}_{1 T}^{\perp(1)}(x, 0) & =f_{1 T}^{\perp(1)}(x)
\end{aligned}
$$

Most important Measurement Drell Yan

Prediction for Sivers asymmetry for DY lepton pair production at COM energy 500 GeV , for the invariant mass $4<\mathrm{Q}<8 \mathrm{GeV}$

