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• We present the results of a combined TMD and twist-3 
formalism analysis of single spin asymmetries in SIDIS, e+e- 
annihilation into hadron pairs, and proton-proton scattering to 
explore what effect evolution has on predicting AN  in 

• Short review of  TSSAs theory & experiment 

• Can we explain data from RHIC on inclusive meson 
production in pp scattering from Twist -3 & Twist -2 
description of TSSAs?what we know 

• Summary Challenges-way forward

Overview 

pp ! ⇡X



• TSSAs&are&a&central&observables/tool&to&extract&essen3al&
informa3on&to&unfold&“3;dimensional”&partonic&descrip3on&&&&&&&&&
sub;structure&of&the&nucleon

• Study&through&semi;inclusive&and&inclusive&scaAering&process:&&@&
JLAB;6&12,&RHIC,&HERMES,&COMPASS,&Fermi&Lab;DY

• Impact&for&future&&EIC&

• See#RHIC#Cold#QCD#Plan,###arXiv:1602.03922

TMD$Factoriza2on:$Wilson$Line$Issues$
 
•  The Sivers function in the parton model: 

–  Probability to find a quark with transverse momentum 
kT inside a transversely polarized hadron: 
 
 
 
 
 
 

•  Vanishes in parton model. 
 

•  Direction reversal of Wilson line leads to sign reversal  
of Sivers function in pQCD. 
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• Process:&semi1inclusive&processes&(SIDIS,%e+e(%,%DY&)&

• Informa9on&encoded&in&TMD&PDFs1intrinsic&proper9es&of&the&nucleon

• TMDs&contain&intrinsic&informa9on&on&spin&orbit&correla9ons

• Informa9on&on&spin&&&momentum&correla9ons&in&CS

• Process:&single1inclusive&meson&produc9on&in&proton1proton&scaEering&&

e.g.&&

• Informa9on&encoded&in&quark1gluon1quark&correla9on&func9ons&

• Some&aEempts&to&test&the&rela9on&&between&TSSAs&in&these&processes&

pp ! ⇡X
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kT$ Observables&that&provide&a&window&to&study&the&31dim.&

momentum&structure&of&the&nucleon

Transverse&single&spin&asymmetries
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QCD&is&Parity&Conserving&&&TSSAs&ScaEering&plane&transverse&to&spin

Naively&“T1odd”
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TMD&factoriza9on:&Process&Dependence&of&Sivers&and&Universality&of&transverse&

momentum&dependent&Sivers&func9on&and&Universality&for&Collins&Func9on

T1odd&TMDs&provide&info&on&color&phase&structure&of&the&nucleon

Motivation Use Universality of Collins and Study Process dependence of 
Sivers connection between SIDIS,Drell-Yan, e+e- to study 3-D structure

RHIC&,&JLAB&12,&Belle,&BaBar&in&&conjunc9on&with&Drell1Yan&exp.&

Fermi&LAB&DY,&&AnDY,&Compass,&&JPARC,&NICA&1JINR,&&&EIC

Metz PLB 2002, Collins, Metz PRL 2004; L.Gamberg, A. Mukherjee, P. Mulders PRD 2008,2011; F. Yuan PRL & PRD 2008; A. 
Metz, S. Meissner PRL 2009, Boer, Kang,Vogelsang,Yuan-predictions on Lambda polarization in SIDIS 

Collins PLB 02, Brodsky et al. NPB 02, Boer Mulders Pijlman NPB 03,

f?
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• Single&inclusive&hadron&produc3on&&in&hadronic&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
collisions&largest/&oldest&observed&&TSSAs&&

• From&theory&view&notoriously&challenging&from&partonic&picture&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
twist;3&power&suppressed&hard&scale&&(vs.&&SIDIS,&Drell&Yan&&&e+e1)&&&&&&&&&&

Remarks on TSSAs



of the nucleon-nucleon interaction. 

2015 HP13 
(new) 

Test unique QCD predictions for relations between single-transverse spin 
phenomena in p-p scattering and those observed in deep-inelastic lepton 
scattering 

2018 HP14 Extract accurate information on spin-dependent and spin-averaged valence 

New Milestone HP13 reflects the intense activity and theoretical breakthroughs of recent years in 
understanding the parton distribution functions accessed in spin asymmetries for hard-scattering 
reactions involving a transversely polarized proton. This leads to new experimental opportunities 
to test all our concepts for analyzing hard scattering with perturbative QCD. New Milestone 
HP14 and HP15 reflect improved opportunities which will become available upon completion of 

8/11/2008
Report to the NSAC sub-committee on performance measures



&&&&Reac9on&Mechanism&for&TSSAs

��pp���X � fa � fb ���̂ �Dq��

Collinear&factorized&QCD&parton&dynamics

0)&Interference&of&helicity&flip&and&non1flip&amps

1)&Rela9ve&color&phase&require&higher&order&correc9on

2)&QCD&interac9ons&conserve&helicity&up&to&correc9on

&&&&&requires&breaking&of&chiral

3)&Thus,&Twist&three&and&trivial&in&chiral&limit&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
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AGS to RHIC Transverse SSA’s at √s = 4.9 -- 500 GeV 

 22 

2.1.2  Run-2023 and Opportunities with a Future Run at 500 GeV  
 

First and foremost, a transversely polarized 500 GeV p+p run with anticipated delivered luminosity of 1 
fb-1 will reduce the statistical uncertainties of all observables discussed in Section 2.1.1 by a factor of two, 
including the flagship measurement of the Sivers effect in W and Z production.  This experimental accura-
cy will significantly enhance the quantitative reach of testing the limits of factorization and universality in 
lepton-proton and proton-proton collisions. 

Results from PHENIX and STAR have shown that large transverse single spin asymmetries for inclu-
sive hadron production, AN, that were first seen in p+p collisions at fixed-target energies and modest pT ex-
tend to the highest RHIC center-of-mass (c.m.) energies, √s  = 500 GeV and surprisingly large pT . Figure 
2-9 summarizes the world data as function of Feynman-x. Surprisingly the asymmetries are nearly inde-
pendent of √s over a very wide range (√s: 4.9 GeV to 500 GeV). 

 

 
Figure 2-9: Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass 
energies as a function of Feynman-x. 

 
The latest attempt to explain AN for π0 production at RHIC incorporated the fragmentation term within 

the collinear twist-3 approach [61]. In that work, the relevant (non-pole) 3-parton collinear fragmentation 
function !!"ℑ !, !!  was fit to the RHIC data. The so-called soft-gluon pole term, involving the ETQS 
function Tq,F(x1,x2), was also included by fixing Tq,F through its well-known relation to the TMD Sivers 
function !!!! . The authors found a very good description of the data due to the inclusion of !!"ℑ !, !! . 
Based on this work, one is able to make predictions for π+ and π- production at forward rapidities covered 
by the forward upgrade. The results are shown in Figure 2-10 for two different center-of-mass energies 
(200 GeV and 500 GeV) and rapidity ranges (2 < η < 3 and 3 < η < 4). 
 

  
Figure 2-10: Predictions, based on the work in Ref. [61], for AN for π+ and π- production for 2 < η < 3 (left) and 3 < η 
< 4 (right) at 200 GeV (solid lines) and 500 GeV (dashed lines). 

 
The proposed forward upgrade, incorporating forward tracking (see Section 5), will enable us to access 

the previously measured charged hadron asymmetries [62] up to the highest center-of-mass energies at 
RHIC. It will be important to confirm that also the charge hadron asymmetries are basically independent of 
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Two methods to generate non trivial TSSA in QCD

• Depends on momentum of probe                 and momentum 
of  produced hadron         relative to hadronic scale 

•                          two scales-twist 2 TMDs                

•                          twist 3 factorization-ETQSs
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ
d3Ph

=
α2

s

S

∑

a,b,c

∫
dxa

xa
d2kaT∆Nfab→c

a/A (xa, kaT )
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dxb
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d2kbT fb/B(xb, kbT )

×
∫
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z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.

A

(a)

p

(b)

T a

a c

S

p

P ,

p

FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to
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where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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Extract Sivers function from SIDIS data

•Indication on the process-dependence of the Sivers effect 
L. Gamberg, Z. Kang, A. Prokudin, Phys. Rev. Lett. 110, 232301 (2013)



We calculate jet AN in twist-3:

Gamberg, Kang, Prokudin (2013)

Use Sivers that describes SIDIS:

Twist-3 TMD relation

where the subscript emphasizes that the Sivers function is
probed in the SIDIS process. In other words, starting from
the Sivers functions extracted from SIDIS, one can derive a
functional form for ETQS function Tq;Fðx; xÞ. In combina-
tion with the calculable short-distance cut scattering ampli-
tudes, one should be able to predict the SSAs of inclusive
particle production in pp collisions. However, a recent
study [14–16] for inclusive hadron production in pp colli-
sions shows that such calculated SSAs are opposite to those
measured in the experiments. This is known as the ‘‘sign
mismatch’’ problem. Whether this finding reflects the
inconsistency of our theoretical formalism is a very impor-
tant question and needs to be explored both theoretically
and experimentally. However, since the SSAs of inclusive
hadron production can also receive contributions from the
fragmentation process [9], a thorough analysis demands
including such contributions.

A new opportunity presents itself, however, with a recent
inclusive jet measurement performed at the ANDY experi-
ment at RHIC [17]. Since the jet spin asymmetry does not
involve fragmentation contributions, this paves the way to
precisely test the process dependence of the Sivers effect in
different processes [18] as well as explore the consistency
of the TMD and collinear twist-3 factorization formalisms
[14,19,20]. This is the main purpose of our Letter. We
analyze the spin asymmetry for single inclusive jet pro-
duction in pp collisions collected by the ANDYexperiment
and the Sivers asymmetry data from SIDIS experiments.
We assess whether they are compatible with each other;
in other words, whether the jet asymmetry is consistent
with our expectation on the process dependence of the
Sivers effect.

We start with the basic formalism for the SIDIS SSA.
For hadron production in SIDIS at low transverse momen-
tum Ph?, eð‘Þ þ A"ðP; s?Þ ! eð‘0Þ þ hðPhÞ þ X, within
the TMD factorization formalism, the differential cross
section for the Sivers effect reads [21],

d!

dðPSÞ ¼ !0½FUU;T þ sinð"h &"sÞFsinð"h&"sÞ
UT;T '; (2)

where phase space dðPSÞ ¼ dxBdyd"sdzhd"hPh?dPh?,
with the standard SIDIS kinematic variable xB, y, and zh.
The normalization factor !0 ¼ !0ðxB; y; Q2Þ and the

structure functions FUU;T and Fsinð"h&"sÞ
UT;T are defined in

Ref. [15]. The Sivers asymmetry measured in the

experiments is defined by Asinð"h&"sÞ
UT ðxB; zh; Ph?Þ ¼

!0ðxB; y; Q2ÞFsinð"h&"sÞ
UT;T =!0ðxB; y; Q2ÞFUU;T .

On the other hand, the single inclusive jet production
in transversely polarized pp collisions, AðPA; s?Þ þ
BðPBÞ ! jetðPJÞ þ X, only receives the Sivers type of
contributions. Within the collinear factorization formal-
ism, the spin-dependent differential cross section
d!!ðs?Þ ¼ ½d!ðs?Þ & d!ð&s?Þ'=2 can be written as

EJ
d!!ðs?Þ
d3PJ

¼ #$%s
$
?P

%
J?

$2
s

s

X

a;b

Z dx

x

dx0

x0
fb=Bðx0Þ

(
!
Ta;Fðx; xÞ & x

d

dx
Ta;Fðx; xÞ

"

( 1

û
HSivers

ab!cðŝ; t̂; ûÞ&ðŝþ t̂þ ûÞ; (3)

where
P

a;b runs over all parton flavors, fb=Bðx0Þ is the
collinear PDF in the unpolarized proton, and ŝ, t̂, and û
are the standard partonic Mandelstam variables [15,22].
HSivers

ab!c represent the cut scattering amplitudes for the
partonic process ab ! cd with the expressions given in
[16,22]. It is important to emphasize that in the twist-3
collinear factorization approach, the process dependence
of the ISIs and FSIs, which are determined from the color
factors coming from the partonic process cut scattering
amplitudes are absorbed into the short-distance pertur-
bative hard-part functions, while the relevant twist-3
three-parton correlation functions Tq;Fðx; xÞ are universal
or process independent. It is because of this fact that the
universal Tq;Fðx; xÞ is uniquely related to the Sivers func-
tion in SIDIS as in Eq. (1). Thus, the process dependence of
the Sivers effect for jet production is included in HSivers

ab!c.
Now since the SIDIS Sivers asymmetry is only associated
with FSIs, while the jet spin asymmetry is associated with
both ISIs and FSIs, by comparing the SIDIS measurement
and the jet spin asymmetry, we are essentially testing the
central role of these ISIs and FSIs, hence the process
dependence of the Sivers effect. The jet SSA, AN is com-
puted from the ratio of the spin-dependent to the spin-
averaged cross section,

AN ¼ EJ
d!!ðs?Þ
d3PJ

#
EJ

d!

d3PJ
; (4)

where the spin-averaged differential cross section
EJðd!=d3PJÞ in the denominator is defined in Ref. [15].
To see whether the inclusive jet data in pp collisions are

consistent with the Sivers asymmetry data in SIDIS pro-
cesses, we perform a global fit of the SIDIS Sivers asym-
metry data collected by the HERMES and COMPASS
experiments [3,4] to extract the Sivers functions. We then
derive the functional form for the twist-3 ETQS function
Tq;Fðx; xÞ with the help of Eq. (1) and in turn compute the
jet spin asymmetry AN from Eq. (4) to be compared with
the data collected by the ANDY experiment [17].
We adopt the Gaussian forms in Ref. [23] for the spin-

averaged PDFs, fa=Aðx; k2?Þ and FFs Dh=aðz; p2
TÞ, with the

Gaussian width, hk2?i ¼ 0:25 GeV2 and hp2
Ti ¼ 0:2 GeV2.

The quark Sivers function f?q
1T ðx; k2?Þ for SIDIS is parame-

trized as

f?q
1T ðx; k2?Þ ¼ &N qðxÞhðk?Þfq=Aðx; k2?Þ; (5)

where the k? dependence hðk?Þ ¼
ffiffiffiffiffi
2e

p
ðM=M1Þe&k2?=M

2
1 ,

with M the proton mass, and the x-dependent coefficient
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FIG. 11: Left panel: our estimate for the jet SSA AN at
√
s = 500 GeV, as a function of xF at fixed pseudo-rapidity η = 3.25,

compared with the ANDY data [47]. The central line is obtained adopting the GRV98 set of collinear PDFs, with the Sivers
functions as in Eqs. (10)–(12) with the parameters given in Table 1. The shaded statistical error band is generated applying
the error estimate procedure described in Appendix A of Ref. [23]. Right panel: the same estimate as in the left panel for a
direct photon, rather than a jet, production at

√
s = 200 GeV and η = 3.5.
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FIG. 12: Our computation of the unpolarised cross section for jet production vs. the jet energy, at
√
s = 510 GeV and fixed

pseudo-rapidity η = 3.25, compared with ANDY data [47].

Notice that the elementary hard scattering interactions are exactly the same as those for the inclusive hadron pro-
duction and the jet, at LO, is identified with the final parton c.
Concerning the direct photon production the basic partonic processes are the Compton process g q (q̄) → γ q (q̄)

and the annihilation process q q̄ → γ g. In this case one can formally use the above equation replacing the partonic
unpolarised cross section, Eq. (7), with the corresponding one for the process a b → γ d (see also Ref. [64]).
No SSA data are so far available for direct photon production, while very recently some preliminary data for

inclusive jet production have been released by the ANDY Collaboration at
√
s = 500 GeV [47]. The values measured

for AN are very tiny, but very precise and might indicate a non zero asymmetry.
In the left plot of Fig. 11 we show our estimate, based on the chosen best set parameters of Table 1, for AN (xF ) in

p↑p → jetX processes at a fixed pseudo-rapidity value and
√
s = 500 GeV, and compare it with the ANDY data [47].

In the right plot we give our corresponding estimates for AN (xF ) in p↑p → γX processes at a fixed pseudo-rapidity
value and

√
s = 200 GeV.

For consistency, in Fig. 12 we compare our (leading order) computation of the cross section for jet production as
given by Eq. (15) where we replace the factor ∆Nfa/p↑ cos(φa) with fa/p, with the ANDY data at

√
s = 510 GeV and

fixed pseudo-rapidity η = 3.25.
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FIG. 11: Left panel: our estimate for the jet SSA AN at
√
s = 500 GeV, as a function of xF at fixed pseudo-rapidity η = 3.25,

compared with the ANDY data [47]. The central line is obtained adopting the GRV98 set of collinear PDFs, with the Sivers
functions as in Eqs. (10)–(12) with the parameters given in Table 1. The shaded statistical error band is generated applying
the error estimate procedure described in Appendix A of Ref. [23]. Right panel: the same estimate as in the left panel for a
direct photon, rather than a jet, production at

√
s = 200 GeV and η = 3.5.
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FIG. 12: Our computation of the unpolarised cross section for jet production vs. the jet energy, at
√
s = 510 GeV and fixed

pseudo-rapidity η = 3.25, compared with ANDY data [47].

Notice that the elementary hard scattering interactions are exactly the same as those for the inclusive hadron pro-
duction and the jet, at LO, is identified with the final parton c.
Concerning the direct photon production the basic partonic processes are the Compton process g q (q̄) → γ q (q̄)

and the annihilation process q q̄ → γ g. In this case one can formally use the above equation replacing the partonic
unpolarised cross section, Eq. (7), with the corresponding one for the process a b → γ d (see also Ref. [64]).
No SSA data are so far available for direct photon production, while very recently some preliminary data for

inclusive jet production have been released by the ANDY Collaboration at
√
s = 500 GeV [47]. The values measured

for AN are very tiny, but very precise and might indicate a non zero asymmetry.
In the left plot of Fig. 11 we show our estimate, based on the chosen best set parameters of Table 1, for AN (xF ) in

p↑p → jetX processes at a fixed pseudo-rapidity value and
√
s = 500 GeV, and compare it with the ANDY data [47].

In the right plot we give our corresponding estimates for AN (xF ) in p↑p → γX processes at a fixed pseudo-rapidity
value and

√
s = 200 GeV.

For consistency, in Fig. 12 we compare our (leading order) computation of the cross section for jet production as
given by Eq. (15) where we replace the factor ∆Nfa/p↑ cos(φa) with fa/p, with the ANDY data at

√
s = 510 GeV and

fixed pseudo-rapidity η = 3.25.

w/ color factors w/o color factors

P "P ! JetXP "P ! JetX

P "P ! �X

L. Gamberg, Z. Kang, A. Prokudin, 
Phys. Rev. Lett. 110 (2013)  232301

Anselmino et al. 
arXiv:1304.7691
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Problem with kT moments

f

?(1)
1T (x) =

Z
d

2
kT

k

2
T

2M
f

?
1T (x, kT )

• power counting ... Sivers tail

• “First Moment” diverges but not so if you generalize 
via Bessel moments  Boer, Gamberg, Musch, Prokuding JHEP 2011

f

?
1T (x, kT ) ⇠

M

2

(k2T +M

2)
2

 Aybat, Collins, Rogers,Qiu PRD 2012



• Use the relation between Bessel Moments of Sivers 
and Collins function thru TMD evolution formalism

• And use TMD evolution in b-space to express these 
TMDs through the OPE 

• Fit these moments from SIDIS and e+e- 

• We use to determine the twist three as input for AN

Remarks



★ Intuition from b-space  interpretation--multipole 
expansion in terms of               conjugate to

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{

J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh
UU + ε cos(2φh)J2(|bT ||P h⊥|)F

cos(2φh)
UU

+ λe

√
2 ε(1 − ε) sin φh J1(|bT ||P h⊥|)F sin φh

LU

+ S‖

[√
2 ε(1 + ε) sin φh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh
UL

]

+ S‖λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cos φh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F
sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F
sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sin φS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F
sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)F

cos(φh−φS)
LT

+
√

2 ε(1 − ε) cos φS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)F
cos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)

– 7 –

P h�bT [GeV�1]

Bessel(Weighted%Asymmetries%in%Semi%
Inclusive%Deep%InelasCc%ScaDering,%%
D.&Boer,&L.&Gamberg,&B.&Musch,&A.&Prokudin,&&

JHEP#(2011)#

F sin(�h��S)
UT,T = �P[f̃?(1)

1T D̃1]

F sin(�h+�S)
UT = �P[h̃1H̃

?(1)
1 ]



P

Ph

q

p

k

S

∆

Φ

•TMDs w/Gauge links: color invariant 
•Soft factor w/Gauge links
•Hard cross section

Review of TMD factorization

•Divergences at one loop and higher
•Extra parameters needed to regulate light-cone, soft & collinear divergences 
•Modifies convolution integral introduction of soft factor

★ Collins Soper (81), Collins, Soper, Sterman (85),  Boer (01) (09) (13), Ji,Ma,Yuan (04), Collins-Cambridge University 
Press (11), Aybat Rogers PRD (11), Abyat, Collins, Qiu, Rogers (11),  Aybat, Prokudin, Rogers  (11), Bacchetta, Prokudin 
(13),  Sun, Yuan (13),Echevarria, Idilbi, Scimemi JHEP 2012, Collins Rogers 2015 ....



In full QCD, the auxiliary parameters are exactly 
arbitrary and this is reflected in the the Collins-Soper 
(CS) equations for the TMD PDF, and the 
renormalization group (RG) equations

JCC Cambridge Press 2011, Collins arXiv: 1212.5974, Collins, Gamberg, Prokudin, Sato, Wang

d�

dP

2
T

/
X

jj0

Hjj0, SIDIS(↵s(µ), µ/Q)

Z
d

2bT e
ibT ·PT

F̃j/H1
(x, bT ;µ, ⇣1) D̃H2/j0(z, bT ;µ, ⇣2) + YSIDIS

Review of TMD factorization



Elements of TMD Fact. Cross section 

• Y term serves to correct expression for structure 
function when PT ~ Q

• Evolution kernel contains both perturbative and non-perturbative content 
arising from TMD factorization                         evolution

• This structure is based upon earlier CS 81 & CSS 85 formalism & new 
treatment of soft factor and CSS equations.                                               
Also see Collins & Rogers PRD 2015



Unpack the Transverse Polarized Target Structure Functions

Z

k?,p?

⌘
Z

d2k?d
2p?�

2
⇣
z~k? + ~p? � ~Ph?

⌘

F
sin(�h��S)
UT (x, z, qT , Q) = �HSIDIS(Q,µ = Q)

X

a

e2q

Z

k?,p?

f?
1T (xB , k

2
?;Q)

P̂h? · k?
M

D1(zh, p
2
?;Q)

Fourier Bessel  Moments of “Sivers Structure Function”

Boer, Gamberg, Musch, Prokudin JHEP 2011 Bessel Moments
Also Aybat, Collins, Qiu, Rogers PRD 2012

F
sin(�h��S)
UT (x, z, qT , Q) = �HSIDIS(Q,µ)

X

a

e2q

Z
db

2⇡
b2J1(Ph?/z, b)F̃UT (x, z, b,Q

2)
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X
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e2q

Z
db

2⇡
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✓
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◆
f?
1T (xB , b;Q)D1(zh, b;Q)
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X
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e2q

Z
db

2⇡
b2J1(Ph?/z, b)f
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Sivers moment in b-space

F sin(�h��S)
UT,T = �P[f̃?(1)

1T D̃1]

F sin(�h��S)
UT,T (x, z, b,Q) = HUT (Q;µ)

X

q

f̃
q(1)
1T i/P (x, b;Q)D̃q

H(z, b;Q)

TMDs are defined at a scale Q

Evolution is performed in Fourier space

Over short transverse distance scales, 1/b is hard scale, and the 
b dependence of TMDs can be calculated in perturbation theory



TMD Evolution of unpolarized Structure Functions 

JCC formalism express evolution of TMDS
OPE  in terms of collinear pdfs

Fourier Bessel Transform

FUU (Q;Ph?) = �HSIDIS(Q,µ)
X

a

e2q

Z
db

2⇡
b J0(Ph?/z, b)f̃1(xB , b;Q)D̃1(zh, b;Q)

F̃UU (x, z, b,Q) = HUU (Q;µ)
X

q

e2q f̃
q
1 (x, b;Q)D̃q

1(z, b;Q)



Standard CSS formalism, evolution starts from

11

TMD evolution in a nut shell

TMD functions are measured at scale

Evolution is performed in Fourier space

Standard CSS formalism, evolution starts from  

Perturbative Sudakov factor

Elements of TMD Evolution 

Spert(b,Q) =

Z Q2

µ2
b

dµ̄

µ̄2


A(↵s(µ̄) ln

Q2

µ̄2
+B(↵s(µ̄)

�

Perturbative contribution CSS NPB 85 JCC 2011
11

TMD evolution in a nut shell

TMD functions are measured at scale

Evolution is performed in Fourier space

Standard CSS formalism, evolution starts from  

Perturbative Sudakov factor

I.) Over short transverse distance scales, 1/b is hard scale, and the b dependence 
of TMDs is calculated in perturbation theory 

f̃1(xB , b;Q) = f̃1(xB , b;µb)e
�Spert(b,Q)

, b << 1/⇤QCD



II.) However Fourier transform space involves non-perturbative b 
region where perturbation theory breaks down

where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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Up Quark Sivers Function
x = 0.1 

Torino Fits

Bochum Fits

FIG. 1 (color online). The (negative of the) up quark Sivers
function at x ¼ 0:1 evolved fromQ ¼

ffiffiffiffiffiffiffi
2:4

p
GeV (solid maroon)

to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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TMD evolution in a nut shell

Calculation is perturbative, valid only in region

Fourier transform in momentum space involves non-perturbative
region

Non perturbative region needs to be treated. 

Common method b* prescription     

Non perturbative Sudakov factor

Non perturbative region treated with  b* prescription

Collins Soper Sterman NPB 85

f̃1(x, b;Q) = f̃1(x, b⇤; c/b⇤)e
� 1

2Spert(Q,b⇤)� 1
2S

sivers
NP (Q,b)

f1(x, k?;Q) =

Z 1

0

db

2⇡
bJ0(k?b)f̃1(x, b;Q)



III.) With  1/b as hard scale, the b dependence of TMDs is calculated in 
perturbation theory and related to their collinear parton distribution (PDFs), 
fragmentation functions (FFs), or multiparton correlation functions ,, … OPE.

f̃1(x, b;Q) = f̃1(x, b⇤; c/b⇤)e
� 1

2Spert(Q,b⇤)� 1
2S

f1
NP (Q,b)

f

i
1(x, b;Q) = C

f1
q i ⌦ f

i
1(x, µb⇤)e

1
2Spert(Q,b⇤)�S

f1
NP (Q,b)

where SNPðQ; bÞ is defined as the difference from the
original form factor and the perturbative one. This differ-
ence should vanish as b → 0, i.e., in the perturbative region,
and thus SNPðQ; bÞ has the following generic form:

SNPðQ; bÞ ¼ g2ðbÞ lnQ=Q0 þ g1ðbÞ: ð30Þ

The nonperturbative generic functions g2 and g1 have very
unique interpretations. In particular g2 includes the infor-
mation on the large b behavior of the evolution kernel ~K.
This function does not depend on the particular process; it
does not depend on the scale and has no dependence on
momentum fractions xB, z. This contribution should be
parametrized phenomenologically, and an often-used para-
metrization is

g2ðbÞ ¼ g2b2; ð31Þ

which proved to be very reliable to describe Drell-Yan data
and W%; Z boson production in the BLNY type of para-
metrizations [37]. This Gaussian-type parametrization
suggests that the large b region is strongly suppressed
[39] and in principle can be unreliable to describe data from
lower energies which are more sensitive to moderate-to-
high values of b. Other parametrizations were proposed in
Refs. [39] and [44]. For instance that of Ref. [44] has the
form

g2ðbÞ ¼ g2 ln
!
b
b&

"
; ð32Þ

and allows us to describe simultaneously unpolarized
multiplicities from SIDIS measurements by HERMES,
low energy Drell-Yan as well as Z boson production up
to LHC energies. In this paper we will follow the para-
metrization of Ref. [44] for g2ðbÞ.
The function g1ðbÞ contains information on the intrinsic

nonperturbative transverse motion of bound partons; in
case of a distribution TMD, it depends on the type of
hadron and quark flavor as well as potentially on xB. In case
of a fragmentation TMD, it can depend on zh and the type
of the hadron produced and quark flavor. In other words,
g1ðbÞ is tied to the particular TMD. Parameters in functions
g2ðbÞ and g1ðbÞ depend on the cutoff value bmax in case b&
prescription is used. The nonperturbative factors could
be also defined using different prescriptions, such as, for
example, matching to perturbative form factors of Ref. [75]
or using the complex b plane integration method of
Ref. [76]. In this paper we use the standard CSS b&
prescription method that allows us to compare easily with
existing phenomenology.
Therefore, with the TMD evolution, TMDs can be

expressed as [22,56,57],

~fqðsubÞ1 ðxB; b;Q2; QÞ ¼ e−
1
2SpertðQ;b&Þ−S

f1
NPðQ;bÞ ~F qðαsðQÞÞCq←i ⊗ fi1ðxB; μbÞ; ð33Þ

~DðsubÞ
q ðzh; b;Q2; QÞ ¼ e−

1
2SpertðQ;b&Þ−S

D1
NP ðQ;bÞ ~DqðαsðQÞÞĈj←q ⊗ Dh=jðzh; μbÞ; ð34Þ

where we explicitly embed the scheme dependence of
TMDs from Eqs. (18) and (19) in the coefficients ~F q and
~Dq. Details on these functions are given in Ref. [57]. In the
Ji-Ma-Yuan scheme,

~F q ¼ 1þ αs
2π

CF

#
ln ρ −

1

2
ln2ρ −

π2

2
− 2

$
; ð35Þ

~Dq ¼ 1þ αs
2π

CF

#
ln ρ − 1

2
ln2ρ − π2

2
− 2

$
; ð36Þ

while in the Collins-11 scheme, ~F q ¼ 1þOðα2sÞ and
~Dq ¼ 1þOðα2sÞ. The final result for the structure function
is ρ independent for the Ji-Ma-Yuan scheme, so we set
ρ ¼ 1. In Eqs. (33) and (34), ⊗ represents the convolution
in the momentum fraction of x or z,

Cq←i ⊗ fi1ðxB; μbÞ≡
X

i

Z
1

xB

dx
x
Cq←i

!
xB
x
; μb

"
fi1ðx; μbÞ;

ð37Þ

Ĉj←q⊗Dh=jðzh;μbÞ≡
X

j

Z
1

zh

dz
z
Ĉj←q

!
zh
z
;μb

"
Dh=jðz;μbÞ:

ð38Þ

The same convolutions will be used for transversity and
Collins fragmentation functions with appropriate coeffi-
cient functions later in the paper. The above coefficient
functions are

Cq←q0ðx; μbÞ ¼ δq0q

#
δð1 − xÞ þ αs

π

!
CF

2
ð1 − xÞ

"$
; ð39Þ

Cq←gðx; μbÞ ¼
αs
π
TRxð1 − xÞ; ð40Þ
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TMD evolution in a nut shell

Wilson coefficient Collinear PDF

For transversity and helicity TMDs: Bacchetta-Prokudin 2013

Taking into account Wilson coefficients is very important!
Large K factors of collinear computations between LO and NLO!

For Collins function (relation to twist-3 function):    Yuan-Zhou 2009, Kang 2011

In future also gluon functions will be important

For gluon twist-3 function:     Dai-Kang-Prokudin-Vitev 2014



Summary TMD Evolution of Structure Functions 
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OPE  in terms of collinear pdfs

F̃UU (x, z, b,Q
2) = HUU (Q,µ = Q)

X

q

e2q f̃
q
1 (x, b, µ, ⇣F )D̃

q
1(zh, b, µ, ⇣D)

= HUU (Q,µ = Q)
X

q

e2q f̃
q
1 (x, b⇤, µ, ⇣F )D̃

q
1(zh, b⇤, µ, ⇣D)e�Spert(b⇤,Q)�SNP

UU (b,Q)

= HUU (Q,µ = Q)
X

q

e2q C
SIDIS
q i ⌦ f̃ i

1(x, µb)Ĉ
SIDIS
j q ⌦ D̃q

h/j(x, µb)e
�Spert(b⇤,Q)�SNP

UU (b,Q)



...and what about Sivers Evolution ??

see also Kang, Xaio, Yuan PRL 2011
 Aybat, Collins, Qiu, Rogers PRD 2012
Echevarria, Idilbi, Kang, Vitev PRD 2014

k?
M

2
f

?
1T (x, k?;Q) =

Z 1

0

db

2⇡
b

2
J1(k?b)f̃

?(1)
1T (x, b;Q)

WithTMDEvolutionwith, b⇤&OPE

f̃

?(1)
1T (x, b;Q) = �C̃

Sivers
i q ⌦ f̃

?(1)
1T (x, µb)e

� 1
2Spert(Q,b⇤)� 1

2S
sivers
NP



Transverse Polarized Target Structure Functions
Collins Contribution
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JCC formalism can express evolution of TMDS
OPE  in terms of collinear pdfs
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b-space OPE 
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JCC formalism can express evolution of TMDS
OPE  in terms of collinear pdfs



Coefficient functions b-space OPE 
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The C-functions are chosen to be universal among different
TMD schemes, whereas the functions ~F q and ~Dq depend
on the schemes. In Collins-11 schemes, both factors are
equal to 1 up to one-loop order. In the Ji-Ma-Yuan scheme,
they will depend on ρ. Again, this ρ dependence in
individual TMDs will be cancelled out by the associated
ρ dependence in the hard factor H in Eq. (17) when we
calculate the structure function FUUðb;QÞ.
Substituting the results of Eqs. (33) and (34) into the

factorization formula Eq. (17), we can write down the
structure function ~FUU in the b space as

~FUUðQ; bÞ ¼ e−SpertðQ;b%Þ−SSIDISNP ðQ;bÞ ~FUUðb%Þ; ð45Þ

with the nonperturbative form factor decomposed into the
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NPðQ; bÞ; ð46Þ

which should be determined from the global fit to the
SIDIS, eþe−, and Drell-Yan data. In the standard CSS

resummaton which we will follow in this paper, together
with the hard factor in the TMD factorization of Eq. (17),
the functions ~Fq and ~Dq are absorbed into the C-functions
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fi1ðxB; μbÞ and Dh=jðzh; μbÞ are the usual unpolarized
collinear parton distribution function and fragmentation
function at the scale μb ¼ c0=b%. We emphasize that the
above C-coefficients are the same for all TMD schemes if
hard factors H, ~Fq, and ~Dq are absorbed in their definition.
In particular, in the Ji-Ma-Yuan scheme, the ρ dependence
in H of Eq. (17), ~Fq in Eq. (33), and ~Dq in Eq. (34) are
cancelled out. In the Collins-11 scheme when the hard
factor H is absorbed in the definition of C-functions,
C-functions become process dependent and equal to those
of the standard CSS scheme. The final expressions for
CSIDIS and ĈSIDIS do not depend on ρ, and they are the same
in the Collins-11 scheme, which are also the same as those
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ĈðSIDISÞ
g←q ðz; μbÞ ¼

αs
π

"
CF

2
zþ Pg←qðzÞ ln z

#
: ð51Þ

Of course, there is a freedom to have a separate hard factor
in Eq. (45), so that the above C-coefficients will be
modified accordingly; compare to Eqs. (39), (40), (41),
and (42). This is referred to as scheme dependence [46] in
the CSS resummation.

For the nonperturbative form factors, we will follow the
parametrization of Ref. [44],
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where Q2
0 ¼ 2.4 GeV2, for the spin-averaged contribution.

In the above parametrization, the parameters gq ¼ g1=2 ¼
0.106, g2 ¼ 0.84, and gh ¼ 0.042 ðGeV2Þ have been
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factor H is absorbed in the definition of C-functions,
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of the standard CSS scheme. The final expressions for
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in the Collins-11 scheme, which are also the same as those
used in the CSS literature [77–79],

CðSIDISÞ
q←q0 ðx; μbÞ

¼ δq0q

!
δð1 − xÞ þ αs

π

"
CF

2
ð1 − xÞ − 2CFδð1 − xÞ

#$
;

ð48Þ

CðSIDISÞ
q←g ðx; μbÞ ¼

αs
π
TRxð1 − xÞ; ð49Þ
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SSIDISNP ðQ; bÞ ¼ Sf1NPðQ; bÞ þ SD1
NPðQ; bÞ; ð46Þ

which should be determined from the global fit to the
SIDIS, eþe−, and Drell-Yan data. In the standard CSS

resummaton which we will follow in this paper, together
with the hard factor in the TMD factorization of Eq. (17),
the functions ~Fq and ~Dq are absorbed into the C-functions
by applying the renormalization group equation for the
running coupling constant in these two factors [46]. With
that, we can write down ~FUUðb%Þ as

~FUUðb%Þ ¼
X

q

e2qðC
ðSIDISÞ
q←i ⊗ fi1ðxB; μbÞÞ

× ðĈðSIDISÞ
j←q ⊗ Dh=jðzh; μbÞÞ; ð47Þ

where
P

q runs over both quark and antiquark flavors and
fi1ðxB; μbÞ and Dh=jðzh; μbÞ are the usual unpolarized
collinear parton distribution function and fragmentation
function at the scale μb ¼ c0=b%. We emphasize that the
above C-coefficients are the same for all TMD schemes if
hard factors H, ~Fq, and ~Dq are absorbed in their definition.
In particular, in the Ji-Ma-Yuan scheme, the ρ dependence
in H of Eq. (17), ~Fq in Eq. (33), and ~Dq in Eq. (34) are
cancelled out. In the Collins-11 scheme when the hard
factor H is absorbed in the definition of C-functions,
C-functions become process dependent and equal to those
of the standard CSS scheme. The final expressions for
CSIDIS and ĈSIDIS do not depend on ρ, and they are the same
in the Collins-11 scheme, which are also the same as those
used in the CSS literature [77–79],

CðSIDISÞ
q←q0 ðx; μbÞ

¼ δq0q

!
δð1 − xÞ þ αs

π

"
CF

2
ð1 − xÞ − 2CFδð1 − xÞ

#$
;

ð48Þ

CðSIDISÞ
q←g ðx; μbÞ ¼

αs
π
TRxð1 − xÞ; ð49Þ

ĈðSIDISÞ
q0←q ðz; μbÞ ¼ δq0q

!
δð1 − zÞ þ αs

π

"
CF

2
ð1 − zÞ − 2CFδð1 − zÞ þ Pq←qðzÞ ln z

#$
; ð50Þ

ĈðSIDISÞ
g←q ðz; μbÞ ¼

αs
π

"
CF

2
zþ Pg←qðzÞ ln z

#
: ð51Þ

Of course, there is a freedom to have a separate hard factor
in Eq. (45), so that the above C-coefficients will be
modified accordingly; compare to Eqs. (39), (40), (41),
and (42). This is referred to as scheme dependence [46] in
the CSS resummation.

For the nonperturbative form factors, we will follow the
parametrization of Ref. [44],

SSIDISNP ðQ; bÞ ¼ g2 ln
"
b
b%

#
ln
"
Q
Q0

#
þ
"
gq þ

gh
z2h

#
b2; ð52Þ

where Q2
0 ¼ 2.4 GeV2, for the spin-averaged contribution.

In the above parametrization, the parameters gq ¼ g1=2 ¼
0.106, g2 ¼ 0.84, and gh ¼ 0.042 ðGeV2Þ have been
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determined from the analysis of SIDIS and Drell-Yan
processes in Ref. [44]. In the fit of Ref. [44], it was found
that the nonperturbative form factors do not depend on x.
We will use the nonperturbative factor of Eq. (52) in
this paper.

2. Collins structure function with evolution

Now, we turn to the Collins effects contribution to the
single transverse spin asymmetry in SIDIS. We start again
from the factorized TMD expression in the b space [49,80],

~Fα
collinsðQ; bÞ ¼

X

q

e2q ~h
qðsubÞ
1 ðxB; b; ρ; ζ; μÞ

× ~H⊥αðsubÞ
1h=q ðzh; b; ρ; ζ̂; μÞHðρ; Q=μÞ; ð53Þ

where ~hq1 is the TMD quark transversity distribution and
~H⊥
1h=q is the Collins fragmentation function in the b space

and is defined (omitting scale dependence) as

~H⊥α
1h=qðzh; bÞ ¼

Z
d2p⊥e−ip⊥·bpα

⊥H
⊥
1h=qðzh; p⊥Þ: ð54Þ

HereH⊥
1h=qðzh; p⊥Þ is the quark Collins function as defined

in Ref. [52], which differs by a factor of ð−1=zhÞ from the
so-called “Trento convention” [81],

H⊥
1h=jðzh; p⊥Þ ¼ −

1

zh
H⊥

1h=jðzh; p⊥ÞjTrento; ð55Þ

with p⊥ the transverse component of the hadron with
respect to the fragmenting quark momentum.
The following model-independent relation of Collins

fragmentation function H⊥
1h=qðzh; p⊥Þ and a twist-3 frag-

mentation function of quark flavor q to hadron h, Ĥð3Þ
h=qðzhÞ,

can be obtained [52]:

Ĥð3Þ
h=jðzhÞ ¼

Z
d2p⊥

jp2
⊥j

Mh
H⊥

1h=jðzh; p⊥Þ: ð56Þ

One often defines the following so-called first moment of
the Collins fragmentation function:

H⊥ð1Þ
1h=jðzhÞjTrento ≡

Z
d2p⊥

jp⊥j2

2z2hM
2
h
H⊥

1h=jðzh; p⊥ÞjTrento:

ð57Þ

We thus find that

Ĥð3Þ
h=jðzhÞ ¼ −2zMhH

⊥ð1Þ
1h=jðzhÞjTrento: ð58Þ

It is straightforward to show that Ĥð3Þ
h=jðzhÞ can be written as

Ĥð3Þ
h=jðzhÞ ¼ nþz2h

Z
dξ−

2π
eik

þξ− 1

2

!
Trσαþh0j

"
iDα

⊥ þ
Z

þ∞

ξ−
dζ−gFαþðζ−Þ

#
ψðξÞjPhXihPhXjψ̄ð0Þj0iþ H:c:

$
; ð59Þ

where we have chosen the gauge link in Eq. (59) going
to þ∞ and Fμν is the gluon field strength tensor and we
have suppressed the gauge links between different fields
and other indices for simplicity. Since the Collins function
is the same under different gauge links [14,82,83], we shall
obtain the same result if we replace þ∞ by −∞ in the
above equation.

The TMD evolution for the quark transversity and
Collins fragmentation functions have been derived in the
literature [21,29,40,49,54]. When expressed in terms of
the collinear transversity distribution hq1ðxBÞ and the
twist-3 fragmentation function Ĥð3Þ

h=qðzhÞ, they can be
written as

~hqðsubÞ1 ðxB; b; ρ;Q2; QÞ ¼ e−
1
2SpertðQ;b%Þ−S

h1
NPðQ;bÞ ~H1qðαsðQÞÞδCq←q0 ⊗ hq

0

1 ðxB; μbÞ; ð60Þ

~HðsubÞ⊥α
1h=q ðzh; b; ρ;Q2; QÞ ¼

%
−ibα

2zh

&
e−

1
2SpertðQ;b%Þ−S

D1
NP ðQ;bÞ ~HcðαsðQÞÞδĈq0←q ⊗ Ĥð3Þ

h=q0ðzh; μbÞ; ð61Þ

where again the scheme dependence is in the functions ~H1qðαsðQÞÞ and ~HcðαsðQÞÞ. They equal 1 up to one-loop order in
the Collins-11 scheme. The C-coefficient functions are found to be

δCq←q0ðx; μbÞ ¼ δq0q½δð1 − xÞ þOðα2sÞ'; ð62Þ
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δĈðSIDISÞ
q0←q ðz; μbÞ ¼ δq0q

!
δð1 − zÞ þ αs

π
ðP̂c

q←qðzÞ ln zÞ
"
;

ð63Þ

where the function P̂c
q←qðzÞ has the following form, see

Eq. (A6):

P̂c
q←qðzÞ ¼ CF

!
2z

ð1 − zÞþ
þ 3

2
δð1 − zÞ

"
: ð64Þ

Substituting the above results into the factorization
formula, we obtain the final result for ~Fα

collins as
[21,29,40,49,54]

~Fα
collinsðQ; bÞ ¼

#
−ibα

2zh

$
e−SpertðQ;b%Þ−SSIDISNP collinsðQ;bÞ ~Fcollinsðb%Þ;

ð65Þ

with ~Fcollinsðb%Þ given by

~Fcollinsðb%Þ ¼
X

q

e2qðδCq←i ⊗ hi1ðxB; μbÞÞ

× ðδĈðSIDISÞ
j←q ⊗ Ĥð3Þ

h=jðzh; μbÞÞ: ð66Þ

The convolutions are defined in Eqs. (37) and (38), and the
relevant coefficient functions up to the first order in αs
[compare to Eq. (63) to determine the relation to hard factor
H] are given by [52,54,64,79]

δCðSIDISÞ
q←q0 ðz;μbÞðx;μbÞ¼δq0q

!
δð1−xÞþαs

π
ð−2CFδð1−xÞÞ

"
;

ð67Þ

δĈðSIDISÞ
q0←q ðz; μbÞ

¼ δq0q

!
δð1 − zÞ þ αs

π
ðP̂c

q←qðzÞ ln z − 2CFδð1 − zÞÞ
"
;

ð68Þ

where again the above C-coefficients contain the contri-
butions from the hard factors in the TMD factorization. The
hard factor is given in Eq. (A19) for the Ji-Ma-Yuan scheme
and in Eq. (A20) for the Collins-11 scheme.
To achieve the evolution at the NLL order, we have to

evaluate both the transversity hq1ðxB; μbÞ and twist-3 frag-
mentation function Hð3Þ

h=qðz; μbÞ up to the scale μb ¼ c0=b%.
The evolution for the quark transversity is well known
[84–87], and we will use the leading-order result

∂
∂ ln μ2 h

q
1ðxB; μÞ ¼

αs
2π

Z
1

xB

dx̂
x̂
Ph1
q→qðx̂Þhq1ðxB=x̂; μÞ; ð69Þ

where the splitting kernel

Ph1
q→qðx̂Þ ¼ CF

!
2x̂

ð1 − x̂Þþ
þ 3

2
δð1 − x̂Þ

"
: ð70Þ

Note that, since gluon transversity distribution for nucleons
does not exist [3], the quark transversity hq1 does not mix
with gluons in its evolution and it evolves as a nonsinglet
quantity. On the other hand, the evolution equation for Ĥð3Þ

h=j
was derived in Refs. [52,62] and has a more complicated
form. However, if we keep only the homogenous term, we
can write down the evolution equation as [52,62]

∂
∂ ln μ2 Ĥ

ð3Þ
h=qðzh; μÞ ¼

αs
2π

Z
1

zh

dẑ
ẑ
P̂c
q←qðẑÞĤ

ð3Þ
h=qðzh=ẑ; μÞ;

ð71Þ

where the splitting kernel P̂c
q←q of the homogenous term

is given in Eqs. (A6) and (64) and is the same as that for
the evolution of the quark transversity function, as pointed
out in Ref. [62]. We will take this approximation in our
numerical studies below. In order to differentiate from the
complete NLL accuracy, we will call it NLL0 or approxi-
mate NLL.
For the nonperturbative form factors, we follow the

parametrizations of Ref. [44],

SSIDISNPcollinsðQ;bÞ ¼ g2 ln
#
b
b%

$
ln
#
Q
Q0

$
þ
#
gq þ

gh − gc
z2h

$
b2;

ð72Þ

where we assume that the quark transversity follows the
same parametrization as unpolarized TMD but introduce an
additional parameter to constrain the p⊥ dependence in the
Collins fragmentation. Therefore, gc will be a free param-
eter in the fit. It is also worthwhile to emphasize that
the lnQ=Q0-dependent part [i.e., g2 ln ðb=b%Þ in our for-
malism above] is universal for all processes in the initial
CSS formalism [20,21] as well as in the recent TMD
formalism of Ref. [22]. The other contributions in the
nonperturbative Sudakov form factor are Q independent
and can be associated with corresponding TMD distribu-
tion and fragmentation functions at an initial scale; see,
e.g., Refs. [22,42].
Finally performing Fourier transforms in Eqs. (9) and

(10), we obtain the expressions for both spin-averaged
and spin-dependent structure functions in the transverse-
momentum space as

ZHONG-BO KANG et al. PHYSICAL REVIEW D 93, 014009 (2016)

014009-10

Kang, Prokudin, Sun, Yuan PRD 2016

For twist 3 keep only homogeneous or diagonal 
terms in splitting kernal, Kang plb 2011
and for Sivers, Sun Yuan PRD 2013



20

Transversity and Collins FF

First NLL' extraction from the data

Collins function is related to twist-3 function

We solve also DGLAP equations for transversity and (diagonal) Collins FF

Kang-Prokudin-Sun-Yuan 2014

Diagonal part for twist-3 Collins function is: Yuan-Zhou 2009, Kang 2011

21

Transversity and Collins FF

Parametrizations:

Transversity

Favoured and unfavoured Collins FF

Total 13 parameters: 

SIDIS data used: HERMES, COMPASS, JLAB – 140 points 

e+e- data used: BELLE, BABAR including PT dependence – 122 points

Kang-Prokudin-Sun-Yuan 2014

21

Transversity and Collins FF

Parametrizations:

Transversity

Favoured and unfavoured Collins FF

Total 13 parameters: 

SIDIS data used: HERMES, COMPASS, JLAB – 140 points 

e+e- data used: BELLE, BABAR including PT dependence – 122 points

Kang-Prokudin-Sun-Yuan 2014

21

Transversity and Collins FF

Parametrizations:

Transversity

Favoured and unfavoured Collins FF

Total 13 parameters: 

SIDIS data used: HERMES, COMPASS, JLAB – 140 points 

e+e- data used: BELLE, BABAR including PT dependence – 122 points

Kang-Prokudin-Sun-Yuan 2014

21

Transversity and Collins FF

Parametrizations:

Transversity

Favoured and unfavoured Collins FF

Total 13 parameters: 

SIDIS data used: HERMES, COMPASS, JLAB – 140 points 

e+e- data used: BELLE, BABAR including PT dependence – 122 points

Kang-Prokudin-Sun-Yuan 2014

.88

details in Kang, Prokudin, Sun, Yuan PRD 2016

Kang-Prokudin-Sun-Yuan PRD  2016



22

Transversity and Collins FF

HERMES

Kang-Prokudin-Sun-Yuan 2014

COMPASS

23

Transversity and Collins FF

BELLE

Kang-Prokudin-Sun-Yuan 2014

BABAR



H⊥
1 h=qðz; b;QÞjTrento ≡

1

z2
b2

ð2πÞ
δĈcollins

i←q ⊗ Ĥ⊥ð1Þ
1 h=jðzÞjTrentoðz; μbÞe−

1
2SpertðQ;b#Þ−ScollinsNP ðQ;bÞ; ð152Þ

and the p⊥-dependent function is in Eq. (145). In Fig. 11
we present the TMD Collins FF at z ¼ 0.4 and at three
different scales, Q2 ¼ 2.4 (dotted lines), Q2 ¼ 10 (solid
lines), and Q2 ¼ 1000 (dashed lines) GeV2. One observes
the widening of distributions in p⊥ and shift toward lower
values b of the maximum of the distribution with the
increase of Q2. Note that the TMD Collins FF has a
kinematical zero due to the prefactor p⊥=zMh.
It is very important to make results of global fits

available for usage in various applications. Some progress
has been made, for example, by the TMDlib project; see

Ref. [114]. The results of this analysis will be available in a
form of a computer package.

G. Description of the experimental data

The description of the HERMES data [98] is shown in
Fig. 12. One can see that the description is good for all xB,
z, and Ph⊥ dependencies. The formalism that we use is
appropriate in the region of low Ph⊥, and we limit our
description by Ph⊥ < 0.8 GeV. The data are in the region
of 1≲ hQ2i ≲ 6 ðGeV2Þ. The estimate of the error band is
presented as the shaded region.
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proton target. The shaded region corresponds to our estimate of the 90% C.L. error band.
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JCC formalism can express evolution of TMDS
OPE  in terms of collinear pdfs

b-space OPE 

H⊥
1 h=qðz; b;QÞjTrento ≡

1

z2
b2

ð2πÞ
δĈcollins

i←q ⊗ Ĥ⊥ð1Þ
1 h=jðzÞjTrentoðz; μbÞe−

1
2SpertðQ;b#Þ−ScollinsNP ðQ;bÞ; ð152Þ

and the p⊥-dependent function is in Eq. (145). In Fig. 11
we present the TMD Collins FF at z ¼ 0.4 and at three
different scales, Q2 ¼ 2.4 (dotted lines), Q2 ¼ 10 (solid
lines), and Q2 ¼ 1000 (dashed lines) GeV2. One observes
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Ref. [114]. The results of this analysis will be available in a
form of a computer package.
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The description of the HERMES data [98] is shown in
Fig. 12. One can see that the description is good for all xB,
z, and Ph⊥ dependencies. The formalism that we use is
appropriate in the region of low Ph⊥, and we limit our
description by Ph⊥ < 0.8 GeV. The data are in the region
of 1≲ hQ2i ≲ 6 ðGeV2Þ. The estimate of the error band is
presented as the shaded region.
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b-space OPE 

h

q
1(x, k

2
?;Q) =

Z 1

0

db b

2⇡
J0(k?b) �Cq i ⌦ h

i
1(x, µb)e

1
2Spert(Q,b⇤)�S

h1
NP (Q,b)

h

q
1(x, b;Q) =

b

2⇡
J0(k?b) �Cq i ⌦ h

i
1(x, µb)e

1
2Spert(Q,b⇤)�S

h1
NP (Q,b)

toward large values of b ∼ 2 ÷ 3 GeV−1; in this region of b,
one needs to carefully account for nonperturbative effects
of the TMD evolution and intrinsic motion of quarks.
The distribution in k⊥ space is becoming wider with the
growth ofQ2 and has developed a perturbative tail, while at
low values of Q2, it resembles Gaussian-type parametriza-
tion used in tree-level extractions, for instance that of
Refs. [17,113].
The same observation is true for transversity distribution.

We present transversity u-quark distribution h1 at x ¼ 0.1
as a function of b and k⊥ in Fig. 9. We plot

hq1ðx; b;QÞ≡ b
ð2πÞ

δCq←i ⊗ hi1ðx; μbÞe−
1
2SpertðQ;b$Þ−S

h1
NPðQ;bÞ;

ð150Þ

while k⊥ distribution is defined in Eq. (141). Note that
coefficient functions for transversity distribution δCq←i
are different from those of unpolarized distribution. This
difference affects the shape of distributions in b and k⊥
space. Moreover the width of transversity can be different
from that of unpolarized distribution as well; however,

features of TMD evolution are very similar in both cases.
Generic results on the transversity TMD evolution were
also presented in Ref. [64].
Unpolarized fragmentation TMD as a function of b is

defined as

Dh=qðz;b;QÞ

≡ 1

z2
b

ð2πÞ
ĈD1
i←q⊗Dh=iðz;μbÞe−

1
2SpertðQ;b$Þ−S

D1
NP ðQ;bÞ; ð151Þ

and as function of p⊥, it can be calculated using Eq. (142).
In Fig. 10 we present an unpolarized TMD FF at z ¼ 0.4
and at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines)
GeV2. Again as in the case of other TMDs above, one
observes the widening of distributions in p⊥ and shift
toward lower values b of the maximum of the distribution
with the increase of Q2. In the relatively low Q2 region, the
effects of TMD evolution are quite moderate.
The Collins fragmentation function with evolution is

presented for the first time in this paper. The b-dependent
function can be defined as
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FIG. 9. Transversity u-quark distribution as a function of b (a) and as a function of k⊥ (b) at three different scales, Q2 ¼ 2.4 (dotted
lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines) GeV2.
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toward large values of b ∼ 2 ÷ 3 GeV−1; in this region of b,
one needs to carefully account for nonperturbative effects
of the TMD evolution and intrinsic motion of quarks.
The distribution in k⊥ space is becoming wider with the
growth ofQ2 and has developed a perturbative tail, while at
low values of Q2, it resembles Gaussian-type parametriza-
tion used in tree-level extractions, for instance that of
Refs. [17,113].
The same observation is true for transversity distribution.

We present transversity u-quark distribution h1 at x ¼ 0.1
as a function of b and k⊥ in Fig. 9. We plot

hq1ðx; b;QÞ≡ b
ð2πÞ

δCq←i ⊗ hi1ðx; μbÞe−
1
2SpertðQ;b$Þ−S

h1
NPðQ;bÞ;

ð150Þ

while k⊥ distribution is defined in Eq. (141). Note that
coefficient functions for transversity distribution δCq←i
are different from those of unpolarized distribution. This
difference affects the shape of distributions in b and k⊥
space. Moreover the width of transversity can be different
from that of unpolarized distribution as well; however,

features of TMD evolution are very similar in both cases.
Generic results on the transversity TMD evolution were
also presented in Ref. [64].
Unpolarized fragmentation TMD as a function of b is

defined as

Dh=qðz;b;QÞ

≡ 1

z2
b

ð2πÞ
ĈD1
i←q⊗Dh=iðz;μbÞe−

1
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and as function of p⊥, it can be calculated using Eq. (142).
In Fig. 10 we present an unpolarized TMD FF at z ¼ 0.4
and at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines)
GeV2. Again as in the case of other TMDs above, one
observes the widening of distributions in p⊥ and shift
toward lower values b of the maximum of the distribution
with the increase of Q2. In the relatively low Q2 region, the
effects of TMD evolution are quite moderate.
The Collins fragmentation function with evolution is

presented for the first time in this paper. The b-dependent
function can be defined as
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JCC formalism can express evolution of TMDS
OPE  in terms of collinear pdfs
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where the TMD evolution has been taken into account and one-loop results of ~F q, ~Dq, ~H1q, and ~Hc equal to 1 in the
Collins-11 scheme have been applied, and C-functions are given in Eqs. (39), (40), (41), (42), (62), and (63). Using the
relation to Trento conventions of Eq. (58), we can write
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We can also write explicitly the nonperturbative Sudakov
form factor SNPðQ; bÞ for all the TMDs discussed in our
paper,
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where we have assumed that the nonperturbative Sudakov
form factors are the same for fq1 and hq1 as a first study
following Ref. [17]. With the expressions for individual
TMDs given in Eqs. (140), (141), (142), and (145), and the

fitted parameters in this section, we are now ready to
present all these TMDs as a function of both the longi-
tudinal momentum fraction (x or z) and the transverse
component (k⊥ or p⊥).
In Fig. 8 we present the unpolarized u-quark distribution

f1 at x ¼ 0.1 as a function of b (left) and k⊥ (right). We plot

fq1ðx; b;QÞ≡ b
ð2πÞ

Cf1
q←i ⊗ fi1ðx; μbÞe−

1
2SpertðQ;b$Þ−S
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ð149Þ

while the k⊥ dependence is defined in Eq. (140). The
distribution is calculated at three different scales: Q2 ¼ 2.4
(dotted lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000
(dashed lines) GeV2. As one can see, at large scale
Q2 ¼ 1000 GeV2, the distribution is highly dominated
by the perturbative region of b < bmax, while at lower
scales Q2 ¼ 2.4 and 10 GeV2, the distribution is shifted
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where the TMD evolution has been taken into account and one-loop results of ~F q, ~Dq, ~H1q, and ~Hc equal to 1 in the
Collins-11 scheme have been applied, and C-functions are given in Eqs. (39), (40), (41), (42), (62), and (63). Using the
relation to Trento conventions of Eq. (58), we can write

p⊥
Mh

H⊥
1 h=qðz; p2

⊥;QÞ ¼ −
1

z2

Z
∞

0

db b2

ð2πÞ
J1ðp⊥b=zÞδĈcollins
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We can also write explicitly the nonperturbative Sudakov
form factor SNPðQ; bÞ for all the TMDs discussed in our
paper,
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where we have assumed that the nonperturbative Sudakov
form factors are the same for fq1 and hq1 as a first study
following Ref. [17]. With the expressions for individual
TMDs given in Eqs. (140), (141), (142), and (145), and the

fitted parameters in this section, we are now ready to
present all these TMDs as a function of both the longi-
tudinal momentum fraction (x or z) and the transverse
component (k⊥ or p⊥).
In Fig. 8 we present the unpolarized u-quark distribution

f1 at x ¼ 0.1 as a function of b (left) and k⊥ (right). We plot
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while the k⊥ dependence is defined in Eq. (140). The
distribution is calculated at three different scales: Q2 ¼ 2.4
(dotted lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000
(dashed lines) GeV2. As one can see, at large scale
Q2 ¼ 1000 GeV2, the distribution is highly dominated
by the perturbative region of b < bmax, while at lower
scales Q2 ¼ 2.4 and 10 GeV2, the distribution is shifted

(x
, b

)
1

 f

)-1b (GeV
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

(a)

)
(x

, k
1

  f

T

 (GeV)k T

0 1 2 3 4

-210

-110

1

(b)

FIG. 8. Unpolarized u-quark distribution as a function of b (a) and as a function of k⊥ (b) at three different scales, Q2 ¼ 2.4 (dotted
lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines) GeV2.

EXTRACTION OF QUARK TRANSVERSITY DISTRIBUTION … PHYSICAL REVIEW D 93, 014009 (2016)

014009-23

f

q
1 (x, k

2
?;Q) =

Z 1

0

db b

2⇡
J0(k?b)C

f1
q i ⌦ f̃

i
1(x, µb)e

1
2Spert(Q,b⇤)�S

f1
NP (Q,b)

f

q
1 (x, b;Q) =

b

2⇡
C

f1
q i ⌦ f̃

i
1(x, µb)e

1
2Spert(Q,b⇤)�S

f1
NP (Q,b)

Kang-Prokudin-Sun-Yuan PRD  2016

JCC formalism can express evolution of TMDS
OPE  in terms of collinear pdfs



Dh=qðz; p2
⊥;QÞ ¼ 1

z2

Z
∞

0

dbb
ð2πÞ

J0ðp⊥b=zÞĈ
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where the TMD evolution has been taken into account and one-loop results of ~F q, ~Dq, ~H1q, and ~Hc equal to 1 in the
Collins-11 scheme have been applied, and C-functions are given in Eqs. (39), (40), (41), (42), (62), and (63). Using the
relation to Trento conventions of Eq. (58), we can write
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We can also write explicitly the nonperturbative Sudakov
form factor SNPðQ; bÞ for all the TMDs discussed in our
paper,
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where we have assumed that the nonperturbative Sudakov
form factors are the same for fq1 and hq1 as a first study
following Ref. [17]. With the expressions for individual
TMDs given in Eqs. (140), (141), (142), and (145), and the

fitted parameters in this section, we are now ready to
present all these TMDs as a function of both the longi-
tudinal momentum fraction (x or z) and the transverse
component (k⊥ or p⊥).
In Fig. 8 we present the unpolarized u-quark distribution

f1 at x ¼ 0.1 as a function of b (left) and k⊥ (right). We plot

fq1ðx; b;QÞ≡ b
ð2πÞ

Cf1
q←i ⊗ fi1ðx; μbÞe−

1
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while the k⊥ dependence is defined in Eq. (140). The
distribution is calculated at three different scales: Q2 ¼ 2.4
(dotted lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000
(dashed lines) GeV2. As one can see, at large scale
Q2 ¼ 1000 GeV2, the distribution is highly dominated
by the perturbative region of b < bmax, while at lower
scales Q2 ¼ 2.4 and 10 GeV2, the distribution is shifted
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toward large values of b ∼ 2 ÷ 3 GeV−1; in this region of b,
one needs to carefully account for nonperturbative effects
of the TMD evolution and intrinsic motion of quarks.
The distribution in k⊥ space is becoming wider with the
growth ofQ2 and has developed a perturbative tail, while at
low values of Q2, it resembles Gaussian-type parametriza-
tion used in tree-level extractions, for instance that of
Refs. [17,113].
The same observation is true for transversity distribution.

We present transversity u-quark distribution h1 at x ¼ 0.1
as a function of b and k⊥ in Fig. 9. We plot

hq1ðx; b;QÞ≡ b
ð2πÞ

δCq←i ⊗ hi1ðx; μbÞe−
1
2SpertðQ;b$Þ−S

h1
NPðQ;bÞ;
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while k⊥ distribution is defined in Eq. (141). Note that
coefficient functions for transversity distribution δCq←i
are different from those of unpolarized distribution. This
difference affects the shape of distributions in b and k⊥
space. Moreover the width of transversity can be different
from that of unpolarized distribution as well; however,

features of TMD evolution are very similar in both cases.
Generic results on the transversity TMD evolution were
also presented in Ref. [64].
Unpolarized fragmentation TMD as a function of b is

defined as

Dh=qðz;b;QÞ

≡ 1
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i←q⊗Dh=iðz;μbÞe−

1
2SpertðQ;b$Þ−S

D1
NP ðQ;bÞ; ð151Þ

and as function of p⊥, it can be calculated using Eq. (142).
In Fig. 10 we present an unpolarized TMD FF at z ¼ 0.4
and at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines)
GeV2. Again as in the case of other TMDs above, one
observes the widening of distributions in p⊥ and shift
toward lower values b of the maximum of the distribution
with the increase of Q2. In the relatively low Q2 region, the
effects of TMD evolution are quite moderate.
The Collins fragmentation function with evolution is

presented for the first time in this paper. The b-dependent
function can be defined as
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toward large values of b ∼ 2 ÷ 3 GeV−1; in this region of b,
one needs to carefully account for nonperturbative effects
of the TMD evolution and intrinsic motion of quarks.
The distribution in k⊥ space is becoming wider with the
growth ofQ2 and has developed a perturbative tail, while at
low values of Q2, it resembles Gaussian-type parametriza-
tion used in tree-level extractions, for instance that of
Refs. [17,113].
The same observation is true for transversity distribution.

We present transversity u-quark distribution h1 at x ¼ 0.1
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while k⊥ distribution is defined in Eq. (141). Note that
coefficient functions for transversity distribution δCq←i
are different from those of unpolarized distribution. This
difference affects the shape of distributions in b and k⊥
space. Moreover the width of transversity can be different
from that of unpolarized distribution as well; however,

features of TMD evolution are very similar in both cases.
Generic results on the transversity TMD evolution were
also presented in Ref. [64].
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and as function of p⊥, it can be calculated using Eq. (142).
In Fig. 10 we present an unpolarized TMD FF at z ¼ 0.4
and at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines)
GeV2. Again as in the case of other TMDs above, one
observes the widening of distributions in p⊥ and shift
toward lower values b of the maximum of the distribution
with the increase of Q2. In the relatively low Q2 region, the
effects of TMD evolution are quite moderate.
The Collins fragmentation function with evolution is

presented for the first time in this paper. The b-dependent
function can be defined as
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where
∑

a,b,c represents the sum over all parton flavors, and
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x′ S + T /z

, (11)

with S , T , U defined as hadronic Madelstam variables: S = (P A +
P B)2, T = (Ph − P A)2, and U = (Ph − P B)2. The hard-scattering
functions Hab→c are given by
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4ŝû
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with ŝ, t̂ , and û the usual partonic Mandelstam variables. Substi-
tuting the expression of nh into Eq. (8), the factor in the bracket
can also be written as,
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In the forward rapidity region of the polarized nucleon, we have
x & x′ and −û & −t̂ , and we can further simplify the transverse
spin dependent differential cross section as
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This term is the most phenomenological relevant contribution to
the single spin asymmetries of hadron production in the forward
direction of the polarized nucleon.

To demonstrate the twist-three fragmentation function contri-
bution to the SSA in inclusive hadron production in p↑ p collisions,
we need the unknown, but universal, twist-three fragmentation
function Ĥ(z). We notice that Ĥ(z) can be related to the Collins
fragmentation function H⊥

1 (z, p2
⊥) as in Eq. (4), which has been

studied from the available experimental data [38,39]. However,
we emphasize that the Collins function H⊥

1 (z, p2
⊥) are fitted from

small transverse momentum region where TMD factorization ap-
plies. To obtain the functional form for Ĥ(z), one has to assume
a transverse momentum dependence in the Collins fragmenta-
tion functions. In principle, the twist-three fragmentation functions
Ĥ(z) should be extracted from the experimental data of the SSAs
at large transverse momentum region where collinear factorization
applies, similar to what has been done for the twist-three distribu-
tion functions Tq,F (x, x) in [18], or from the transverse momentum
weighted azimuthal asymmetry measurements where Ĥ(z) enters
directly.

In the following, we follow the ansatz in Ref. [18] to parame-
terize the twist-three fragmentation function Ĥ(z) for π0 meson
as

Ĥ(z) = C f za(1 − z)b D(z), (15)

where D(z) is the leading-twist unpolarized fragmentation func-
tion, C f , a and b are unknown parameters. The factor za comes
from the consideration that this novel fragmentation is mostly a
valence-type fragmentation function. The other suppression fac-
tor (1 − z)b usually appears in the twist-three functions from the
power counting arguments at z → 1 [40]. However, the twist-three
fragmentation function for a scalar meson is not power suppressed
in terms of (1 − z), similar to the power counting of the Boer–
Mulders function of π meson at large-x [40]. Therefore, we set
b = 0 in Eq. (15). For the purpose of estimating the SSAs and mo-
tivating future experimental measurements, we choose C f = −0.4,
and three different values for a: a = 1,2,4. We emphasize that
our intention here is not to provide a precise parameterization for
Ĥ(z), but to show that sizable asymmetries could be generated
by the twist-three fragmentation function if a suitable parame-
terization is adopted. The more comprehensive parameterization
including those for the charged mesons should be extracted from
the measured SSAs through a global fit [18], which is beyond the
scope of the current study.

To calculate the SSAs in Eq. (10), we have also adopted the
quark transversity distributions from the parameterizations in
Ref. [41] and the unpolarized fragmentation function in [42]. In
Fig. 2, we show the predictions of the SSAs with the above pa-
rameterizations for the π0 production. The three curves from
up to bottom correspond to a = 1 (solid), a = 2 (dashed), and
a = 4 (dotted), respectively. With our parametrization of Ĥ(z), the
twist-three fragmentation function can generate a sizable SSA in
inclusive π0 production at RHIC energy

√
s = 200 GeV. These con-

tributions are comparable to that of the twist-three distribution
functions from the polarized nucleon [17,18].

We would like to emphasize that the predictions in Fig. 2 are
just rough estimates and suffer certain theoretical uncertainties.
The twist-three fragmentation parameterization in Eq. (15) is ar-
bitrary, and the quark transversity distribution from Ref. [41] are
upper bounds. To finally pin down these functions, we need to
carry out a global fit and take into account all the contributions in
Eq. (2) from the twist-three distribution and fragmentation func-
tions.

The single transverse spin asymmetry of η meson has also
been studied by the STAR collaboration at RHIC recently [2]. A sig-
nificantly larger asymmetry AN has been observed for η meson
compared to π0. As we discussed, in the twist-three collinear fac-

Collins like

Tq;Fðx; xÞ relevant for the description of single-spin asym-
metries in single-hadron production in pp scattering. The
latter have in the past been extracted from RHIC data [14].
Correcting an inconsistency in previous theoretical treat-
ments of the spin asymmetries in pp scattering, we have
found that the resulting Tq;Fðx; xÞ functions have signs
opposite to those predicted from the analysis of the k?
moments of the Sivers functions. We have discussed vari-
ous possible explanations for this apparent discrepancy.

Our finding highlights the importance of additional
measurements of single-spin asymmetries. Measurements
of the k? dependence of the Sivers functions with wide
kinematic reach would be feasible at an electron ion col-
lider and should shed light on the contributions from
various k? regions to the moment of the Sivers functions.
We have also shown that AN measurements for jet and
direct photon production in pp collisions at RHIC should
be valuable tools for a cleaner determination of the quark-
gluon correlation functions Tq;Fðx; xÞ.

ACKNOWLEDGMENTS

We thank H. Avakian, L. Gamberg, A. Metz, B. Musch,
and A. Prokudin for discussions and comments. This work
was supported in part by the U.S. Department of Energy
under Grants No. DE-FG02-87ER4037 (J. Q.) and No. DE-
AC02-05CH11231 (F. Y.). We are grateful to RIKEN,
Brookhaven National Laboratory, and the U.S.

Department of Energy (Contract No. DE-AC02-
98CH10886) for supporting this work.

APPENDIX: THE SIGN OF Tq;Fðx; xÞ IN INCLUSIVE
HADRON PRODUCTION

In this Appendix, we demonstrate why the SSA data for
p"p ! hX require Tu;Fðx; xÞ< 0 and Td;Fðx; xÞ> 0, if the
ETQS functions are the dominant sources of the observed
asymmetries.
We start with the QCD factorization formalism for

the spin-averaged cross section for inclusive single par-
ticle production in hadronic collisions, A"ðS?Þ þ B !
hðPh?Þ þ X:
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(A1)

where fa=AðxÞ and fb=Bðx0Þ are the PDFs, Dc!hðzÞ are the
FFs, and HU

ab!c are the partonic hard-scattering functions,
with ŝ, t̂, and û the Mandelstam variables at the parton
level. Including only the contributions by the twist-3
quark-gluon correlation functions, the spin-dependent
cross section d!!ðs?Þ & ½d!ðs?Þ ( d!ð(s?Þ)=2 is
given by
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where the relevant hard-scattering functions Hab!cðŝ; t̂; ûÞ
can be written as

Hab!cðŝ; t̂; ûÞ ¼ HI
ab!cðŝ; t̂; ûÞ þHF
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"
1þ û
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(A3)

withHI
ab!c and H

F
ab!c representing the contributions from

initial- and final-state interactions, respectively. The ex-
plicit forms of HU

ab!c, H
I
ab!c, and H

F
ab!c are given in [14].

It is important to point out that the spin-dependent cross
section in Eq. (A2) is calculated from an interference
between two partonic amplitudes. It thus depends on the
sign convention for the coupling constant g; the form given
in Eq. (A2) is based on the convention in Eq. (4). If one
uses the other sign convention for the covariant derivative,
there will be an extra minus sign appearing on the right-
hand side of Eq. (A2), which would be compensated by an
extra sign in Eq. (10).

The SSA, AN , is given by the ratio of spin-dependent and
spin-averaged cross sections:
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d!!ðs?Þ
d3Ph
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d3Ph
& AN sinð&s (&hÞ; (A4)

where &h and &s are the azimuthal angles of the
hadron transverse momentum Ph? and the spin vector
s?, respectively. The absolute sign of AN depends on the
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FIG. 3 (color online). Illustration of the sign convention for
AN: positive AN means that more hadrons are produced to the left
of the beam direction when the beam’s spin is vertically upward.
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Tq;Fðx; xÞ relevant for the description of single-spin asym-
metries in single-hadron production in pp scattering. The
latter have in the past been extracted from RHIC data [14].
Correcting an inconsistency in previous theoretical treat-
ments of the spin asymmetries in pp scattering, we have
found that the resulting Tq;Fðx; xÞ functions have signs
opposite to those predicted from the analysis of the k?
moments of the Sivers functions. We have discussed vari-
ous possible explanations for this apparent discrepancy.

Our finding highlights the importance of additional
measurements of single-spin asymmetries. Measurements
of the k? dependence of the Sivers functions with wide
kinematic reach would be feasible at an electron ion col-
lider and should shed light on the contributions from
various k? regions to the moment of the Sivers functions.
We have also shown that AN measurements for jet and
direct photon production in pp collisions at RHIC should
be valuable tools for a cleaner determination of the quark-
gluon correlation functions Tq;Fðx; xÞ.
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APPENDIX: THE SIGN OF Tq;Fðx; xÞ IN INCLUSIVE
HADRON PRODUCTION

In this Appendix, we demonstrate why the SSA data for
p"p ! hX require Tu;Fðx; xÞ< 0 and Td;Fðx; xÞ> 0, if the
ETQS functions are the dominant sources of the observed
asymmetries.
We start with the QCD factorization formalism for

the spin-averaged cross section for inclusive single par-
ticle production in hadronic collisions, A"ðS?Þ þ B !
hðPh?Þ þ X:
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where fa=AðxÞ and fb=Bðx0Þ are the PDFs, Dc!hðzÞ are the
FFs, and HU

ab!c are the partonic hard-scattering functions,
with ŝ, t̂, and û the Mandelstam variables at the parton
level. Including only the contributions by the twist-3
quark-gluon correlation functions, the spin-dependent
cross section d!!ðs?Þ & ½d!ðs?Þ ( d!ð(s?Þ)=2 is
given by
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zû

#$
Ta;Fðx; xÞ

( x
d

dx
Ta;Fðx; xÞ

%
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where the relevant hard-scattering functions Hab!cðŝ; t̂; ûÞ
can be written as
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withHI
ab!c and H

F
ab!c representing the contributions from

initial- and final-state interactions, respectively. The ex-
plicit forms of HU

ab!c, H
I
ab!c, and H

F
ab!c are given in [14].

It is important to point out that the spin-dependent cross
section in Eq. (A2) is calculated from an interference
between two partonic amplitudes. It thus depends on the
sign convention for the coupling constant g; the form given
in Eq. (A2) is based on the convention in Eq. (4). If one
uses the other sign convention for the covariant derivative,
there will be an extra minus sign appearing on the right-
hand side of Eq. (A2), which would be compensated by an
extra sign in Eq. (10).

The SSA, AN , is given by the ratio of spin-dependent and
spin-averaged cross sections:
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Tq;Fðx; xÞ relevant for the description of single-spin asym-
metries in single-hadron production in pp scattering. The
latter have in the past been extracted from RHIC data [14].
Correcting an inconsistency in previous theoretical treat-
ments of the spin asymmetries in pp scattering, we have
found that the resulting Tq;Fðx; xÞ functions have signs
opposite to those predicted from the analysis of the k?
moments of the Sivers functions. We have discussed vari-
ous possible explanations for this apparent discrepancy.

Our finding highlights the importance of additional
measurements of single-spin asymmetries. Measurements
of the k? dependence of the Sivers functions with wide
kinematic reach would be feasible at an electron ion col-
lider and should shed light on the contributions from
various k? regions to the moment of the Sivers functions.
We have also shown that AN measurements for jet and
direct photon production in pp collisions at RHIC should
be valuable tools for a cleaner determination of the quark-
gluon correlation functions Tq;Fðx; xÞ.
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APPENDIX: THE SIGN OF Tq;Fðx; xÞ IN INCLUSIVE
HADRON PRODUCTION

In this Appendix, we demonstrate why the SSA data for
p"p ! hX require Tu;Fðx; xÞ< 0 and Td;Fðx; xÞ> 0, if the
ETQS functions are the dominant sources of the observed
asymmetries.
We start with the QCD factorization formalism for

the spin-averaged cross section for inclusive single par-
ticle production in hadronic collisions, A"ðS?Þ þ B !
hðPh?Þ þ X:
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where fa=AðxÞ and fb=Bðx0Þ are the PDFs, Dc!hðzÞ are the
FFs, and HU

ab!c are the partonic hard-scattering functions,
with ŝ, t̂, and û the Mandelstam variables at the parton
level. Including only the contributions by the twist-3
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ab!c representing the contributions from

initial- and final-state interactions, respectively. The ex-
plicit forms of HU

ab!c, H
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ab!c are given in [14].

It is important to point out that the spin-dependent cross
section in Eq. (A2) is calculated from an interference
between two partonic amplitudes. It thus depends on the
sign convention for the coupling constant g; the form given
in Eq. (A2) is based on the convention in Eq. (4). If one
uses the other sign convention for the covariant derivative,
there will be an extra minus sign appearing on the right-
hand side of Eq. (A2), which would be compensated by an
extra sign in Eq. (10).

The SSA, AN , is given by the ratio of spin-dependent and
spin-averaged cross sections:
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Tq;Fðx; xÞ relevant for the description of single-spin asym-
metries in single-hadron production in pp scattering. The
latter have in the past been extracted from RHIC data [14].
Correcting an inconsistency in previous theoretical treat-
ments of the spin asymmetries in pp scattering, we have
found that the resulting Tq;Fðx; xÞ functions have signs
opposite to those predicted from the analysis of the k?
moments of the Sivers functions. We have discussed vari-
ous possible explanations for this apparent discrepancy.

Our finding highlights the importance of additional
measurements of single-spin asymmetries. Measurements
of the k? dependence of the Sivers functions with wide
kinematic reach would be feasible at an electron ion col-
lider and should shed light on the contributions from
various k? regions to the moment of the Sivers functions.
We have also shown that AN measurements for jet and
direct photon production in pp collisions at RHIC should
be valuable tools for a cleaner determination of the quark-
gluon correlation functions Tq;Fðx; xÞ.
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APPENDIX: THE SIGN OF Tq;Fðx; xÞ IN INCLUSIVE
HADRON PRODUCTION

In this Appendix, we demonstrate why the SSA data for
p"p ! hX require Tu;Fðx; xÞ< 0 and Td;Fðx; xÞ> 0, if the
ETQS functions are the dominant sources of the observed
asymmetries.
We start with the QCD factorization formalism for

the spin-averaged cross section for inclusive single par-
ticle production in hadronic collisions, A"ðS?Þ þ B !
hðPh?Þ þ X:
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where fa=AðxÞ and fb=Bðx0Þ are the PDFs, Dc!hðzÞ are the
FFs, and HU

ab!c are the partonic hard-scattering functions,
with ŝ, t̂, and û the Mandelstam variables at the parton
level. Including only the contributions by the twist-3
quark-gluon correlation functions, the spin-dependent
cross section d!!ðs?Þ & ½d!ðs?Þ ( d!ð(s?Þ)=2 is
given by
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where the relevant hard-scattering functions Hab!cðŝ; t̂; ûÞ
can be written as

Hab!cðŝ; t̂; ûÞ ¼ HI
ab!cðŝ; t̂; ûÞ þHF

ab!cðŝ; t̂; ûÞ
"
1þ û

t̂

#
;

(A3)

withHI
ab!c and H

F
ab!c representing the contributions from

initial- and final-state interactions, respectively. The ex-
plicit forms of HU

ab!c, H
I
ab!c, and H

F
ab!c are given in [14].

It is important to point out that the spin-dependent cross
section in Eq. (A2) is calculated from an interference
between two partonic amplitudes. It thus depends on the
sign convention for the coupling constant g; the form given
in Eq. (A2) is based on the convention in Eq. (4). If one
uses the other sign convention for the covariant derivative,
there will be an extra minus sign appearing on the right-
hand side of Eq. (A2), which would be compensated by an
extra sign in Eq. (10).

The SSA, AN , is given by the ratio of spin-dependent and
spin-averaged cross sections:

Eh
d!!ðs?Þ
d3Ph

&
Eh

d!

d3Ph
& AN sinð&s (&hÞ; (A4)

where &h and &s are the azimuthal angles of the
hadron transverse momentum Ph? and the spin vector
s?, respectively. The absolute sign of AN depends on the

h

TS
xy

z

FIG. 3 (color online). Illustration of the sign convention for
AN: positive AN means that more hadrons are produced to the left
of the beam direction when the beam’s spin is vertically upward.
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this issue [12], while SFPs may play some role [9].

At this point one may start to question the dominance
of the first term in (1). In fact, data on the transverse
SSA in inclusive DIS [19, 20] seem to support this point of
view, i.e., that the first term in (1) is not the main cause
of AN [21]. Therefore, in the present work we study the
potential role of the twist-3 fragmentation part of (1).
After fixing the SGP contribution to AN through the
Sivers function extracted from data on ASiv

SIDIS [22, 23]
and the relation in (2), we obtain a very good fit to all
high transverse-momentum forward-region pion data for
AN from the Relativistic Heavy Ion Collider (RHIC). As
explained below in more detail, our analysis shows for
the first time that one can simultaneously describe AN

using collinear factorization, ASiv
SIDIS, the Collins trans-

verse SSA ACol
SIDIS in SIDIS, and Acos(2φ)

e+e− that represents
a particular azimuthal asymmetry in electron-positron
annihilation into two hadrons, e+e− → h1h2X [24].

Fragmentation contribution to AN The fragmentation
contribution to the cross section in (1) reads [14]
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FU (z, z1)

1

ξ
Si
ĤFU
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, (3)

where i denotes the channel, x = −x′(U/z)/(x′S+T/z),
x′
min = −(T/z)/(U/z + S), zmin = −(T + U)/S, and

ξ = (1 − z/z1). Here we used the Mandelstam variables
S = (P + P ′)2, T = (P − Ph)2, and U = (P ′ − Ph)2,
which on the partonic level give ŝ = xx′S, t̂ = xT/z, and
û = x′U/z. Oftentimes one also uses xF = 2Phz/

√
S,

where Phz is the longitudinal momentum of the hadron,
as well as the pseudo-rapidity η = − ln tan(θ/2), where θ
is the scattering angle. The variables xF , η are further re-
lated by xF = 2Ph⊥ sinh(η)/

√
S, where Ph⊥ is the trans-

verse momentum of the hadron. The non-perturbative
parts in (3) are the transversity distribution h1, the un-
polarized parton density f1, and the three (twist-3) frag-
mentation functions (FFs) Ĥ , H , and Ĥ%

FU , with the
last one parameterizing the imaginary part of a 3-parton
correlator. The definition of those functions and the re-
sults for the hard scattering coefficients Si can be found
in [14]. (An alternative notation of the relevant FFs is
given in Ref. [25], where twist-3 effects in SIDIS were
computed.) We note that the so-called derivative term
in (3), associated with dĤ/dz, was first obtained in [26].

The function Ĥ is related to the TMD Collins function

H⊥
1 [27] according to [14, 26]

Ĥh/q(z) = z2
∫
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"k 2
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2M2
h

H⊥h/q
1 (z, z2"k 2

⊥) . (4)

This relation can be considered the fragmentation coun-
terpart of Eq. (2). Exploiting the universality of the
Collins function [28], one can simultaneously extract
H⊥

1 and h1 from data on ACol
SIDIS [29, 30] and data on

Acos(2φ)
e+e− [31, 32] (see [33] and references therein). Below

we utilize such information for H⊥
1 and h1 when describ-

ing AN . The FFs in (3) are related via [14]

Hh/q(z)=−2zĤh/q(z)+2z3
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z21

1
1
z − 1
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Ĥh/q,%
FU (z, z1) ,

(5)
implying that in the collinear twist-3 framework one has
two independent FFs. It is important to realize that this
is different from the so-called TMD approach for AN ,
where only H⊥

1 enters the fragmentation piece [34].

Phenomenology of AN for pion production We con-
siderAN for p↑p → πX in the forward region of the polar-
ized proton, which has been studied by the STAR [35–37],
BRAHMS [38, 39] and PHENIX [40] collaborations at
RHIC. We mainly focus on data taken at

√
S = 200GeV

for which typically Ph⊥ > 1GeV. Throughout we use
the GRV98 unpolarized parton distributions [41] and the
DSS unpolarized FFs [42]. Note that the GRV98 par-
ton distributions were also used in Refs. [22, 23, 33]
for extracting the Sivers function and the transversity,
which we take as input in our calculation. The SGP
contribution to (1) is computed by fixing TF through
Eq. (2) with two different inputs for the Sivers func-
tion — SV1: f⊥

1T from Ref. [22], obtained from SIDIS
data on ASiv

SIDIS [43, 44]; and SV2: f⊥
1T from Ref. [23],

“constructed” such that, in the TMD approach, the con-
tribution of the Sivers effect to AN is maximized while
maintaining a good description of ASiv

SIDIS. These two in-
puts for f⊥

1T are mainly distinct by their quite different
large-x behavior. To compute the contribution in (3) we
take h1 and H⊥

1 (which fixes Ĥ through (4)) from [33].
For favored fragmentation into π+ we make for Ĥ%

FU the
ansatz
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fav and the
unpolarized FF D. Note that the allowed range for z
and z/z1 is [0, 1] [45] and that our ansatz satisfies the
constraint ĤFU (z, z) = 0 [45, 46]. With the use of DSS
FFs [42], the factor Ifav reads Ifav ≡ Iu+ū − Iū where Ii
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this issue [12], while SFPs may play some role [9].

At this point one may start to question the dominance
of the first term in (1). In fact, data on the transverse
SSA in inclusive DIS [19, 20] seem to support this point of
view, i.e., that the first term in (1) is not the main cause
of AN [21]. Therefore, in the present work we study the
potential role of the twist-3 fragmentation part of (1).
After fixing the SGP contribution to AN through the
Sivers function extracted from data on ASiv

SIDIS [22, 23]
and the relation in (2), we obtain a very good fit to all
high transverse-momentum forward-region pion data for
AN from the Relativistic Heavy Ion Collider (RHIC). As
explained below in more detail, our analysis shows for
the first time that one can simultaneously describe AN
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e+e− that represents
a particular azimuthal asymmetry in electron-positron
annihilation into two hadrons, e+e− → h1h2X [24].
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P 0
hdσ(

"S⊥)

d3 "Ph

=−
2α2

sMh

S
ε⊥,αβ S

α
⊥P

β
h⊥

∑

i

∑

a,b,c

∫ 1

zmin

dz

z3

×

∫ 1

x′
min

dx′

x′

1

x

1

x′S + T/z

1

−x′t̂− xû
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where i denotes the channel, x = −x′(U/z)/(x′S+T/z),
x′
min = −(T/z)/(U/z + S), zmin = −(T + U)/S, and

ξ = (1 − z/z1). Here we used the Mandelstam variables
S = (P + P ′)2, T = (P − Ph)2, and U = (P ′ − Ph)2,
which on the partonic level give ŝ = xx′S, t̂ = xT/z, and
û = x′U/z. Oftentimes one also uses xF = 2Phz/
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where Phz is the longitudinal momentum of the hadron,
as well as the pseudo-rapidity η = − ln tan(θ/2), where θ
is the scattering angle. The variables xF , η are further re-
lated by xF = 2Ph⊥ sinh(η)/
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S, where Ph⊥ is the trans-

verse momentum of the hadron. The non-perturbative
parts in (3) are the transversity distribution h1, the un-
polarized parton density f1, and the three (twist-3) frag-
mentation functions (FFs) Ĥ , H , and Ĥ%

FU , with the
last one parameterizing the imaginary part of a 3-parton
correlator. The definition of those functions and the re-
sults for the hard scattering coefficients Si can be found
in [14]. (An alternative notation of the relevant FFs is
given in Ref. [25], where twist-3 effects in SIDIS were
computed.) We note that the so-called derivative term
in (3), associated with dĤ/dz, was first obtained in [26].
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implying that in the collinear twist-3 framework one has
two independent FFs. It is important to realize that this
is different from the so-called TMD approach for AN ,
where only H⊥

1 enters the fragmentation piece [34].

Phenomenology of AN for pion production We con-
siderAN for p↑p → πX in the forward region of the polar-
ized proton, which has been studied by the STAR [35–37],
BRAHMS [38, 39] and PHENIX [40] collaborations at
RHIC. We mainly focus on data taken at
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for which typically Ph⊥ > 1GeV. Throughout we use
the GRV98 unpolarized parton distributions [41] and the
DSS unpolarized FFs [42]. Note that the GRV98 par-
ton distributions were also used in Refs. [22, 23, 33]
for extracting the Sivers function and the transversity,
which we take as input in our calculation. The SGP
contribution to (1) is computed by fixing TF through
Eq. (2) with two different inputs for the Sivers func-
tion — SV1: f⊥

1T from Ref. [22], obtained from SIDIS
data on ASiv

SIDIS [43, 44]; and SV2: f⊥
1T from Ref. [23],

“constructed” such that, in the TMD approach, the con-
tribution of the Sivers effect to AN is maximized while
maintaining a good description of ASiv

SIDIS. These two in-
puts for f⊥

1T are mainly distinct by their quite different
large-x behavior. To compute the contribution in (3) we
take h1 and H⊥

1 (which fixes Ĥ through (4)) from [33].
For favored fragmentation into π+ we make for Ĥ%

FU the
ansatz

Ĥπ+/(u,d̄),%
FU (z, z1)

Dπ+/(u,d̄)(z)Dπ+/(u,d̄)(z/z1)
=

Nfav

2IfavJfav
zαfav(z/z1)

α′
fav

× (1− z)βfav (1 − z/z1)
β′
fav , (6)

with the parameters Nfav, αfav, α′
fav, βfav, β′

fav and the
unpolarized FF D. Note that the allowed range for z
and z/z1 is [0, 1] [45] and that our ansatz satisfies the
constraint ĤFU (z, z) = 0 [45, 46]. With the use of DSS
FFs [42], the factor Ifav reads Ifav ≡ Iu+ū − Iū where Ii

for f⊥1T are mainly distinct by their quite different large-x
behavior. To compute the contribution in (3), we take h1
and H⊥

1 [which fixes Ĥ through (4)] from [33]. For favored
fragmentation into πþ, we make for Ĥℑ

FU the ansatz

Ĥπþ=ðu;d̄Þ;ℑ
FU ðz; z1Þ

Dπþ=ðu;d̄ÞðzÞDπþ=ðu;d̄Þðz=z1Þ

¼ Nfav

2IfavJfav
zαfavðz=z1Þα

0
favð1 − zÞβfavð1 − z=z1Þβ

0
fav ; ð6Þ

with the parameters Nfav, αfav, α0fav, βfav, β0fav, and the
unpolarized FF D. Note that the allowed range for z and
z=z1 is [0, 1] [45] and that our ansatz satisfies the constraint
ĤFUðz; zÞ ¼ 0 [45,46]. With the use of DSS FFs [42], the
factor Ifav reads Ifav ≡ Iuþū − Iū where Ii (i ¼ uþ ū, ū) is
defined as

Ii ¼
NiðK1;fav þ γiK2;favÞ

B½2þ αi; βi þ 1& þ γiB½2þ αi; βi þ δi þ 1&
;

with K1;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi&;
K2;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi þ δi&; ð7Þ

and B½a; b& the Euler β function. The parameters Ni, αi, βi,
γi, and δi come fromD FFs at the initial scale and are given
in Table III of [42]. Note thatDπþ=u in Ref. [42] differs from
Dπþ=d̄. Jfav in (6) is similarly defined as Jfav ≡ Juþū − Jū,
where Ji (i ¼ uþ ū, ū) follows from Ii through
α0fav→ðαfavþ4Þ, β0fav→ðβfavþ1Þ. The factor 1=ð2IfavJfavÞ
in (6) is convenient and implies

R
1
0 dzzHπþ=u

ð3Þ ðzÞ ¼ Nfav at
the initial scale, where Hð3Þ represents the entire second
term on the right-hand side of (5). For the disfavored FFs
Ĥπþ=ðd;ūÞ;ℑ

FU we make an ansatz in full analogy to (6),
introducing the additional parameters Ndis, αdis, α0dis, βdis,
β0dis. (Idis and Jdis are calculated using Dπþ=d ¼ Dπþ=ū from
[42].) The π− FFs are then fixed through charge conjuga-
tion, and the π0 FFs are given by the average of the FFs for
πþ and π−. The FFs Hπ=q are computed by means of (5).
All parton correlation functions are evaluated at the scale
Ph⊥ with leading-order evolution of the collinear functions.
Using the MINUIT package, we fit the fragmentation

contribution to data for Aπ0
N [35–37] and Aπ'

N [38]. To
facilitate the fit, we only keep seven parameters in Ĥπþ=q;ℑ

FU
free. We also allow the β-parameters βTu ¼ βTd of the
transversity to vary within the error range given in [33].
All integrations are done using the Gauss-Legendre method
with 250 steps.
For the SV1 input, the result of our eight-parameter fit is

shown in Table I. Note that the values for β0fav ¼ β0dis and
βfav are at their lower limits, which we introduce to
guarantee a finite integration upon z1 in (3) and a proper
behavior of AN at large xF, respectively. For the SV2 input,

the values of the fit parameters are similar, with an equally
successful fit (χ2=d:o:f: ¼ 1.10).
The very good description of AN is also reflected by

Fig. 1. We emphasize that such a positive outcome is
nontrivial if one keeps in mind the constraint in (5) and the
need to simultaneously fit data for Aπ0

N and Aπ'
N . Results for

the FFs Hπþ=q and ~Hπþ=q
FU ≡ R∞

z
dz1
z21

1
1
z−

1
z1

1
ξ Ĥ

πþ=q;ℑ
FU ðz; z1Þ are

displayed in Fig. 2. In either case, the favored and
disfavored FFs have opposite signs. This is like for
H⊥

1 where such reversed signs are actually “preferred”
by the Schäfer-Teryaev (ST) sum rule

P
h
P

Sh ×R
1
0 dzzMhĤh=qðzÞ ¼ 0 [47]. Note that the ST sum rule,
in combination with (5), implies a constraint on a certain
linear combination of Hh=q and (an integral of) Ĥh=q;ℑ

FU . In
view of that, reversed signs between favored and disfavored
FFs like in Fig. 2 are actually beneficial. Also depicted in

TABLE I. Fit parameters for SV1 input.

χ2=d:o:f: ¼ 1.03

Nfav ¼ −0.0338 Ndis ¼ 0.216
αfav ¼ α0fav ¼ −0.198 βfav ¼ 0.0
β0fav ¼ β0dis ¼ −0.180 αdis ¼ α0dis ¼ 3.99
βdis ¼ 3.34 βTu ¼ βTd ¼ 1.10
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FU switched off.
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N [35–37] and Aπ'

N [38]. To
facilitate the fit, we only keep seven parameters in Ĥπþ=q;ℑ

FU
free. We also allow the β-parameters βTu ¼ βTd of the
transversity to vary within the error range given in [33].
All integrations are done using the Gauss-Legendre method
with 250 steps.
For the SV1 input, the result of our eight-parameter fit is

shown in Table I. Note that the values for β0fav ¼ β0dis and
βfav are at their lower limits, which we introduce to
guarantee a finite integration upon z1 in (3) and a proper
behavior of AN at large xF, respectively. For the SV2 input,

the values of the fit parameters are similar, with an equally
successful fit (χ2=d:o:f: ¼ 1.10).
The very good description of AN is also reflected by

Fig. 1. We emphasize that such a positive outcome is
nontrivial if one keeps in mind the constraint in (5) and the
need to simultaneously fit data for Aπ0

N and Aπ'
N . Results for

the FFs Hπþ=q and ~Hπþ=q
FU ≡ R∞

z
dz1
z21

1
1
z−

1
z1

1
ξ Ĥ

πþ=q;ℑ
FU ðz; z1Þ are

displayed in Fig. 2. In either case, the favored and
disfavored FFs have opposite signs. This is like for
H⊥

1 where such reversed signs are actually “preferred”
by the Schäfer-Teryaev (ST) sum rule

P
h
P

Sh ×R
1
0 dzzMhĤh=qðzÞ ¼ 0 [47]. Note that the ST sum rule,
in combination with (5), implies a constraint on a certain
linear combination of Hh=q and (an integral of) Ĥh=q;ℑ

FU . In
view of that, reversed signs between favored and disfavored
FFs like in Fig. 2 are actually beneficial. Also depicted in

TABLE I. Fit parameters for SV1 input.

χ2=d:o:f: ¼ 1.03

Nfav ¼ −0.0338 Ndis ¼ 0.216
αfav ¼ α0fav ¼ −0.198 βfav ¼ 0.0
β0fav ¼ β0dis ¼ −0.180 αdis ¼ α0dis ¼ 3.99
βdis ¼ 3.34 βTu ¼ βTd ¼ 1.10
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FU switched off.
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Summary

• Many interesting theory issues to address

• Are twist 2 - twist 3 Sivers/Collins 
interpretation for TSSAs compatible ?

• What is mechanism underlying inclusive meson 
production?

•  QCD Evolution workshop series has and will 
play essential role in addressing these 
questions.   THANK YOU from  an organizers 
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Color factor dictates process dependence

3

and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ
d3Ph

=
α2

s

S

∑

a,b,c

∫
dxa

xa
d2kaT∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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The FT transform of the e.g. Sivers asympt. reduces to 
first  Bessel moment of Sivers TMD 
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Most important Measurement Drell Yan
N
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