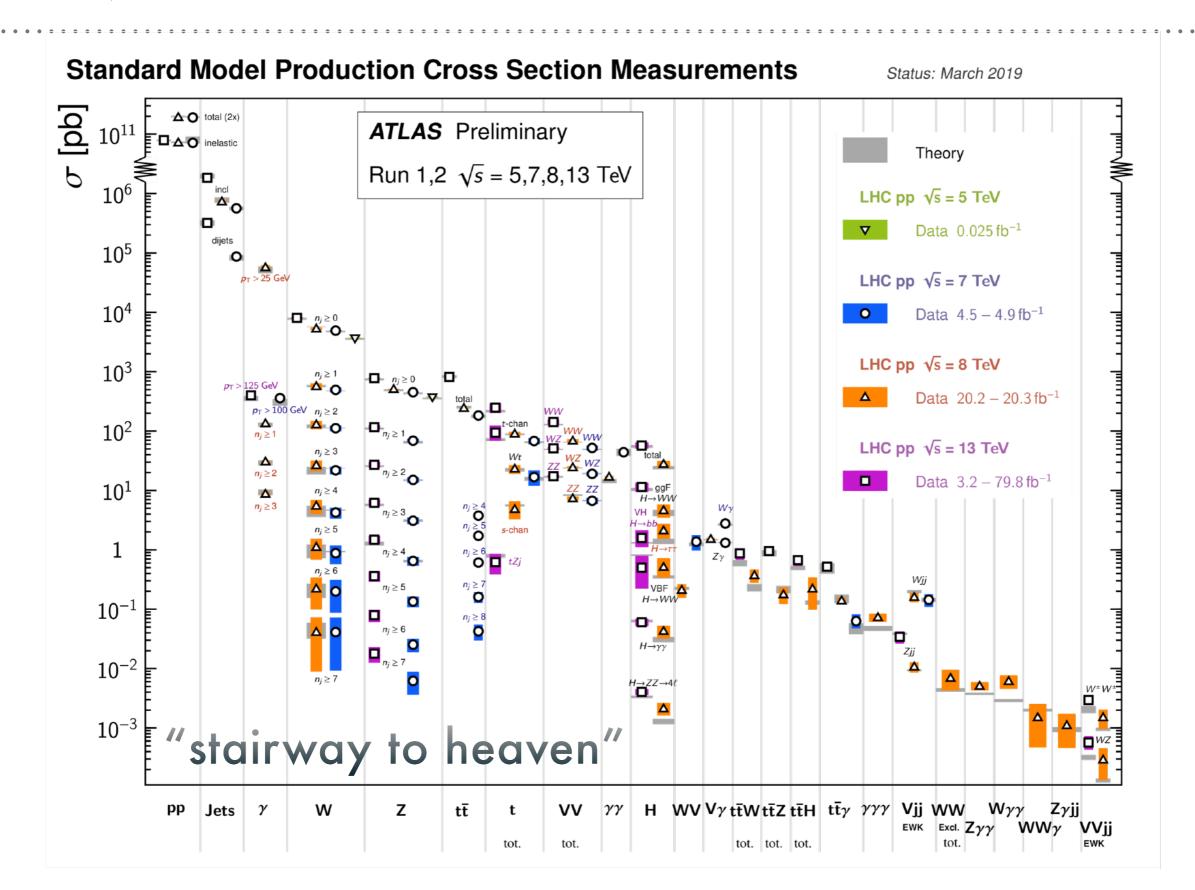


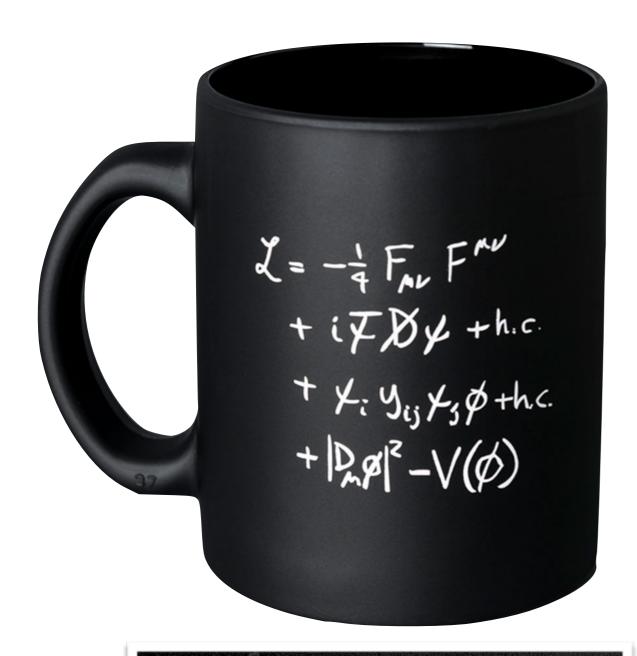
HIGH-PRECISION PREDICTIONS FOR THE LHC

Standard Candles and the Higgs to lighten the path to discoveries

Alexander Huss

A REMARKABLE SUCCESS STORY...



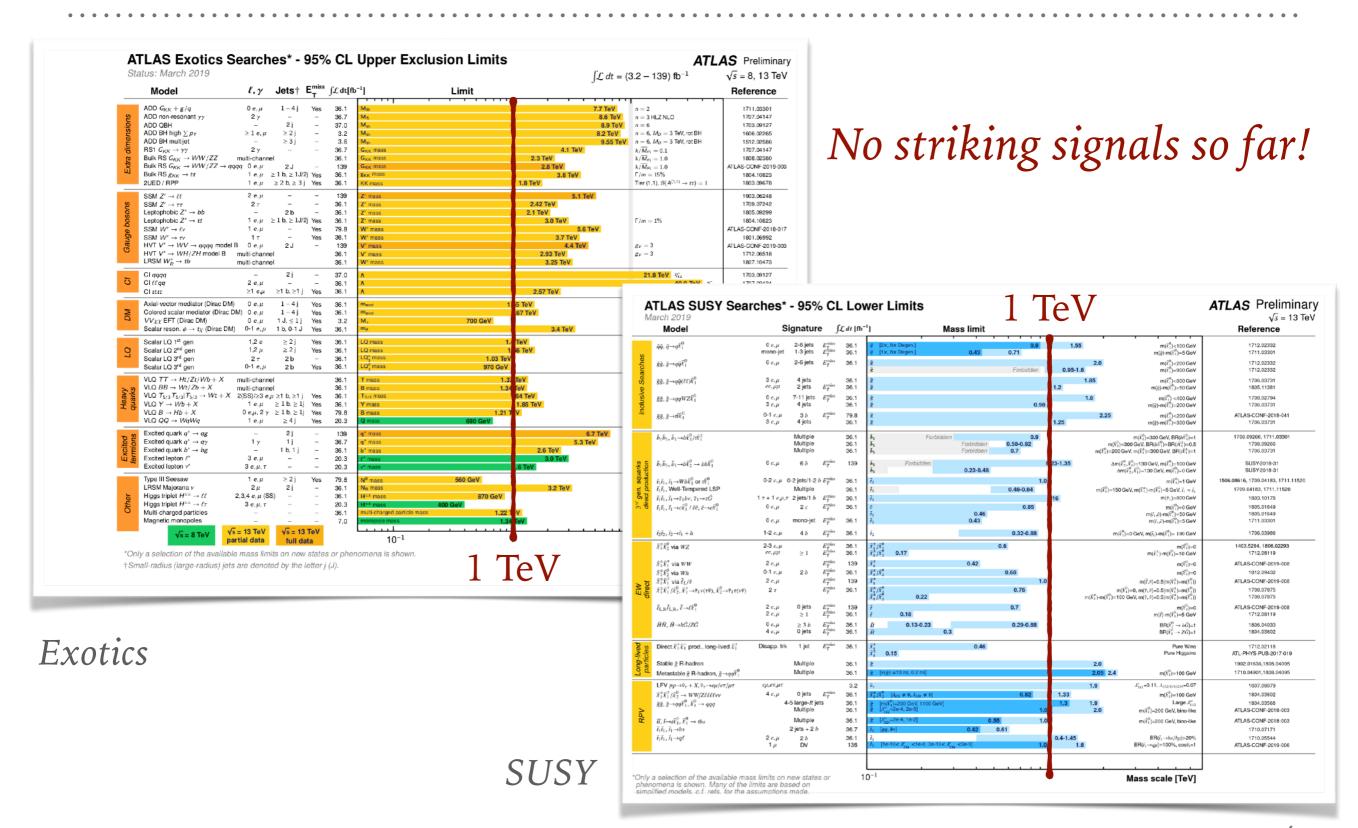


This equation neatly sums up our current understanding of fundamental particles and forces.

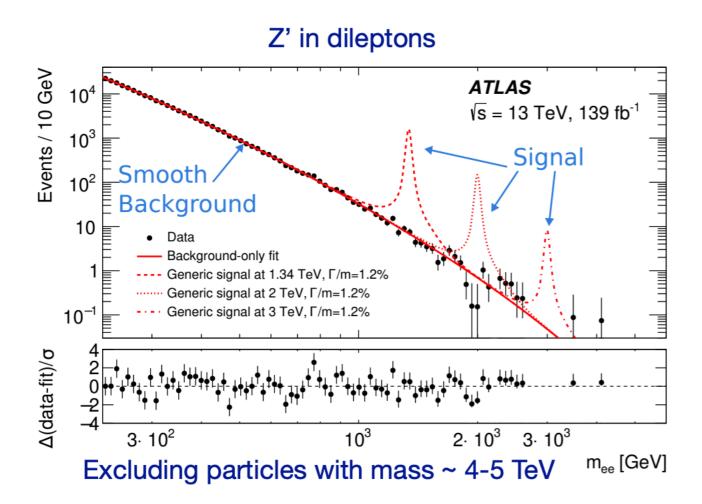
...BUT NOT THE FULL STORY

- origin of dark matter
- hierarchy problem
- matter anti-matter asymmetry
- hierarchy of scales (generations)
- unification with gravity
- •
- what is the Higgs potential?
- establish the Yukawa's Y_{ij}
- •

NEW PHYSICS — DIRECT SEARCHES



NEW PHYSICS — HIDING IN SMALL & SUBTLE EFFECTS?



"bump hunting"

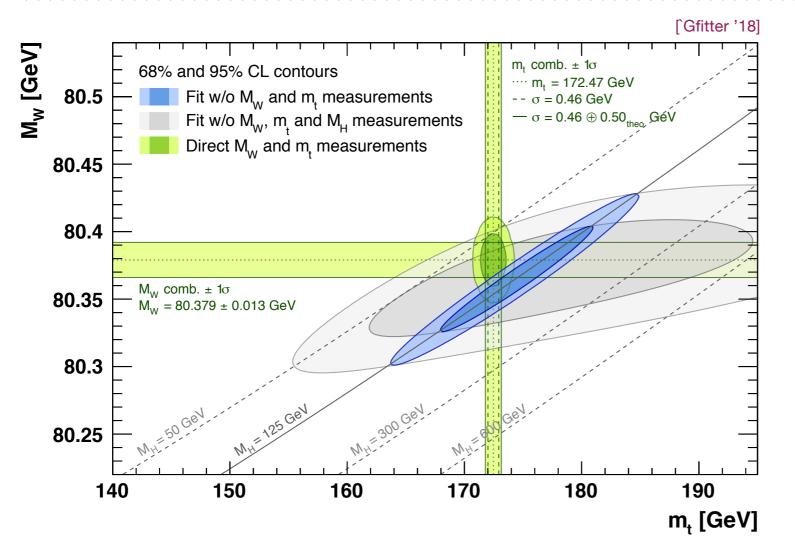
→ *little to no theory input needed*

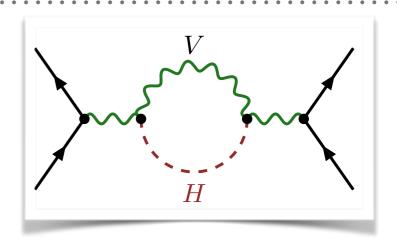
WHAT IF?

- interaction weak
- wide resonance
- too heavy
- shape distortion
- challenging signature

requires solid understanding and control of SM backgrounds

PRECISION MEASUREMENTS & INDIRECT SEARCHES





- constrained system
- → self consistent?
- **→** ~~?~~

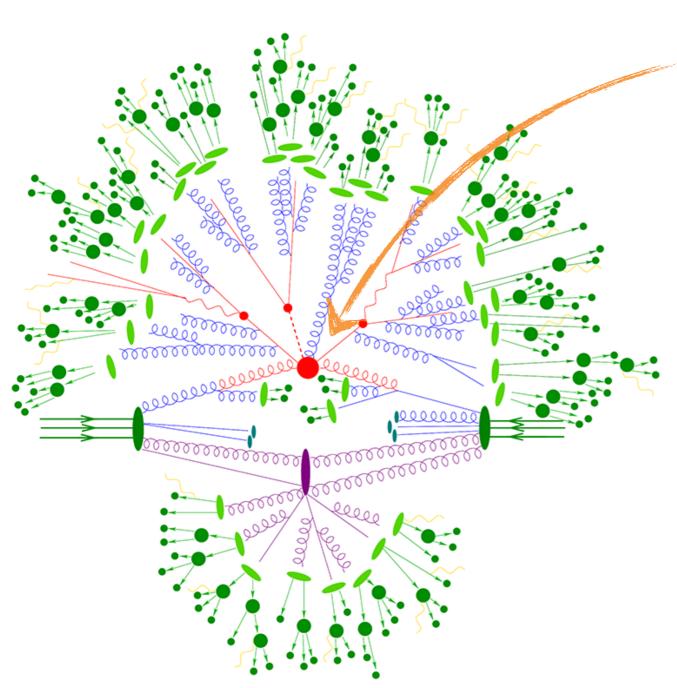
$m/{ m GeV}$	measured	fit value
$m_{ m t} \ M_{ m H} \ M_{ m W}$	172.47 ± 0.68 125.1 ± 0.2 80.379 ± 0.013	176.4 ± 2.1 90^{+21}_{-18} 80.354 ± 0.007

precision theory

for

"standard candles"

HIGH-PRECISION THEORY PREDICTIONS!



- ➤ (HL-)LHC per-cent level!
 - Focus clean processes with high momentum transfer
 - perturbative QCD
- \rightarrow with $\alpha_{\rm s} \sim 0.1$
 - $NLO \sim \mathcal{O}(10\%)$, $NNLO \sim \mathcal{O}(1\%)$
 - exceptions: Higgs, new channels, ...
- predictions as close as possible to the experiment
 - fiducial cross sections & differential distributions

1. Precision Predictions for the LHC

The Antenna Subtraction Formalism

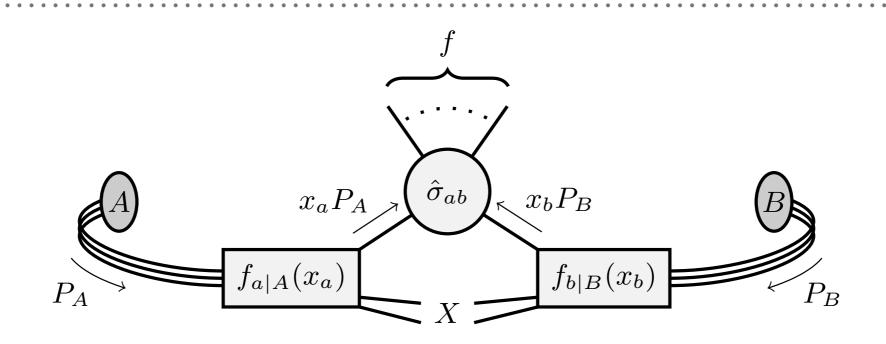
2. Hard QCD Probes

Jets & Photon Production at NNLO

3. Differential Higgs Production

The Projection-to-Born Method

THEORY PREDICTIONS FOR THE LHC



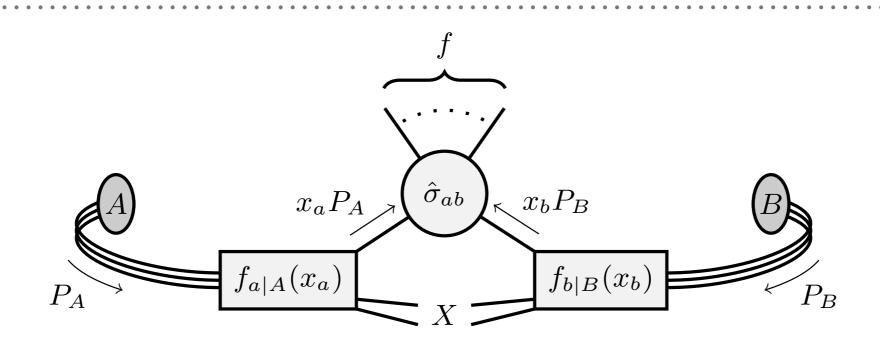
$$\sigma_{AB} = \sum_{ab} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b f_{a|A}(x_a) f_{b|B}(x_b) \hat{\sigma}_{ab}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)\right)$$

parton distribution functions (non-perturbative, universal)

hard scattering (perturbation theory)

non-perturbative effects (power suppressed) ultimately, limiting factor?

THEORY PREDICTIONS FOR THE LHC

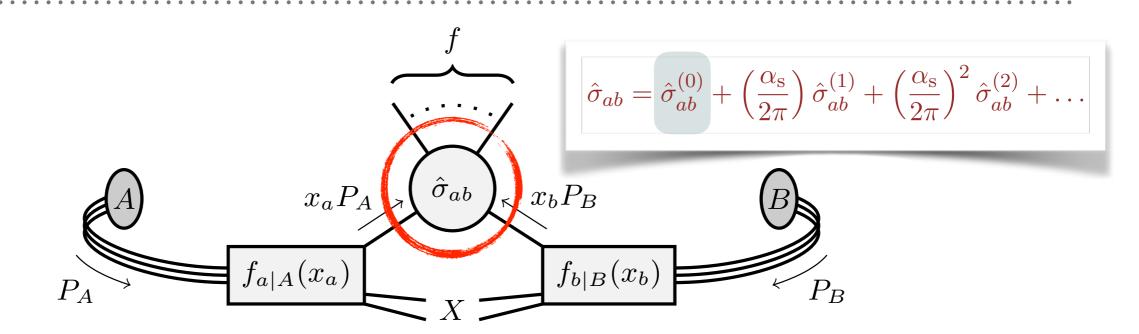


$$\sigma_{AB} = \sum_{ab} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b f_{a|A}(x_a) f_{b|B}(x_b) \hat{\sigma}_{ab}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)\right)$$

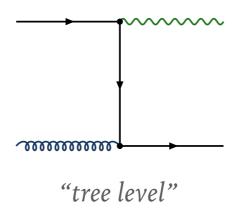
parton distribution functions
(in principle, improvable)
few % at LHC

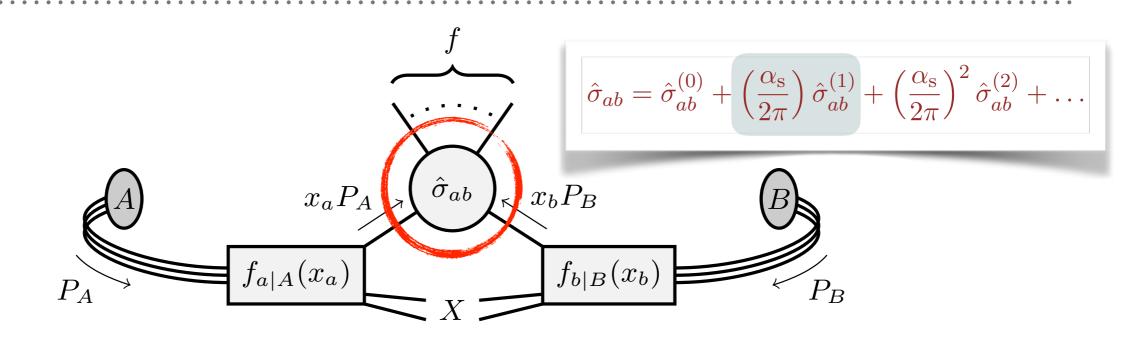
hard scattering
(systematically improvable)
aim for few % level!

non-perturbative effects
(no good understanding)
~ few %?

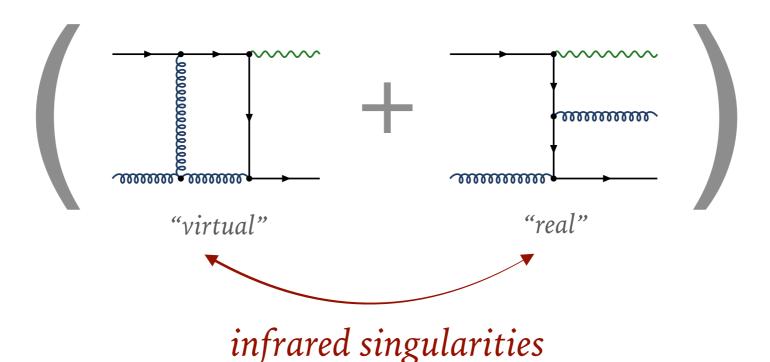


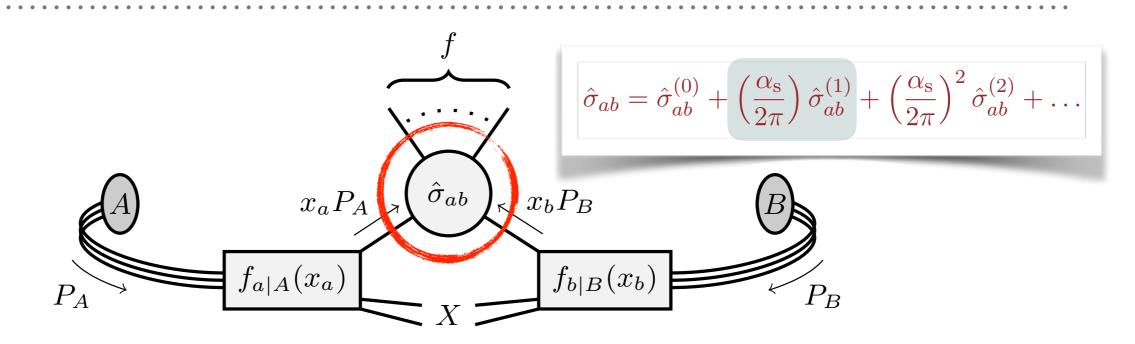
leading order (LO)



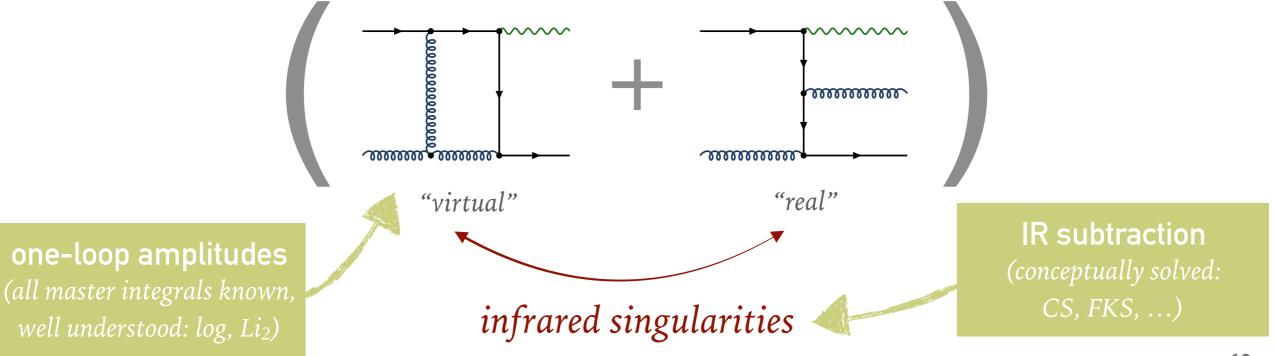


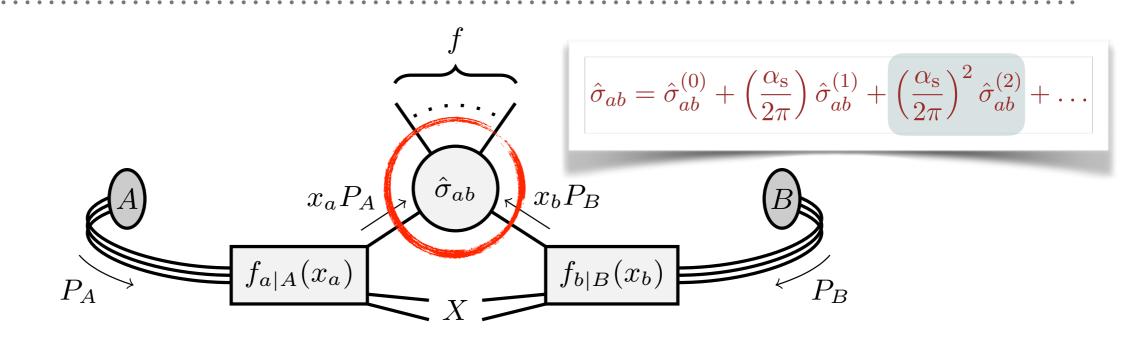
next-to-leading order (NLO)



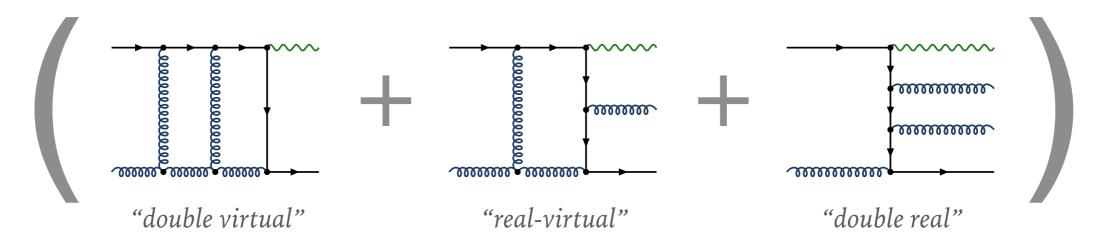


next-to-leading order (NLO)

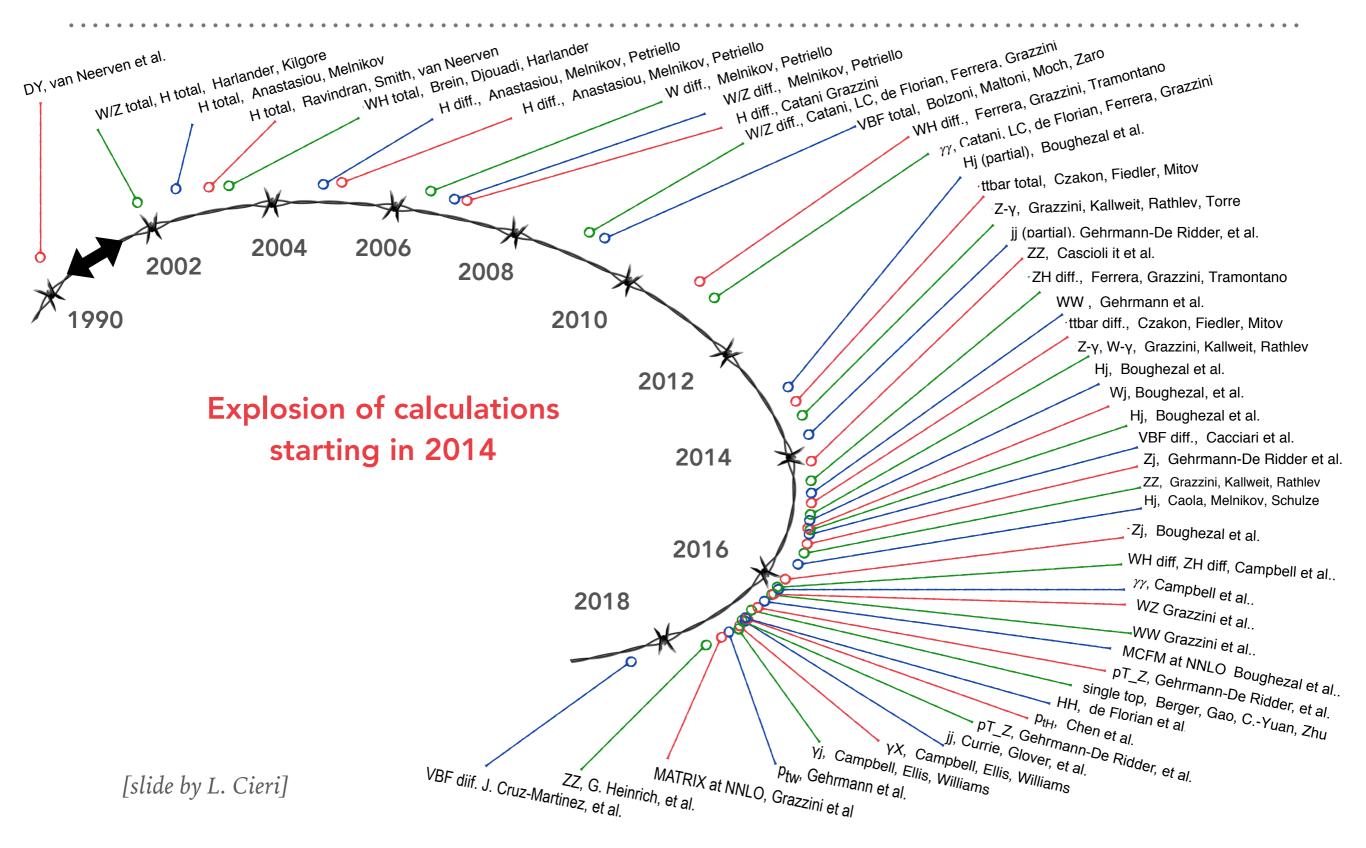




next-to-next-to-leading order (NNLO)

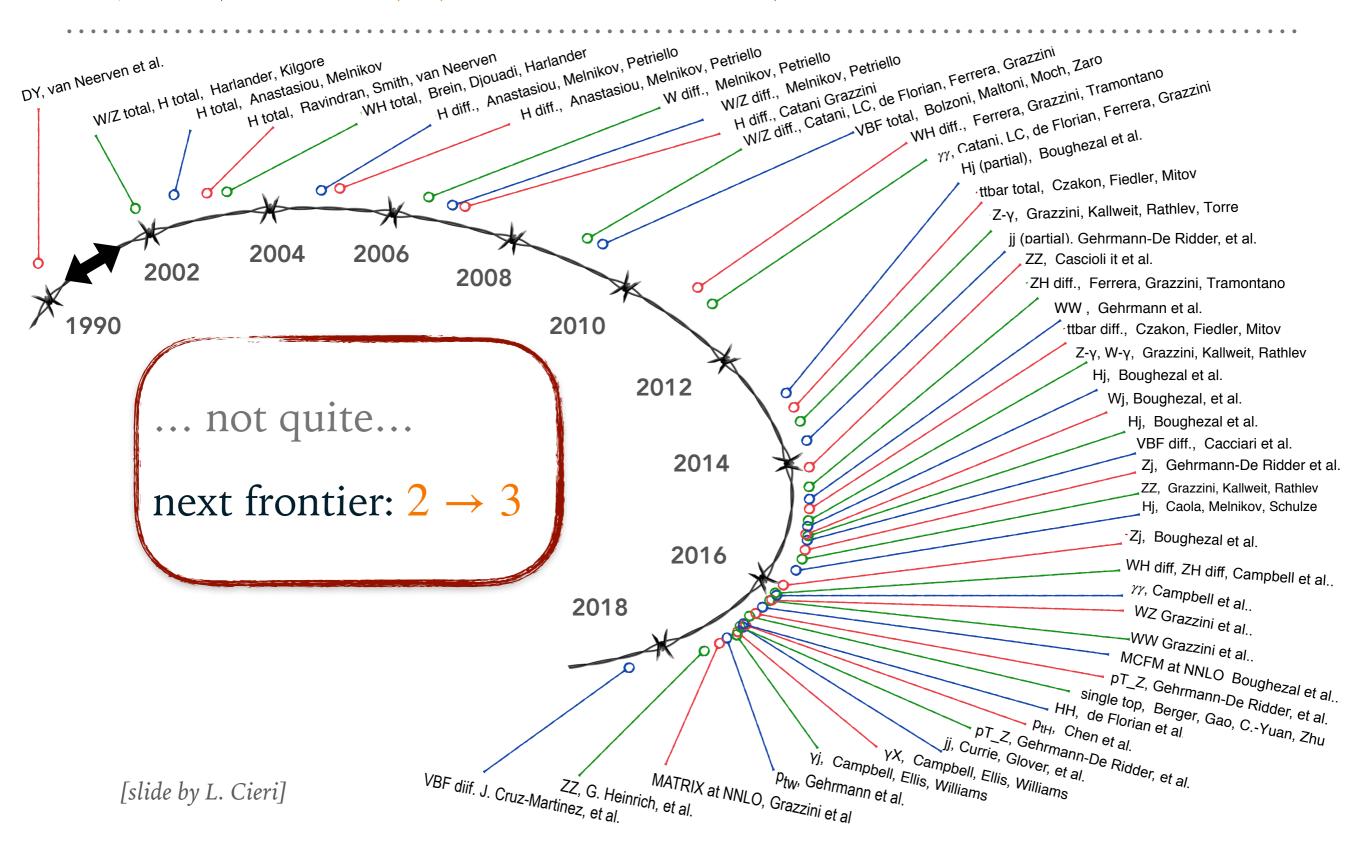


TIMELINE FOR NNLO @ HADRON COLLIDERS

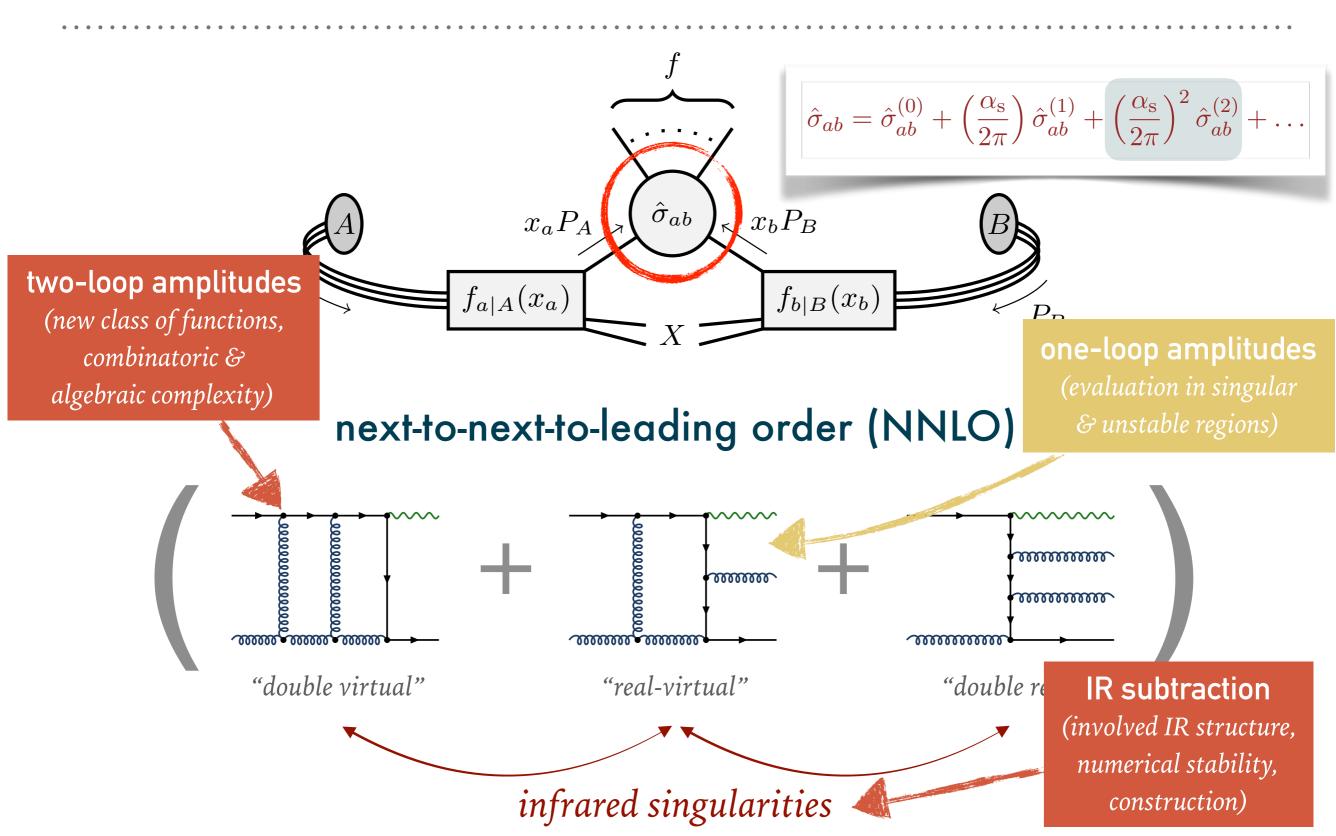


THE "NNLO REVOLUTION"?

TIMELINE FOR NINLO @ HADRON COLLIDERS



NNLO — BOTTLE NECKS



ANATOMY OF NNLO CALCULATIONS

Non-trivial cancellation of infrared singularities

NNLO USING SUBTRACTION

$$\sigma_{\mathsf{NNLO}} = \int_{\Phi_{\mathbf{Z}+3}} \left(\mathrm{d}\sigma^{\mathrm{RR}}_{\mathsf{NNLO}} - \mathrm{d}\sigma^{\mathrm{S}}_{\mathsf{NNLO}} \right)$$

$$+ \int_{\Phi_{Z+2}} \left(d\sigma_{\text{NNLO}}^{RV} - d\sigma_{\text{NNLO}}^{T} \right)$$

$$+ \int_{\Phi_{Z+1}} \left(d\sigma_{\text{NNLO}}^{VV} - d\sigma_{\text{NNLO}}^{U} \right)$$

- ► $d\sigma_{\text{NNLO}}^{\text{S}}$, $d\sigma_{\text{NNLO}}^{\text{T}}$:

 mimic $d\sigma_{\text{NNLO}}^{\text{RR}}$, $d\sigma_{\text{NNLO}}^{\text{RV}}$ in unresolved limits
- ► $d\sigma_{\text{NNLO}}^{\text{T}}$, $d\sigma_{\text{NNLO}}^{\text{U}}$:

 analytic cancellation of poles in $d\sigma_{\text{NNLO}}^{\text{RV}}$, $d\sigma_{\text{NNLO}}^{\text{VV}}$

 \int finite -0

 \Rightarrow each line suitable for numerical evaluation in D=4

ANTENNA FACTORIZATION

- antenna formalism operates on colour-ordered amplitudes
- exploit universal factorisation properties in IR limits

$$|\mathcal{A}_{m+1}^{0}(\ldots,i,j,k,\ldots)|^{2} \xrightarrow{j \text{ unresolved}} X_{3}^{0}(i,j,k) \qquad |\mathcal{A}_{m}^{0}(\ldots,\widetilde{I},\widetilde{K},\ldots)|^{2}$$

$$\text{colour-ordered amplitude} \qquad \text{antenna function} \qquad \text{reduced ME}$$

$$+ \text{mapping}$$

$$\{p_{i},p_{j},p_{k}\} \rightarrow \{\widetilde{p}_{I},\widetilde{p}_{K}\}$$

captures multiple limits and smoothly interpolates between them*

$$\begin{array}{|c|c|c|c|}\hline \text{limit} & X_3^0(i,j,k) & \text{mapping} \\ \hline p_j \to 0 & \frac{2s_{ik}}{s_{ij}s_{jk}} & \widetilde{p}_I \to p_i, \ \widetilde{p}_K \to p_k \\ \hline p_j \parallel p_i & \frac{1}{s_{ij}} \, P_{ij}(z) & \widetilde{p}_I \to (p_i+p_j), \ \widetilde{p}_K \to p_k \\ \hline p_j \parallel p_k & \frac{1}{s_{jk}} \, P_{kj}(z) & \widetilde{p}_I \to p_i, \ \widetilde{p}_K \to (p_j+p_k) \\ \hline \end{array}$$

^{*} c.f. dipoles: $X_3^0(i,j,k) \sim \mathcal{D}_{ij,k} + \mathcal{D}_{kj,i}$

ANTENNA FACTORIZATION

- antenna formalism operates on colour-ordered amplitudes
- exploit universal factorisation properties in IR limits

$$|\mathcal{A}_{m+2}^{0}(\ldots,i,j,k,l,\ldots)|^{2} \xrightarrow{j \& k \text{ unresolved}} X_{4}^{0}(i,j,k,l) \qquad |\mathcal{A}_{m}^{0}(\ldots,\widetilde{I},\widetilde{L},\ldots)|^{2}$$

$$\text{colour-ordered amplitude} \qquad \text{antenna function} \qquad |\mathcal{A}_{m}^{0}(\ldots,\widetilde{I},\widetilde{L},\ldots)|^{2}$$

$$+ \text{ mapping}$$

$$\{p_{i},p_{j},p_{k},p_{l}\} \rightarrow \{\widetilde{p}_{I},\widetilde{p}_{L}\}$$

captures multiple limits and smoothly interpolates between them*

$$\begin{array}{c|c} \text{limit} & X_3^0(i,j,k) \\ \hline \\ p_j \to 0 & \frac{2s_{ik}}{s_{ij}s_{jk}} \\ \\ p_j \parallel p_i & \frac{1}{s_{ij}}P_{ij}(z) \\ \\ p_j \parallel p_k & \frac{1}{s_{jk}}P_{kj}(z) \\ \hline \end{array}$$

- ▶ double soft: $j, k \rightarrow 0$
- ► triple-collinear:

$$(i \parallel j \parallel k)$$
 & $(j \parallel k \parallel l)$

- ▶ double collinear: $(i \parallel j), (k \parallel l)$
- soft-collinear:

$$(i \parallel j), k \to 0$$
 & $(k \parallel l), j \to 0$

single-unresolved

ANTENNA SUBTRACTION — BUILDING BLOCKS

 $lackbox{$>$} X(\ldots)$ based on physical matrix elements $X = \overbrace{A,B,C}^{q\bar{q}}, \overbrace{D,E,F,G,H}^{qg}$

$$X_3^0(i,j,k) = \frac{|\mathcal{A}_3^0(i,j,k)|^2}{|\mathcal{A}_2^0(\widetilde{I},\widetilde{K})|^2}, \qquad X_4^0(i,j,k,l) = \frac{|\mathcal{A}_4^0(i,j,k,l)|^2}{|\mathcal{A}_2^0(\widetilde{I},\widetilde{L})|^2},$$

$$X_3^1(i,j,k) = \frac{|\mathcal{A}_3^1(i,j,k)|^2}{|\mathcal{A}_2^0(\widetilde{I},\widetilde{K})|^2} - X_3^0(i,j,k) \frac{|\mathcal{A}_2^1(\widetilde{I},\widetilde{K})|^2}{|\mathcal{A}_2^0(\widetilde{I},\widetilde{K})|^2},$$

$$A_3^0(i_q,j_{
m g},k_{ar q}) = \left|igwedge_{i_q}^{\gamma^*}igwedge_{i_{ar q}}^{i_q}
ight|^2 \left/\left|igwedge_{K_{ar q}}^{\gamma^*}
ight|^2$$

▶ integrating the antennae ←→ phase-space factorization

$$d\Phi_{m+1}(\ldots, p_i, p_j, p_k, \ldots)$$

$$= d\Phi_m(\ldots, \widetilde{p}_I, \widetilde{p}_K, \ldots) d\Phi_{X_{ijk}}(p_i, p_j, p_k; \widetilde{p}_I + \widetilde{p}_K)$$

$$\mathcal{X}_{3}^{0,1}(i,j,k) = \int d\Phi_{X_{ijk}} X_{3}^{0,1}(i,j,k), \quad \mathcal{X}_{4}^{0}(i,j,k,l) = \int d\Phi_{X_{ijkl}} X_{4}^{0}(i,j,k,l)$$

ANTENNA SUBTRACTION — BUILDING BLOCKS

All building blocks known!

 X_3^0 , X_4^0 , X_3^1 and integrated counterparts \mathcal{X}_3^0 , \mathcal{X}_4^0 , \mathcal{X}_3^1

∀ configurations relevant at hadron colliders:

\rightarrow IIIIal-IIIIal $e \cdot e$	\hookrightarrow final-final		e^+e	_
---	-------------------------------	--	--------	---

[Gehrmann-De Ridder, Gehrmann, Glover '05]

$$\hookrightarrow$$
 initial-final $\mathrm{e^{+}p}$

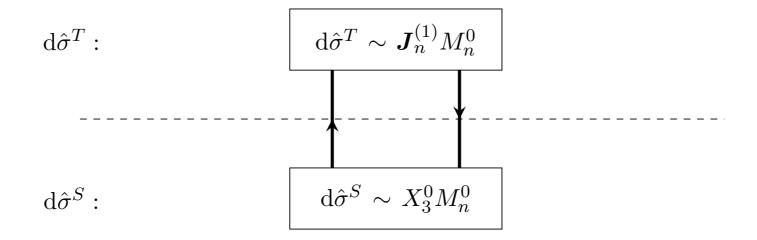
[Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, Maitre '06,'09,'12]

$$\hookrightarrow$$
 initial-initial pp

[Boughezal, Daleo, Gehrmann-De Ridder, Gehrmann, Maitre, et al. '10,'11,'12]

$$\mathcal{X}_{3}^{0,1}(i,j,k) = \int d\Phi_{X_{ijk}} X_{3}^{0,1}(i,j,k), \quad \mathcal{X}_{4}^{0}(i,j,k,l) = \int d\Phi_{X_{ijkl}} X_{4}^{0}(i,j,k,l)$$

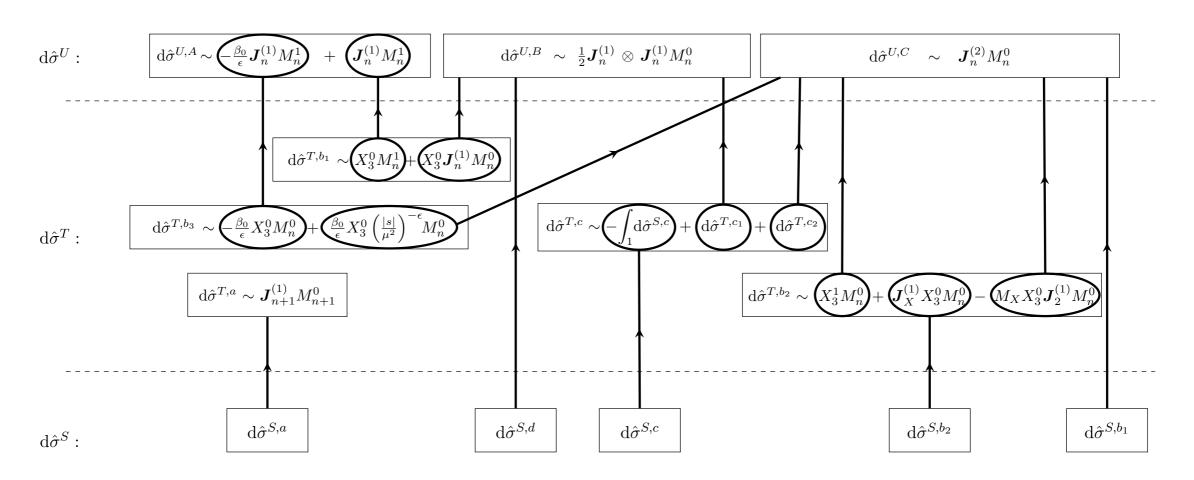
ANTENNA SUBTRACTION @ NLO — $q\bar{q} \rightarrow ggZ$



$$\begin{split} &\int \left\{ \mathrm{d}\sigma_{Z+1jet}^{R} - \mathrm{d}\sigma_{Z+1jet}^{S} \right\} \\ &= \int \mathrm{d}\Phi_{Z+2} \left\{ \; \left| \mathcal{A}_{4}^{0}(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}, Z) \right|^{2} \; \mathcal{J}(\Phi_{Z+2}) \right. \\ &\left. - d_{3}^{0}(1_{q}, 3_{g}, 4_{g}) \; \left| \mathcal{A}_{3}^{0}(\widetilde{1}_{q}, \widetilde{(34)}_{g}, 2_{\bar{q}}, Z) \right|^{2} \; \mathcal{J}(\widetilde{\Phi}_{Z+1}) \right. \\ &\left. - d_{3}^{0}(2_{\bar{q}}, 4_{g}, 3_{g}) \; \left| \mathcal{A}_{3}^{0}(1_{q}, \widetilde{(34)}_{g}, \widetilde{2}_{\bar{q}}, Z) \right|^{2} \; \mathcal{J}(\widetilde{\Phi}_{Z+1}) \right\} + (3 \leftrightarrow 4) \\ &\left. \int \left\{ \mathrm{d}\sigma_{Z+1jet}^{V} - \mathrm{d}\sigma_{Z+1jet}^{T} \right\} \right. \\ &\left. = \int \mathrm{d}\Phi_{Z+1} \left\{ \; \left| \mathcal{A}_{3}^{1}(1_{q}, 3_{g}, 2_{\bar{q}}, Z) \right|^{2} \right. \\ &\left. + \frac{1}{2} \left[\mathcal{D}_{3}^{0}(s_{13}) + \mathcal{D}_{3}^{0}(s_{23}) \right] \; \left| \mathcal{A}_{3}^{0}(1_{q}, 3_{g}, 2_{\bar{q}}, Z) \right|^{2} \right\} \; \mathcal{J}(\Phi_{Z+1}) \end{split}$$

ANTENNA SUBTRACTION @ NNLO

[J. Currie, E.W.N. Glover, S. Wells '13]



► double real: $d\sigma^{S} \sim X_3^0 |\mathcal{A}_{m+1}^0|^2$, $X_4^0 |\mathcal{A}_m^0|^2$, $X_3^0 |\mathcal{A}_3^0|^2$

► real-virtual: $d\sigma^{\rm T} \sim \mathcal{X}_3^0 |\mathcal{A}_{m+1}^0|^2, \quad X_3^0 |\mathcal{A}_m^1|^2, \quad X_3^1 |\mathcal{A}_m^0|^2$

▶ double virtual: $d\sigma^{\mathrm{U}} = (\text{collect rest}) \sim \mathcal{X} |\mathcal{A}_m^{0,1}|^2$

ANTENNA SUBTRACTION — CHECKS OF THE CALCULATION

Analytic pole cancellation

```
▶ Poles \left(d\sigma^{RV} - d\sigma^{T}\right) = 0
```

$$ightharpoonup$$
 Poles $\left(\mathrm{d}\sigma^{\mathrm{VV}}-\mathrm{d}\sigma^{\mathrm{U}}\right)=0$

 $DimReg: D = 4 - 2\epsilon$

```
09:26:35 ...maple/process/Z
$ form autoqgB1g2ZgtoqU.frm
FORM 4.1 (Mar 13 2014) 64-bits
#-
poles = 0;
6.58 sec out of 6.64 sec
```

Unresolved limits

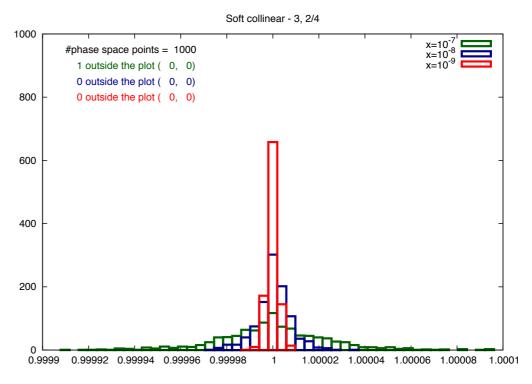
```
ightharpoonup d\sigma^{
m RR} (single- & double-unresolved)
```

$$ightharpoonup d\sigma^{\mathrm{RV}}$$

(single-unresolved)

bin the ratio: $d\sigma^{S}/d\sigma^{RR} \xrightarrow{unresolved} 1$

$$q \ \overline{q} \rightarrow Z + g_3 \ \mathbf{g_4} \ \mathbf{g_5}$$
 (g₃ soft & $\mathbf{g_4} \parallel \overline{q}$)



(approach singular limit: $x_i = 10^{-7}, 10^{-8}, 10^{-9}$)

X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, AH, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, D. Walker, J. Whitehead

Processes computed using the antenna subtraction method

$$ightharpoonup$$
 pp $ightharpoonup V$

► pp
$$\rightarrow$$
 H (ggH) @ N³LO

$$@ N^3LO$$

▶ pp
$$\rightarrow V + j$$
 @ NNLO

▶
$$pp \rightarrow H + j$$
 (ggH) @ NNLO

$$\hookrightarrow V \to \ell \bar{\ell}$$
 $(V = Z/\gamma^*, W^{\pm})$

▶
$$pp \rightarrow H + 2j$$
 (VBF) @ NNLO

▶ pp
$$\rightarrow$$
 jets (inc. jets, 2j) @ NNLO

$$\hookrightarrow H \to \gamma \gamma, \ \tau \tau, \ V \gamma, \ VV$$

$$ightharpoonup$$
 pp $\to VH$

$$ightharpoonup$$
 ep $\rightarrow 1j$

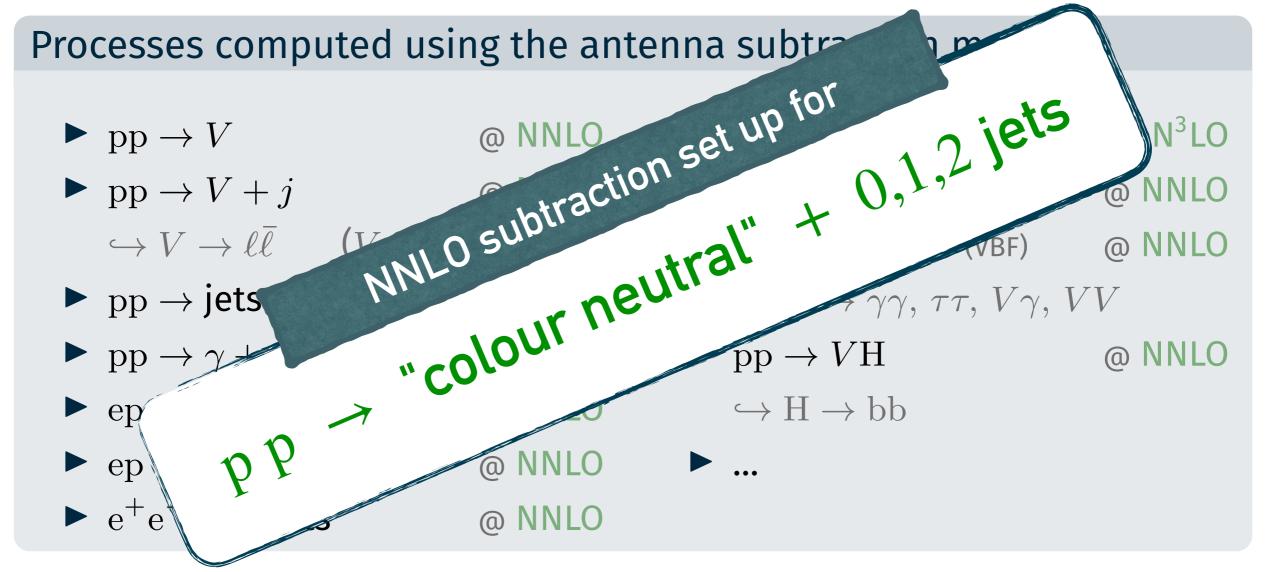
$$@ N^3LO$$

$$\hookrightarrow H \to bb$$

$$ightharpoonup$$
 ep $ightharpoonup 2j$

$$ightharpoonup$$
 $e^+e^- o 3$ jets

X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, AH, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, D. Walker, J. Whitehead



THE PLAN.

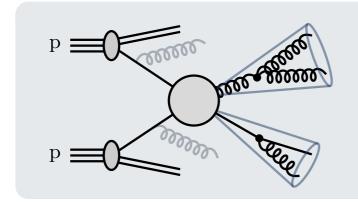
1. Precision Predictions for the LHC

The Antenna Subtraction Formalism

2. Hard QCD Probes

- Jets & Photon Production at NNLO
- 3. Differential Higgs Production
 - The Projection-to-Born Method

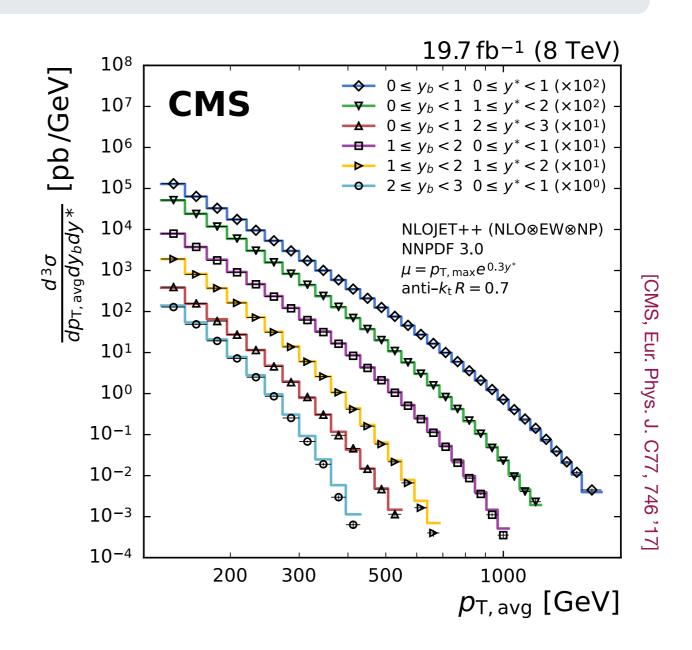
JET PRODUCTION AT THE LHC



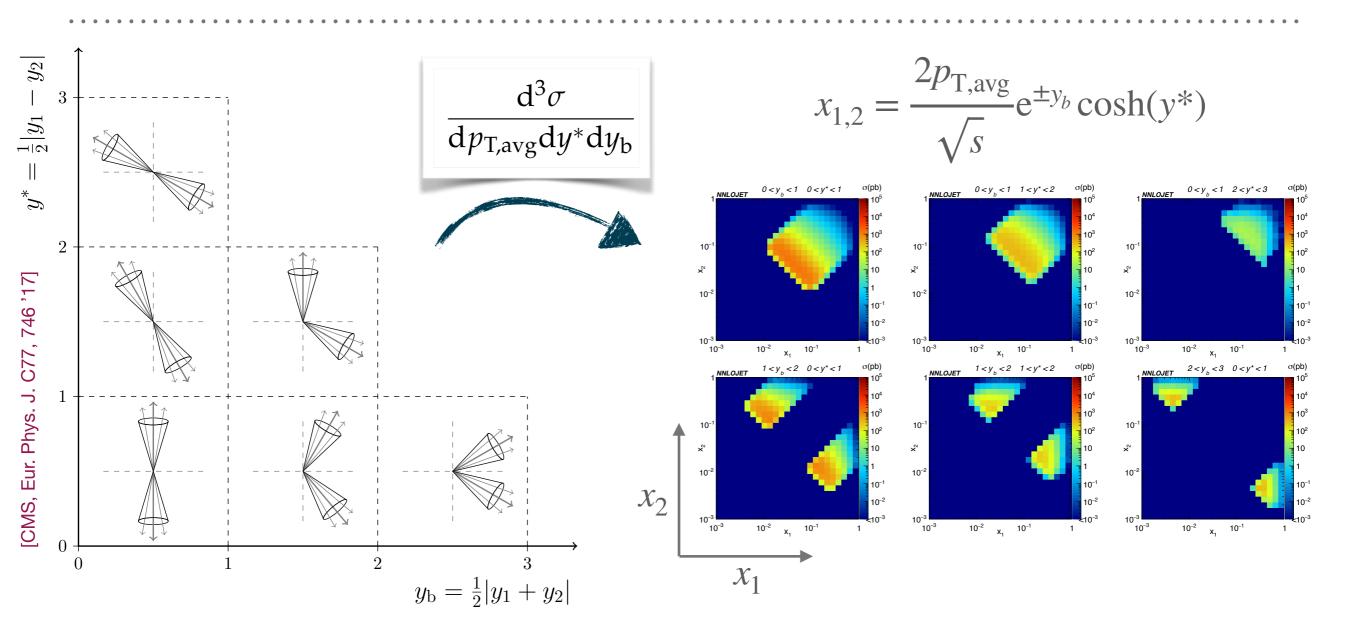
- $p + p \rightarrow jet(s) + X$
 - jets produced in abundance
 - ▶ precise measurements $(p_{\mathrm{T},j} \gtrsim 20~\mathrm{GeV})$
 - wide kinematic range accessible

- ▶ test perturbative QCD
 → study scale choices
- constrain PDFs
 - \hookrightarrow sensitive to gluon
 - \hookrightarrow probe wide x-range
- ightharpoonup $lpha_{
 m s}(M_{
 m Z})$ and running
- search for BSM physics

high-precision predictions mandatory!



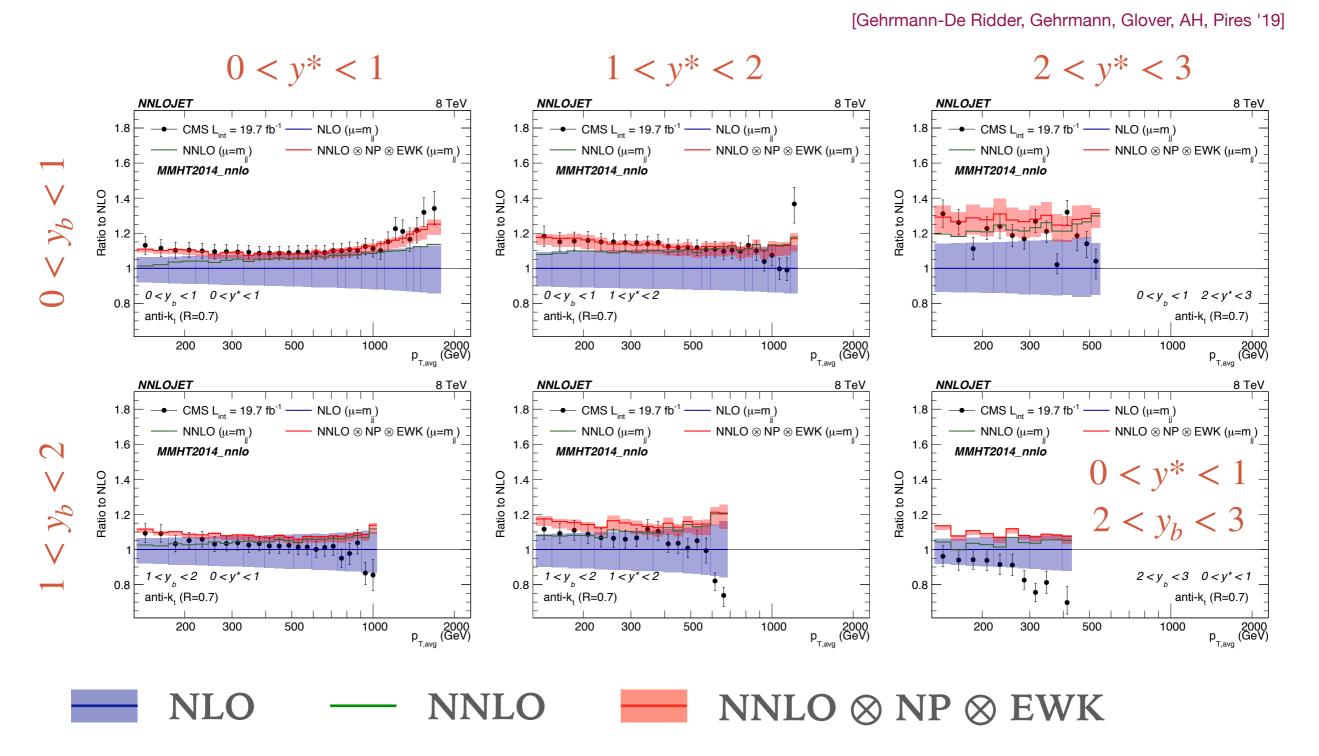
TRIPLE-DIFFERENTIAL CROSS SECTION



study different kinematic regimes

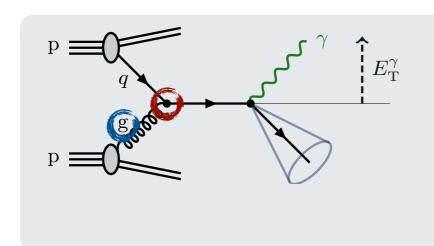
► disentangle momentum fractions $x_1 \& x_2$

TRIPLE-DIFFERENTIAL CROSS SECTION @ NNLO



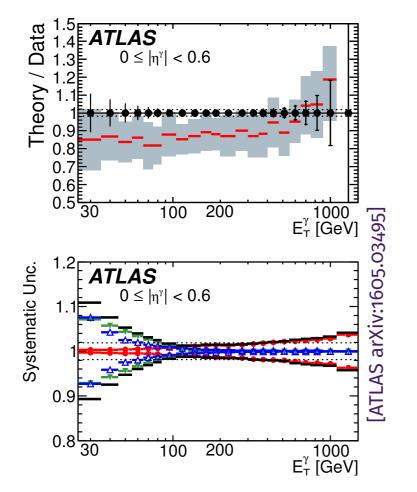
improved description of data & reduced uncertainties!

PHOTON & PHOTON+JET PRODUCTION



$$p p \rightarrow \gamma + X$$

- ► highest-rate electroweak process @ LHC
- photon as probe of hard scattering
 - ightarrow sensitivity to $lpha_{
 m s}$ gluon PDF



JetPhox (NLO QCD)

[Catani, Fontannaz, Guillet, Pilon '02]

- \hookrightarrow tension between theory vs. data
- \hookrightarrow large scale uncertainties: $\sim \pm 10\%$
- experimental uncertainties $\lesssim \pm 3-5\%$
 - \hookrightarrow smaller than NLO theory
 - ⇒ NNLO QCD needed!

PHOTON ISOLATION

Suppress contamination from secondary photons (e.g. $\pi^0 o \gamma\gamma$)

 \sim isolation cuts: restrict hadronic activity in $R=\sqrt{\Delta\eta^2+\Delta\varphi^2}$

Fixed cone isolation

can choose simple linear dependence:

$$E_{\mathrm{T}}^{\mathrm{had.}}(R) < E_{\mathrm{T}}^{\mathrm{max}} = \epsilon E_{\mathrm{T}}^{\gamma} + E_{\mathrm{T}}^{\mathrm{thresh.}}$$

- √ used in experiments
- sensitivity to fragmentation

Dynamic cone isolation [Frixione '98]

smoothly get rid of collinear radiation:

$$E_{\mathrm{T}}^{\mathsf{had.}}(r) < \epsilon E_{\mathrm{T}}^{\gamma} \left(\frac{1 - \cos r}{1 - \cos R} \right)^n \quad \forall r < R$$

- √ eliminates fragmentation part
- no direct analogue in experiment

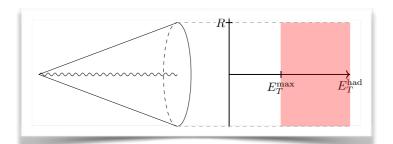
Mismatch: experiment vs. theory

► "tight enough" isolation: ~ few % [Les Houches '13 '15]

But: experiment & NNLO theory: $\lesssim 5\%$

→ percent-level phenomenology a reality!
Can we do better?

PHOTON ISOLATION CONT.

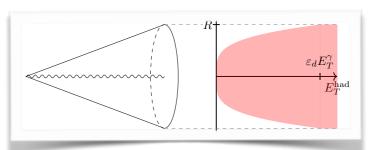


Fixed cone isolation

can choose simple linear dependence:

$$E_{\mathrm{T}}^{\mathrm{had.}}(R) < E_{\mathrm{T}}^{\mathrm{max}} = \epsilon E_{\mathrm{T}}^{\gamma} + E_{\mathrm{T}}^{\mathrm{thresh.}}$$

- √ used in experiments
- sensitivity to fragmentation

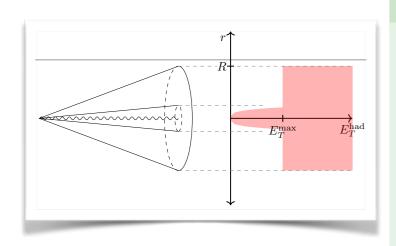


Dynamic cone isolation [Frixione '98]

smoothly get rid of collinear radiation:

$$E_{\mathrm{T}}^{\mathsf{had.}}(r) < \epsilon E_{\mathrm{T}}^{\gamma} \left(\frac{1 - \cos r}{1 - \cos R} \right)^{n} \quad \forall r < R$$

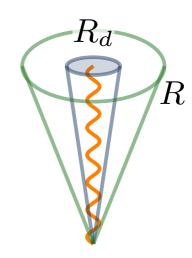
- √ eliminates fragmentation part
- no direct analogue in experiment



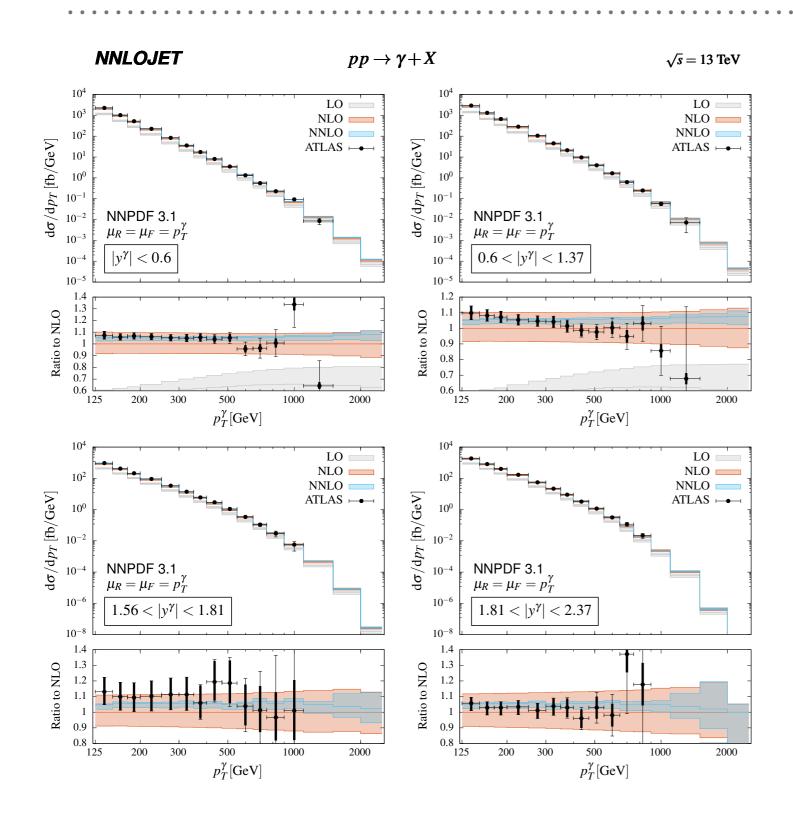
Hybrid cone isolation

[Siegert '17]

- 1. narrow dynamic cone $R_d < R$ (0.1)
- 2. wider fixed cone R (0.4)
- √ eliminates fragmentation part
- √ reduces mismatch to experiment
- \checkmark correct R dependence



PHOTON PRODUCTION @ 13 TEV



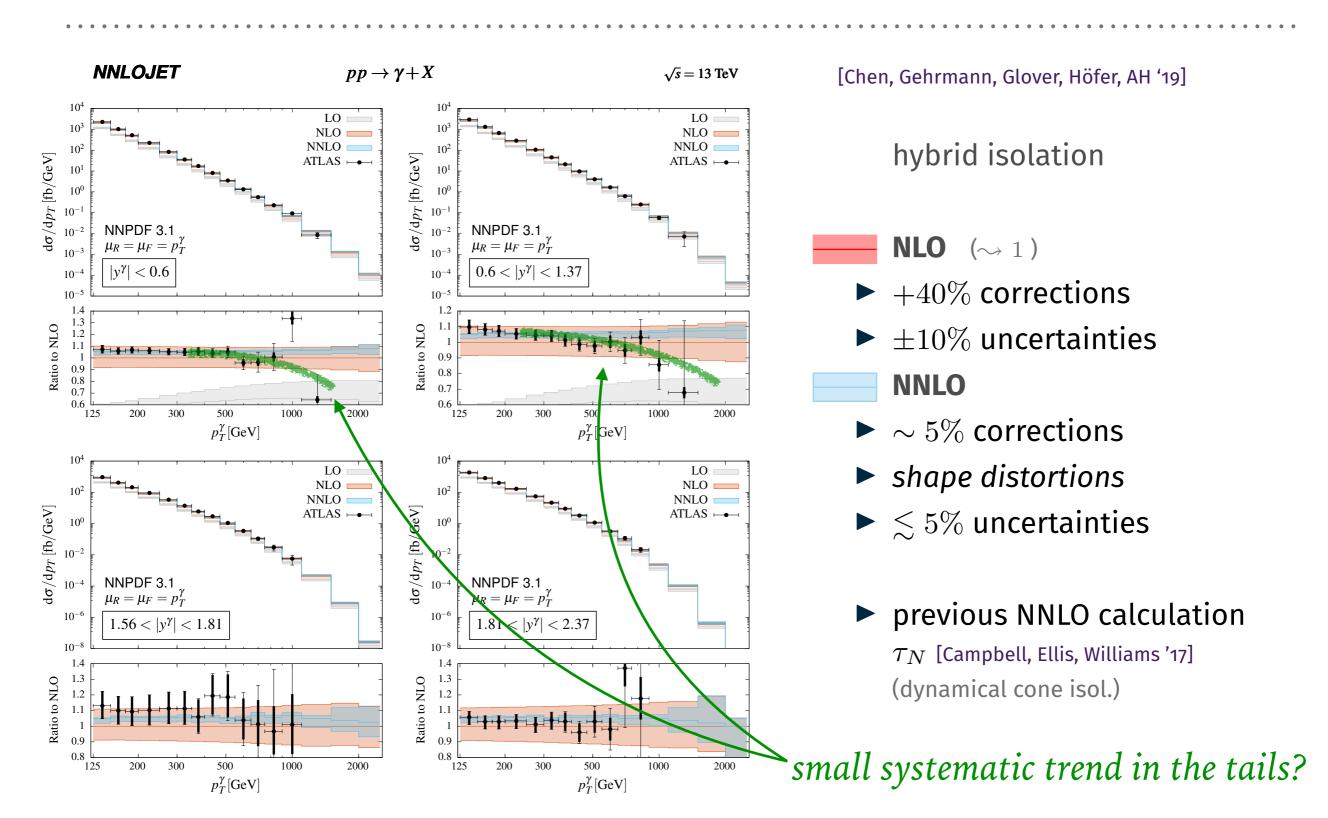
[Chen, Gehrmann, Glover, Höfer, AH '19]

hybrid isolation

- **NLO** (~→ 1)
 - ightharpoonup +40% corrections
 - \blacktriangleright ±10% uncertainties
- NNLO
 - $ightharpoonup \sim 5\%$ corrections
 - shape distortions
 - $ightharpoonup \lesssim 5\%$ uncertainties
 - previous NNLO calculation

 au_N [Campbell, Ellis, Williams '17] (dynamical cone isol.)

PHOTON PRODUCTION @ 13 TEV

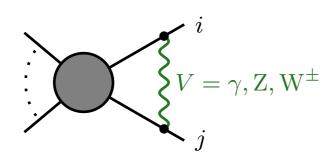


ELECTROWEAK INTERACTIONS

- ➤ generic size: $O(a) \sim O(a_s^2)$
- systematic enhancements possible:

SUDAKOV LOGARITHMS

(kinematic tails)

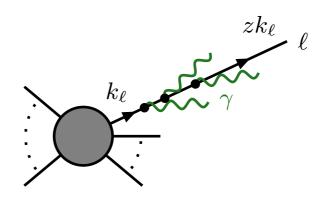


$$\sim \ln^2 \left(\frac{s_{ij}}{M_{\rm W}^2} \right) + \text{sub-leading (collinear)}$$

O(10-20%) corrections!

FINAL-STATE RADIATION

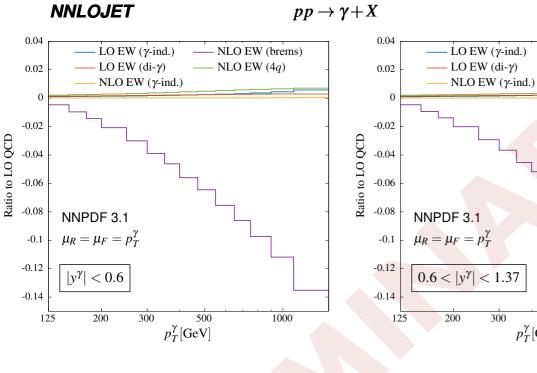
(resonances, shoulders, ...)

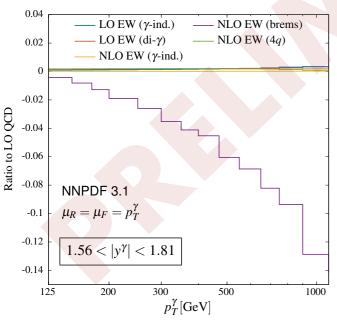


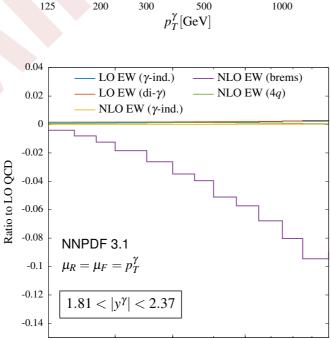
$$\sim \alpha^n \ln^n \left(\frac{Q^2}{m_\ell^2}\right)$$

O(10-100%) corrections!

EW CORRECTIONS USING ANTENNAE







 $p_T^{\gamma}[\text{GeV}]$

 $\sqrt{s} = 13 \text{ TeV}$

---- NLO EW (brems)

NLO EW (4q)

➤ dipole subtraction:

$$\sum_{i} \sum_{j \neq i} \mathcal{D}_{ik,j} \otimes |\mathcal{M}(..., \tilde{i}, \tilde{j}, ...)|^{2}$$

➤ antenna subtraction:*

$$\sum_{i} \sum_{j < i} A_3^0(i, k, j) \otimes |\mathcal{M}(\dots, \tilde{i}, \tilde{j}, \dots)|^2$$

 \Rightarrow reduction in # of terms by $\times 2!$

^{*} fully algorithmic & general

THE PLAN.

1. Precision Predictions for the LHC

The Antenna Subtraction Formalism

2. Hard QCD Probes

Jets & Photon Production at NNLO

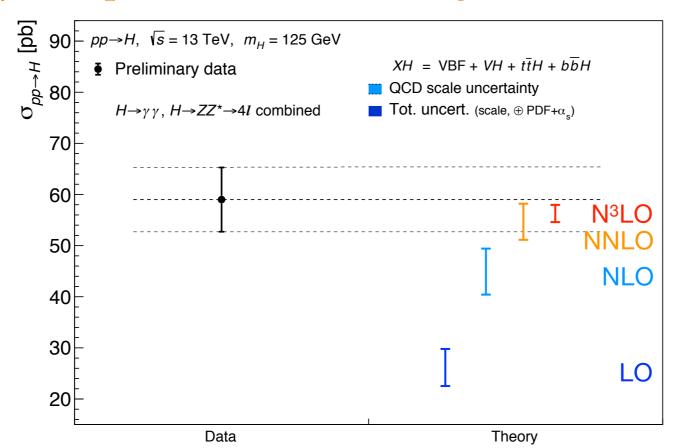
3. Differential Higgs Production

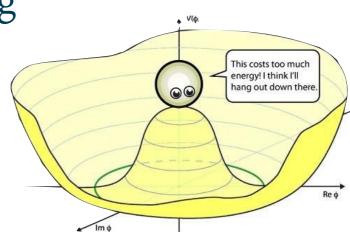
The Projection-to-Born Method

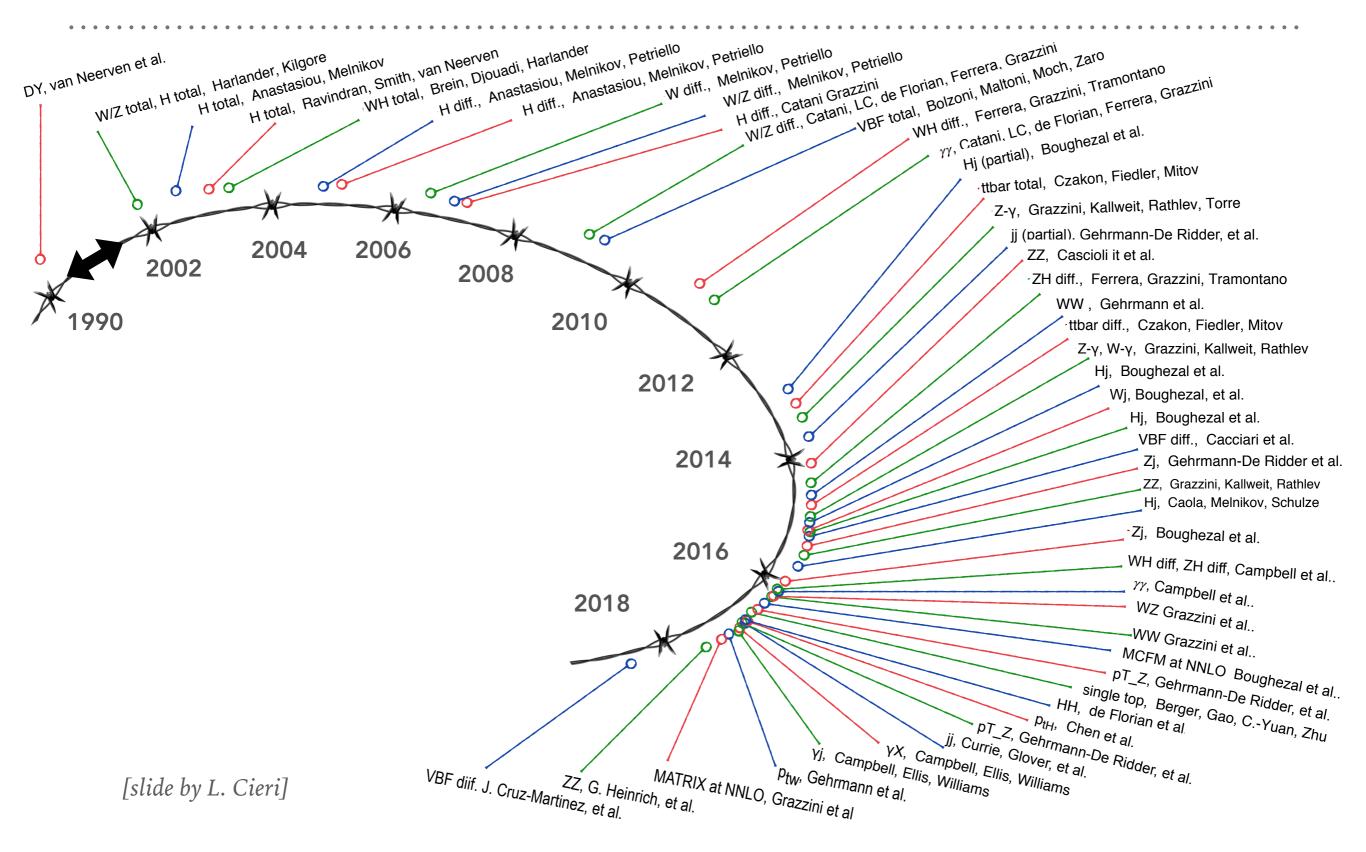
THE HIGGS BOSON

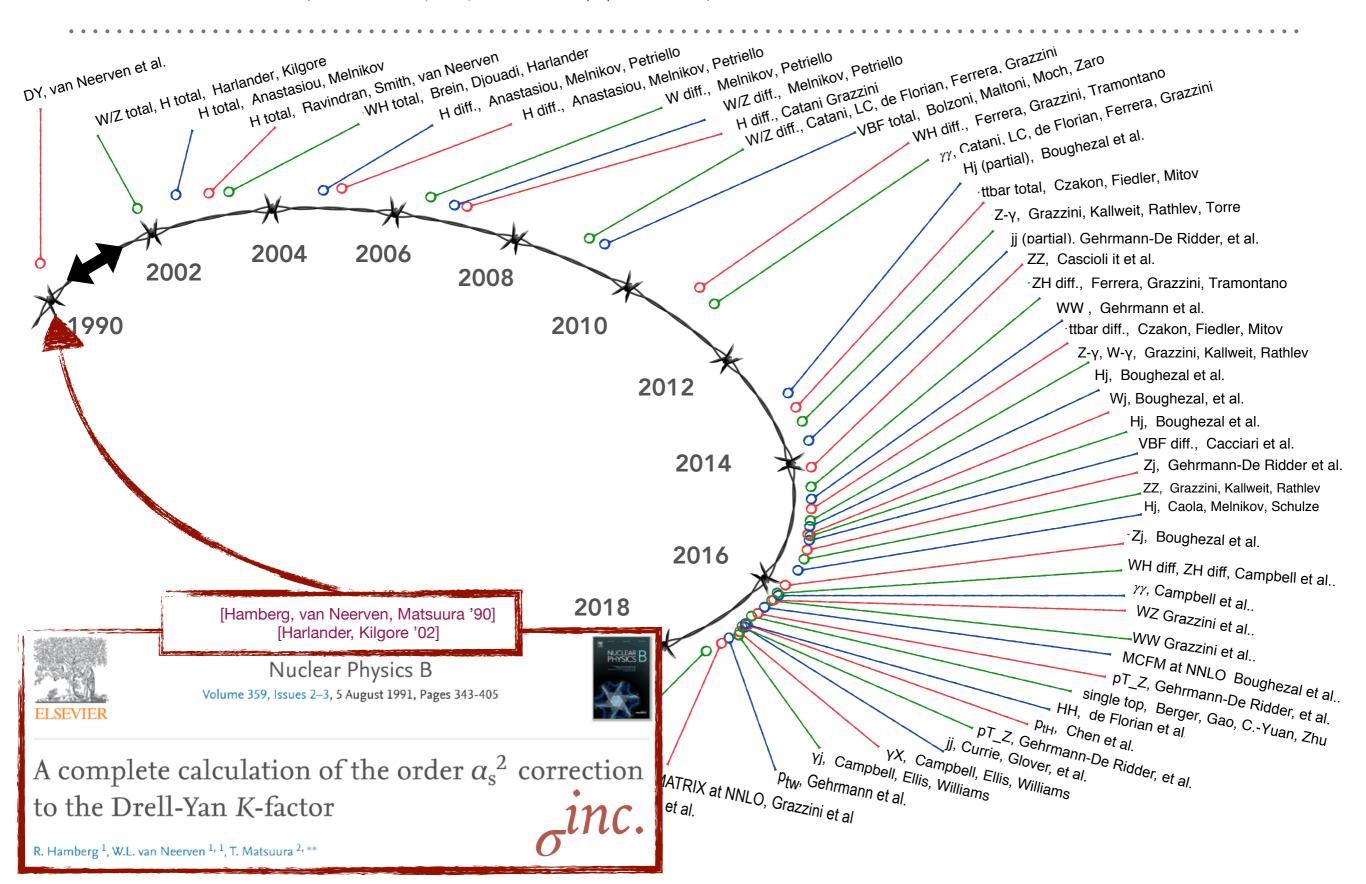
experimental era of Higgs physics just starting

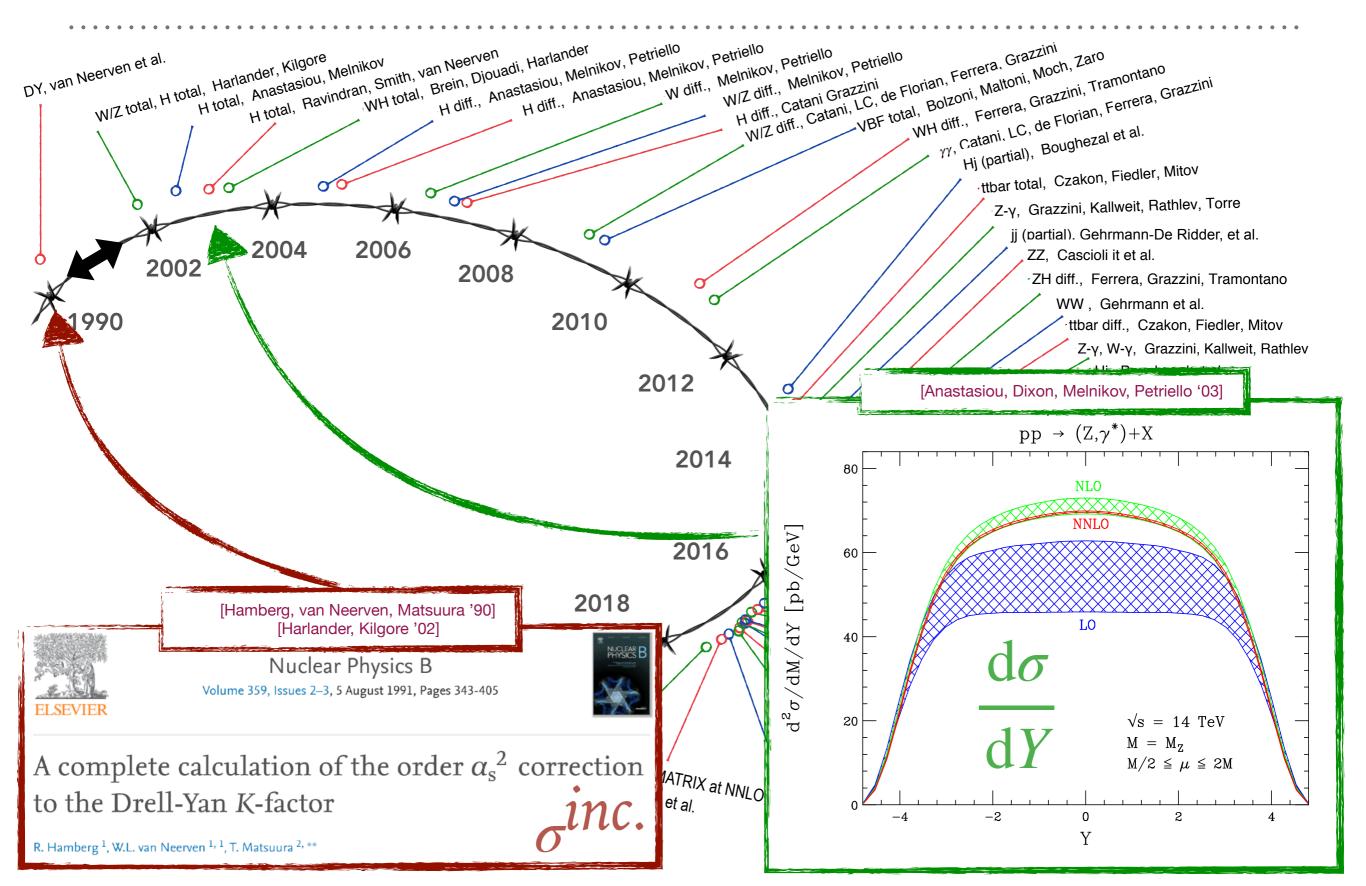
- scrutinise all properties
- couplings/interactions
- probe the potential
- notoriously bad perturbative convergence (need N³LO)

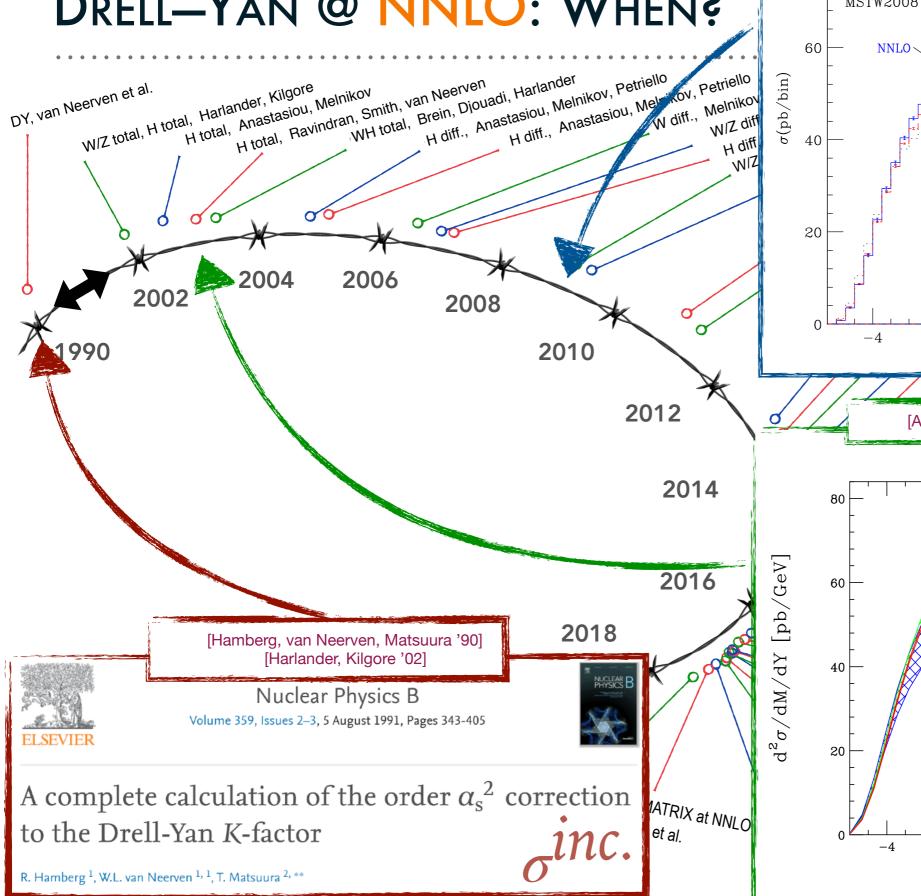


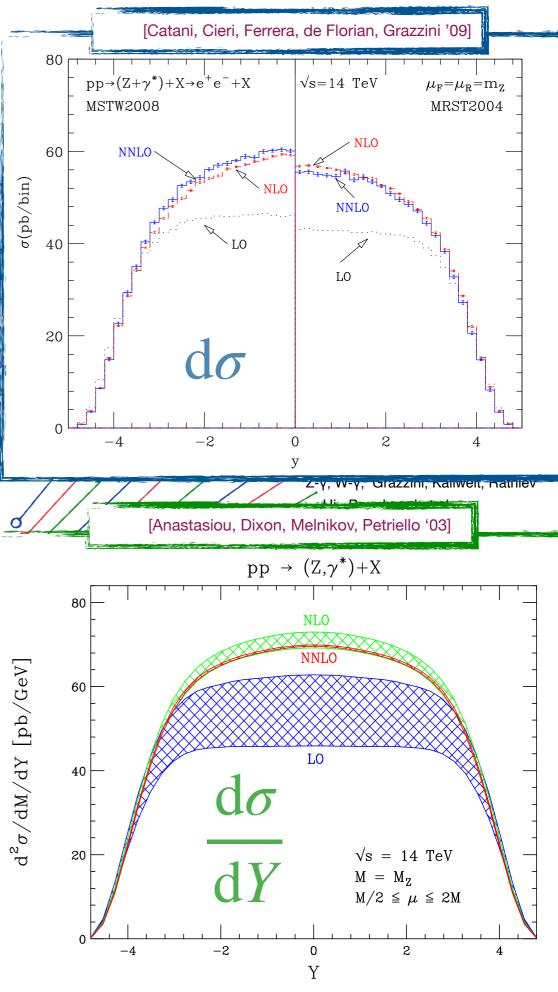












LHC — GOING FULLY DIFFERENTIAL @ N3LO

inclusive

$$\sigma_{\text{tot}}^{\text{N}^3\text{LO}} = 48.68 \text{ pb}_{-3.16 \text{ pb}}^{+2.07 \text{ pb}}$$

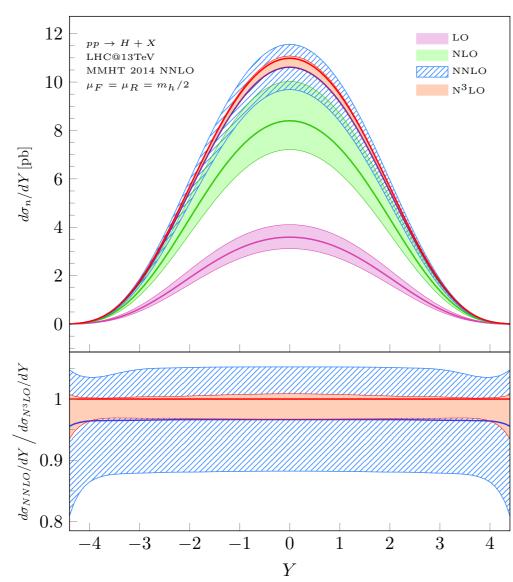
- ✓ analytic integration over full phase space
- Xno information on final state

[Anastasiou et al. '15] [Mistlberger '18]

LHC

 $\sigma_{
m tot}^{
m N^3L^0}$

- ✓analytic i
- Xno inform



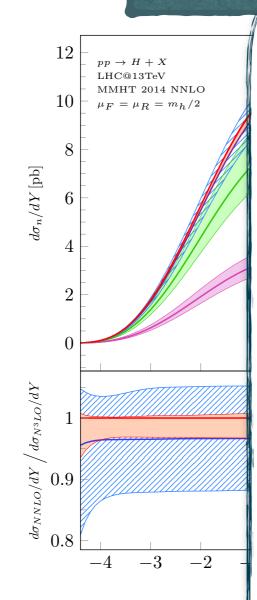
- ✓ analytic integration over QCD emissions
- *partial information on final state
 - ightharpoonup only $y_{\rm H} \rightsquigarrow$ no decay kinematics
 - no information on final-state partons

[Dulat, Mistlberger, Pelloni '18]

13LO

✓analytic i

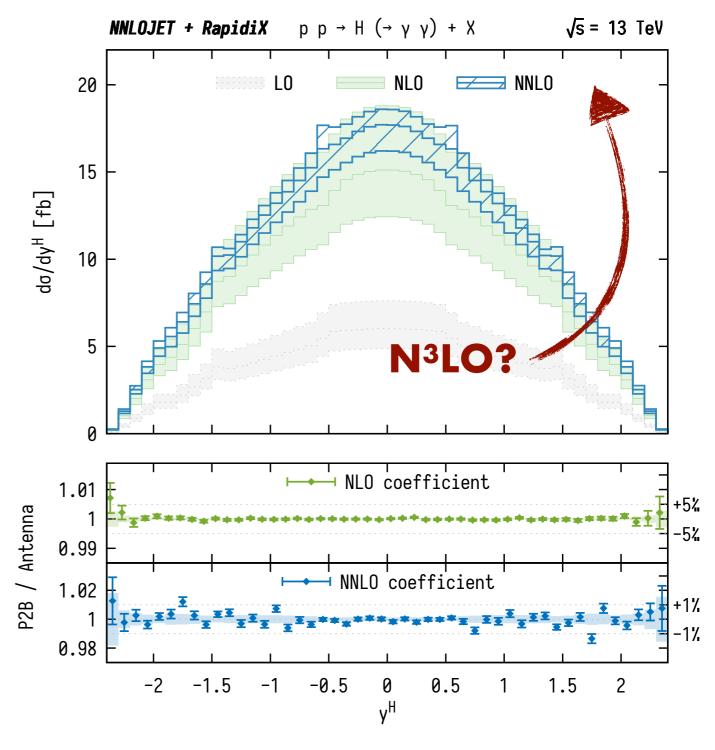
Xno inform



✓ analytic integration

*partial informatio

- no informat



- ► only $y_H \rightsquigarrow r$ ✓ numerical integration of phase space
 - ✓ complete final-state information (decay, isol., ...)

[Chen, Dulat, Gehrmann, Glover, AH, Mistlberger, Pelloni (to appear)]

observables projected to Born

fully local counter term

THE PROJECTION-TO-BORN METHOD

$$\frac{\mathrm{d}\sigma_{F}^{\mathrm{N}^{k}\mathrm{LO}}}{\mathrm{d}\mathcal{O}} = \frac{\mathrm{d}\sigma_{F,\mathrm{inc.}}^{\mathrm{N}^{k}\mathrm{LO}}}{\mathrm{d}\mathcal{O}_{B}} + \left\{ \frac{\mathrm{d}\sigma_{F+\mathrm{jet}}^{\mathrm{N}^{k-1}\mathrm{LO}}}{\mathrm{d}\mathcal{O}} - \frac{\mathrm{d}\sigma_{F+\mathrm{jet}}^{\mathrm{N}^{k-1}\mathrm{LO}}}{\mathrm{d}\mathcal{O}} \Big|_{\mathcal{O}\to\mathcal{O}_{B}} \right\}$$

- start: inclusive calculation
 - → differential in Born variables
- supplement fully differential information:
 - → difference of a "+jet" calculation at one order lower

HIGGS @ N3LO USING PROJECTION-TO-BORN

 $d\sigma/dy_{\rm H}$

@ NⁿLO

HIGGS @ N³LO USING PROJECTION-TO-BORN

Projection-to-Born

 $d\sigma/dy_{\rm H}$

@ NⁿLO

real-emission phase space: $d\Phi_{H+n}$

$$p_a + p_b \to p_H + k_1 + k_2 + \ldots + k_n$$

ightharpoonup projection to Born: $d\Phi_{\rm H}$

$$\tilde{p}_a + \tilde{p}_b
ightarrow \tilde{p}_H$$
 $(\tilde{p}_a = \xi_a p_a, \ \tilde{p}_b = \xi_b p_b)$

on-shell:
$$\tilde{p}_{\rm H}^2 \equiv p_{\rm H}^2 = M_{\rm H}^2 \quad \Rightarrow \quad \xi_a \; \xi_b = \frac{2p_a p_b - 2(p_a + p_b)k_{1...n} + k_{1...n}^2}{2p_a p_b}$$

rapidity:
$$\tilde{y}_{\rm H} \equiv y_{\rm H}$$
 \Rightarrow $\xi_a/\xi_b = \frac{2p_bp_{\rm H}}{2p_ap_{\rm H}}$

$$\hookrightarrow$$
 decay products: $p_{\rm H} \to p_1 + \ldots + p_m$ $(p_i^{\mu} \to \tilde{p}_i^{\mu} = \Lambda^{\mu}_{\nu} p_i^{\nu})$

$$(p_i^\mu o { ilde p}_i^\mu = \Lambda^\mu{}_
u \, p_i^
u)$$

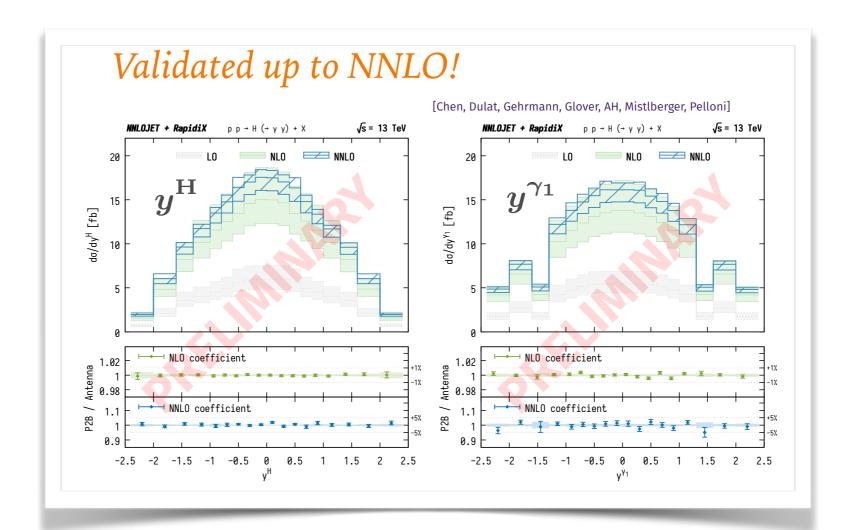
$$\Lambda^{\mu}{}_{\nu}(p_{\rm H}, \tilde{p}_{\rm H}) = g^{\mu}{}_{\nu} - \frac{2(p_{\rm H} + \tilde{p}_{\rm H})^{\mu}(p_{\rm H} + \tilde{p}_{\rm H})_{\nu}}{(p_{\rm H} + \tilde{p}_{\rm H})^2} + \frac{2\tilde{p}_{\rm H}^{\mu}p_{\rm H,\nu}}{p_{\rm H}^2}$$

HIGGS @ N³LO USING PROJECTION-TO-BORN

Projection-to-Born

 $d\sigma/dy_{\rm H}$ @ NⁿLO

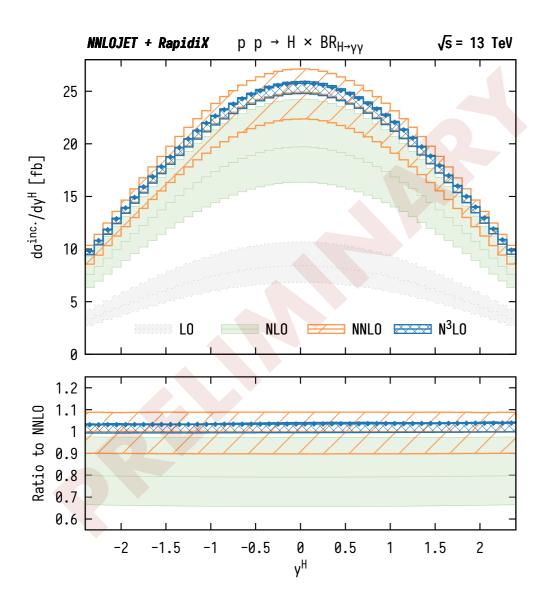
* Born variables: (Y, M²)



HIGGS @ N³LO USING PROJECTION-TO-BORN do/dYH

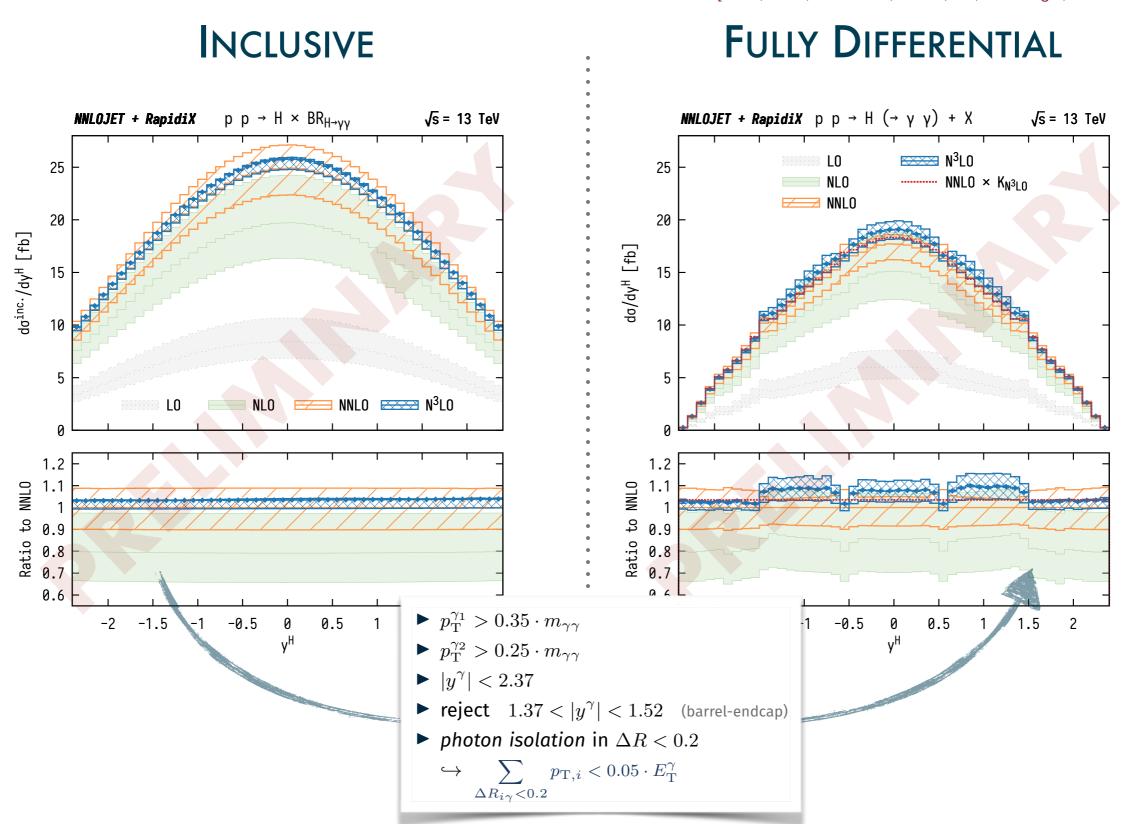
[Chen, Dulat, Gehrmann, Glover, AH, Mistlberger, Pelloni (to appear)]

INCLUSIVE



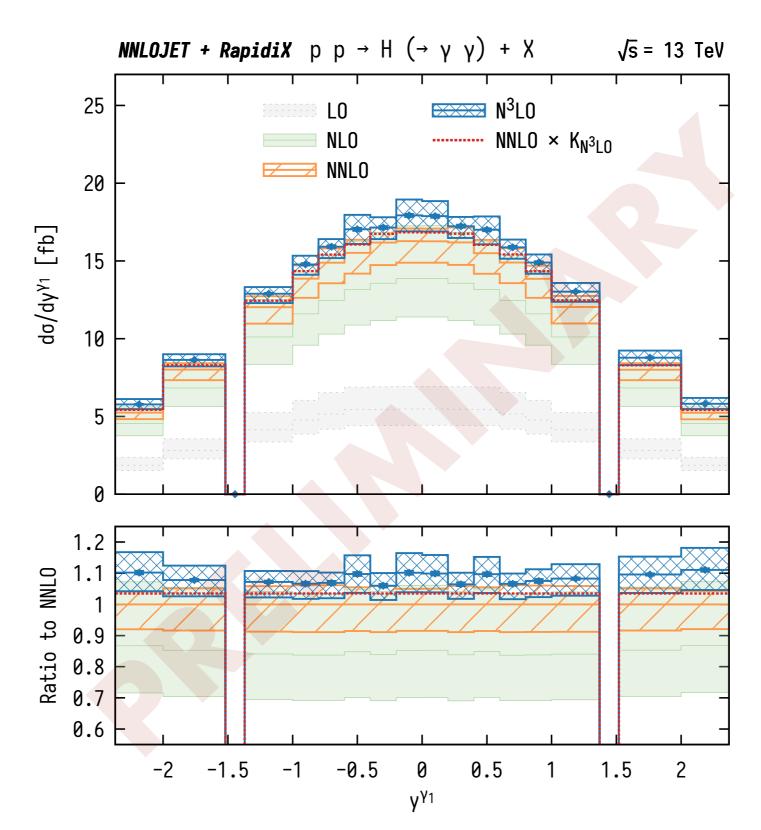
HIGGS @ N3LO USING PROJECTION-TO-BORN do/dYH

[Chen, Dulat, Gehrmann, Glover, AH, Mistlberger, Pelloni (to appear)]



HIGGS @ N³LO USING PROJECTION-TO-BORN $d\sigma/dy^{\gamma_1}$

[Chen, Dulat, Gehrmann, Glover, AH, Mistlberger, Pelloni (to appear)]



PROJECTION-TO-BORN — AN "ANTENNA" VIEW

Consider the real-emission subtraction in the antenna subtraction formalism

for H + 0jet (@ LC):

$$\begin{split} &\int \left\{ \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{SNLO}} \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \Big\{ \; \mathrm{A3g0H}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \; \mathcal{J}(\Phi_{\mathrm{H+1}}) \\ &\quad - \mathit{F}_{3}^{0}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}) \; \mathrm{A2g0H}(\tilde{1}_{\mathrm{g}}, \tilde{2}_{\mathrm{g}}, \mathrm{H}) \; \mathcal{J}(\tilde{\Phi}_{\mathrm{H+0}}) \Big\} \end{split}$$

PROJECTION-TO-BORN — AN "ANTENNA" VIEW

Consider the real-emission subtraction in the antenna subtraction formalism

for H + 0jet (@ LC):

$$\begin{split} \int & \left\{ \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{SNLO}} \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \Big\{ \text{ A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \; \mathcal{J}(\Phi_{\mathrm{H+1}}) \\ &- \mathit{F}_{3}^{0}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}) \; \mathrm{A2gOH}(\tilde{1}_{\mathrm{g}}, \tilde{2}_{\mathrm{g}}, \mathrm{H}) \; \mathcal{J}(\widetilde{\Phi}_{\mathrm{H+0}}) \Big\} \end{split}$$

Antennae = ratios of *physical* **Matrix Elements:**

$$F_3^0(i_{
m g},j_{
m g},k_{
m g}) \equiv rac{ exttt{A3g0H}(i_{
m g},j_{
m g},k_{
m g},{
m H})}{ exttt{A2g0H}(ilde{i}_{
m g}, ilde{k}_{
m g},{
m H})}$$

PROJECTION-TO-BORN — AN "ANTENNA" VIEW

Consider the real-emission subtraction in the antenna subtraction formalism

for H + 0jet (@ LC):

$$\begin{split} \int \left\{ \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{SNLO}} \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \Big\{ \text{ A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \; \mathcal{J}(\Phi_{\mathrm{H+1}}) \\ &- \mathit{F}_{3}^{0}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}) \; \mathrm{A2gOH}(\tilde{1}_{\mathrm{g}}, \tilde{2}_{\mathrm{g}}, \mathrm{H}) \; \mathcal{J}(\widetilde{\Phi}_{\mathrm{H+0}}) \Big\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \; \mathrm{A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \; \Big\{ \mathcal{J}(\Phi_{\mathrm{H+1}}) - \mathcal{J}(\widetilde{\Phi}_{\mathrm{H+0}}) \Big\} \end{split}$$

 \Rightarrow Simple processes where antenna \simeq real-emission Matrix Element \leftrightarrow Projection-to-Born

Similarly at NNLO: X_4^0 & X_3^0 \times X_3^0 are "projections" of RR ME & NLO(+jet) subtraction term.

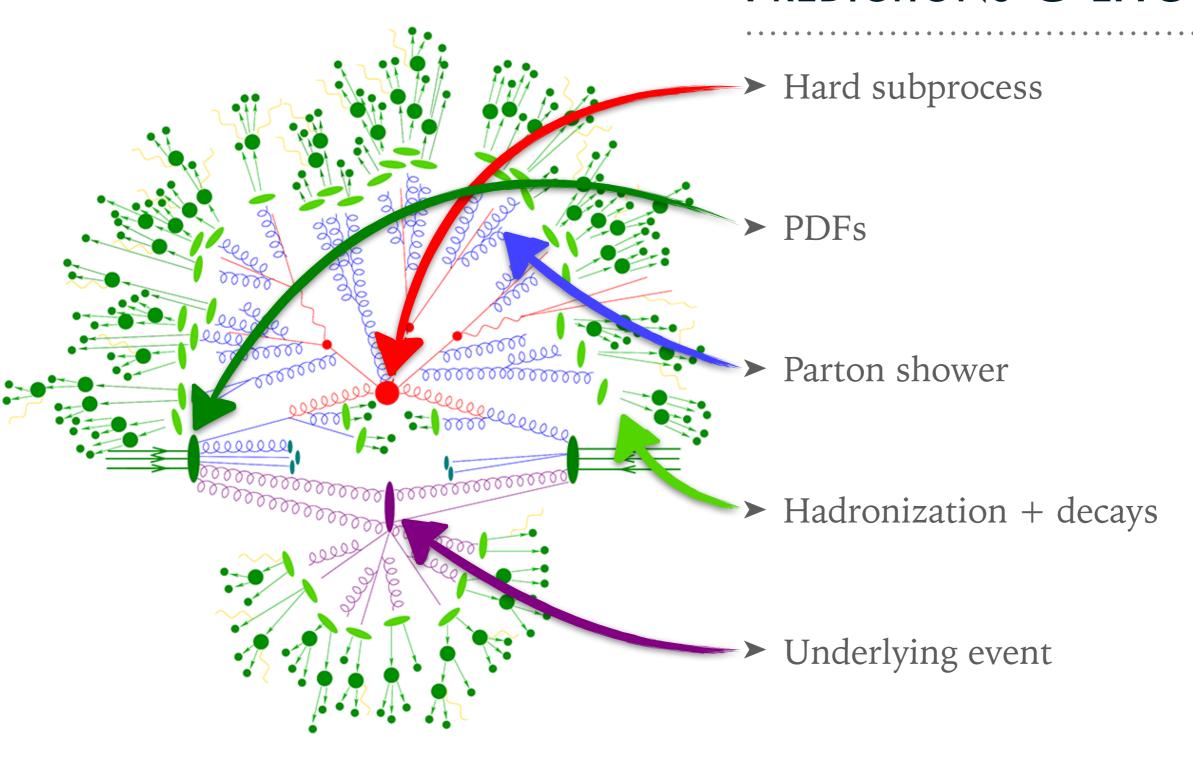
 $d\sigma_{\mathsf{N^3LO}}/dy_{\mathrm{H}} \simeq \mathsf{integrated}$ antenna: \mathcal{X}_5^0 , \mathcal{X}_4^1 , \mathcal{X}_3^2

CONCLUSIONS & OUTLOOK

- ➤ LHC remarkable opportunity to study high-energy physics
 - search for new physics & probe the Higgs sector
 - precision measurements using "standard candles"
- ⇒ high-precision predictions essential!
- ➤ Antenna Subtraction @ NNLO: pp \rightarrow "colour neutral" + 0, 1, 2 jets
 - * reduced uncertainties & often resolves tension to data
 - * next frontier: $2 \rightarrow 3$ processes
- ➤ Antenna Subtraction @ NLO EW: (→ × 2 less terms than with dipoles)
 - * promising first step towards NNLO mixed QCD—EW subtraction
- ightharpoonup exploration of the N³LO frontier: pp ightharpoonup "colour neutral"
 - ❖ Projection-to-Born ≃ Antennae
- precision phenomenology using these calculations only started!

BACKUP.

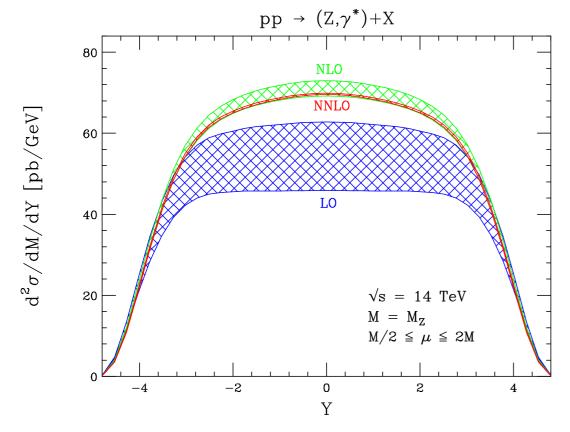
PREDICTIONS @ LHC



➤ Jets, substructure, res.

WHY HIGHER ORDERS?

- high-precision mandatory
 - \hookrightarrow processes with large K-factors (H)
 - \hookrightarrow "standard candles" (jets, V, t, ...)
- reduction of scale uncertainties
 - \hookrightarrow variation of $\mu_{
 m R}$ & $\mu_{
 m F}$

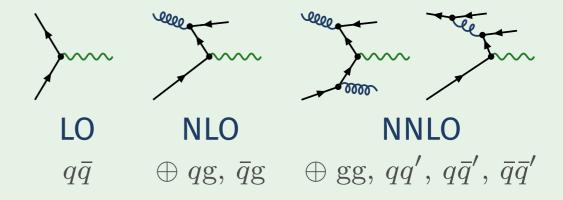


[Anastasiou, Dixon, Melnikov, Petriello '04]

Jet clustering

better modelling of jet algorithm between theory & experiment

Initial-state radiation



- opening up of all channels
- ightharpoonup more complicated $p_{
 m T}$ recoil

SUBTRACTION METHODS — CANCEL ∞'S

➤ Remarkable progress in the development of methods to perform NNLO computations!

(not an exhaustive list)	local subtraction	analytic	pp collisions	final-state jet(s)
Antenna	(local after rot ⁿ)	✓	✓	✓
CoLorFul	✓	✓	×	√
$q_{ m T}$ -Subtr.	×	✓	✓	(only t)
STRIPPER / nested soft-coll.	√	X / √	✓	✓
N-jettiness	×	√	√	$(\leq 1 \text{ jet so far})$

Projection-to-Born, Local Analytic Sectors, Geometric, ...

^{*} more painful with massless particles

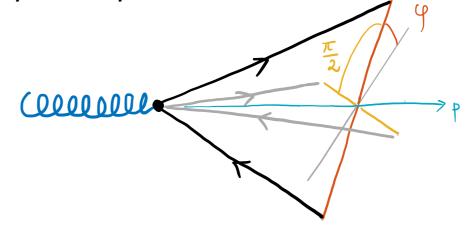
WHAT ABOUT ANGULAR TERMS?!

- ▶ Antenna subtraction: $X_n^l |\mathcal{A}_m|^2 \leftrightarrow \text{spin averaged!}$
- angular terms in gluon splittings:

$$P_{g \to q\bar{q}} = \frac{2}{s_{ij}} \left[-g^{\mu\nu} + 4z(1-z) \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^{2}} \right]$$

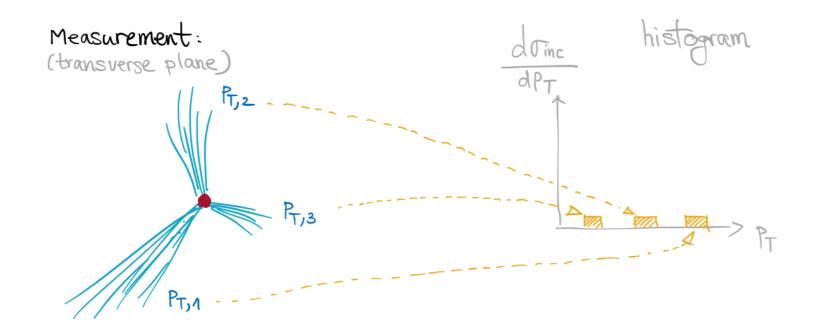
- → subtraction non-local in these limits!
- \hookrightarrow vanish upon azimuthal-angle (φ) average (\Rightarrow do not enter \mathcal{X})
- sol. 1: supplement angular terms in the subtraction
- sol. 2: exploit φ dependence & average in the phase space

$$egin{aligned} \mathcal{A}_{\mu}^{*} & rac{k_{\perp}^{\mu} k_{\perp}^{
u}}{k_{\perp}^{2}} \; \mathcal{A}_{
u} \; \sim \; \cos(2arphi + arphi_{0}) \ & \Rightarrow \; \operatorname{\mathsf{add}} \; arphi \; \; & \; (arphi + \pi/2)! \end{aligned}$$



$$ec{r} \longrightarrow \mathsf{PS}_{\mathsf{gen.}} \longrightarrow \left[egin{array}{ll} \{p_i, & p_j, & \ldots\} \\ \{p_i', & p_j', & \ldots\} \end{array} \right] \xrightarrow{(i \parallel j)} \left[egin{array}{ll} \{p_i^{oldsymbol{arphi}}, & p_j^{oldsymbol{arphi}}, & \ldots\} \\ \{p_i^{oldsymbol{arphi}+\pi/2}, & p_j^{oldsymbol{arphi}+\pi/2}, & p_j^{oldsymbol{arphi}}, & \ldots\} \end{array} \right]$$

INCLUSIVE JET PRODUCTION

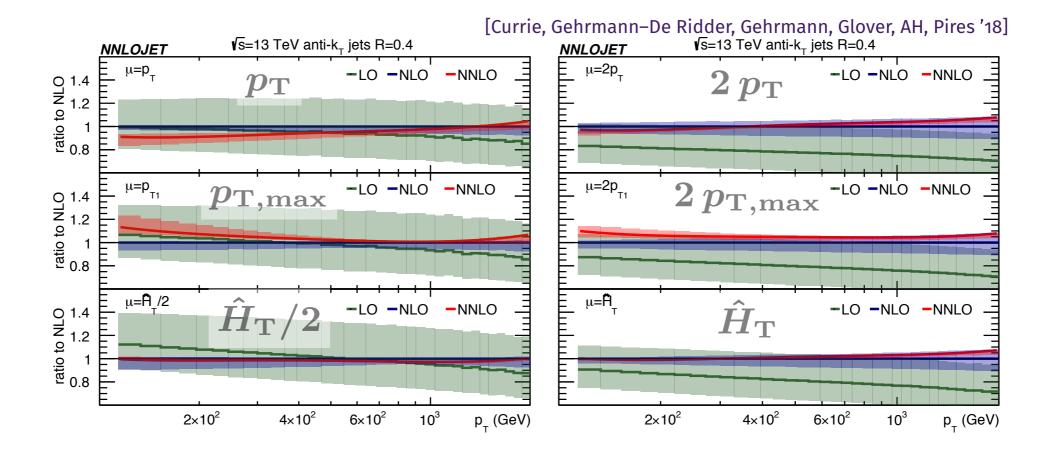


$$\left\{ egin{array}{ll} n \ {
m reconstructed jets} \ {
m in the event} \end{array}
ight\} \quad \longleftrightarrow \quad \left\{ egin{array}{ll} n \ {
m binnings to} \ {
m the histogram} \end{array}
ight\} \quad \Rightarrow \quad \sum_{
m bins} rac{{
m d}\sigma_{
m inc}}{{
m d}p_{
m T}}
eq \sigma_{
m tot}$$

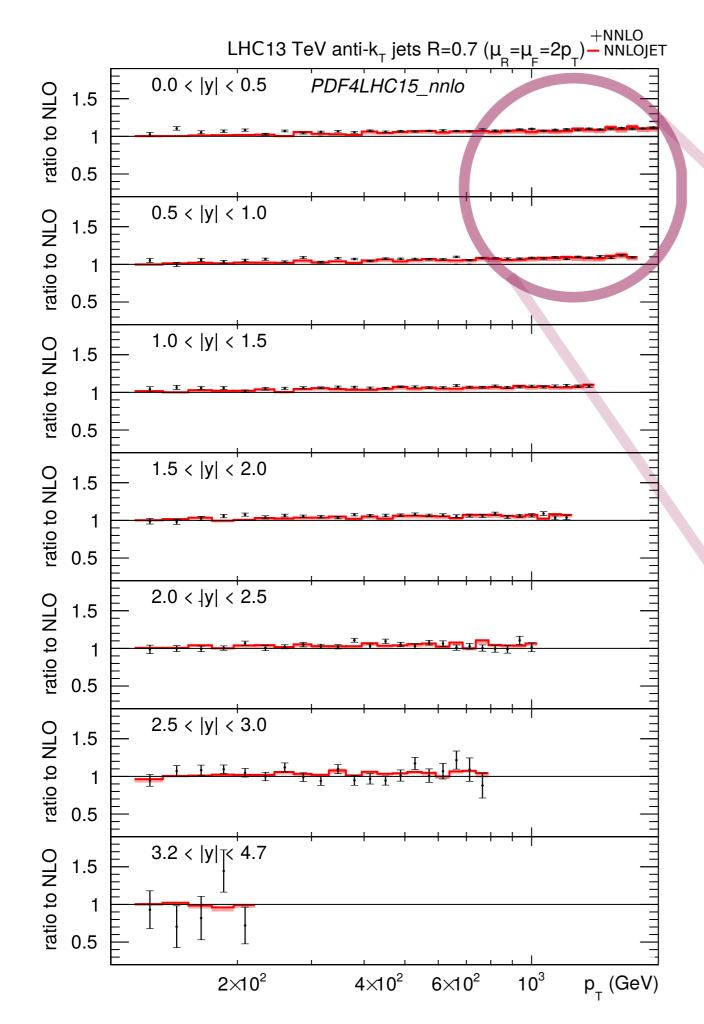
scale choices binning of individual jets vs. events

- "global" scales (event): $p_{\mathrm{T,max}}$, $\langle p_{\mathrm{T}} \rangle$, ...
- "local" scales (jet): p_T , ...

INCLUSIVE JET PRODUCTION — SCALE CHOICES (R=0.4)

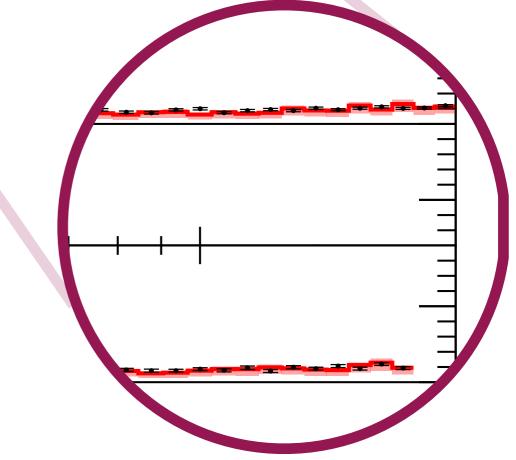


- ▶ most common choice: $\mu = p_{\rm T}$ & $\mu = p_{\rm T,max}$
- ▶ harder scales preferred: $\mu = 2 p_{\rm T} \, \& \, \mu = \hat{H}_{\rm T}$
 - \hookrightarrow show good properties
- origin: infrared sensitivity of the inclusive-jet observable
 - \hookrightarrow driven by 2nd leading jet distribution $p_{\mathrm{T}}^{j_2}$ (very small @ NLO)
 - \hookrightarrow mismatch between real & virtual corrections (alleviated with larger R)

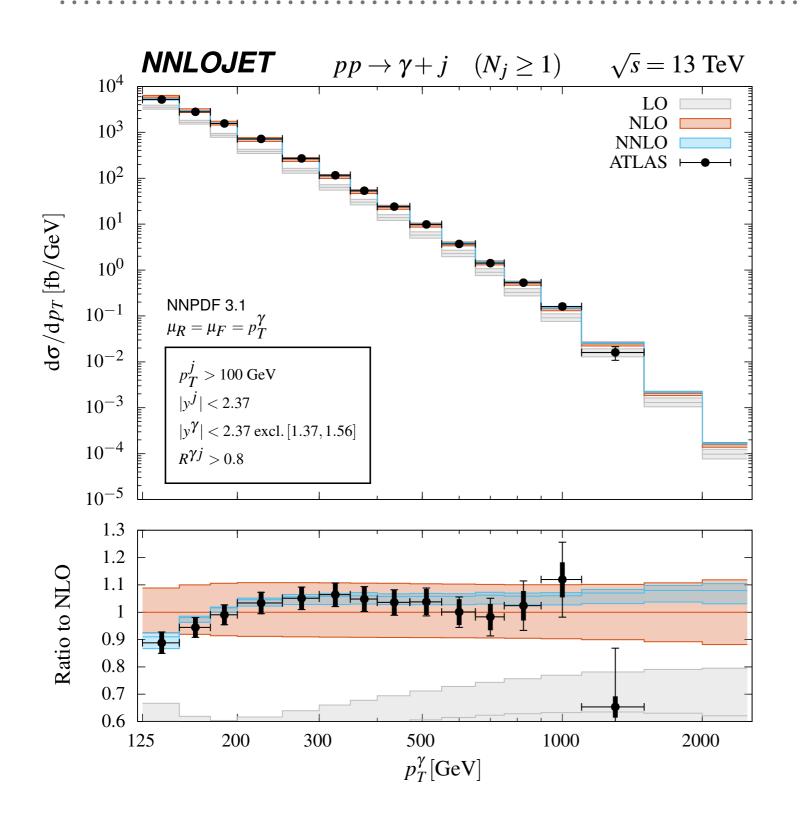


Two Calculations!

- NNLOJET [Currie, Glover, Pires '16]
- STRIPPER [Czakon, van Hameren, Mitov, Poncelet '19]
 - excellent agreement
 - sub-leading colour negligible (missing in NNLOJET)



PHOTON + JET @ 13 TEV



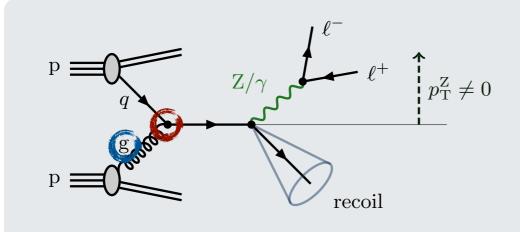
[Chen, Gehrmann, Glover, Höfer, AH '19]

hybrid isolation

- **NLO** (→ 1)
 - ightharpoonup +40% corrections
 - \blacktriangleright ±10% uncertainties
- NNLO
 - $ightharpoonup \sim 5\%$ corrections
 - shape distortions
 - $ightharpoonup \lesssim 5\%$ uncertainties
 - previous NNLO calculation

 au_N [Campbell, Ellis, Williams '17] (dynamical cone isol.)

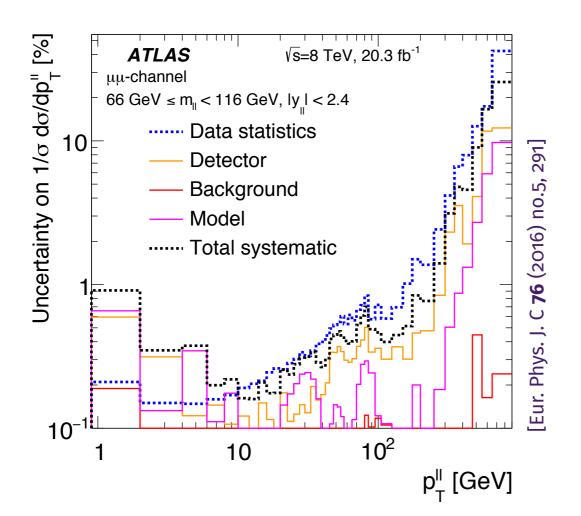
TOWARDS PER-CENT PHENOMENOLOGY



$$p p \rightarrow Z/\gamma^* + X \rightarrow \ell^- \ell^+ + X$$

- ► large cross section
- clean leptonic signature

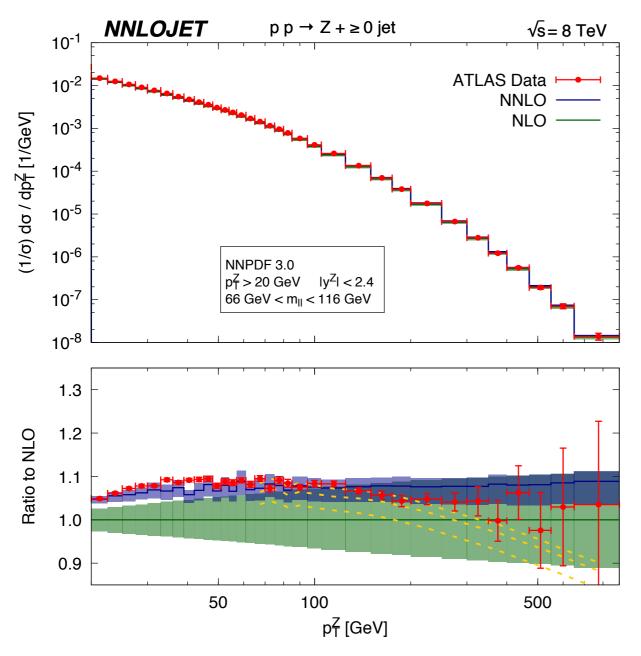
 $m recoil
ightarrow sensitivity to lpha_{
m s}$ gluon PDF



- ► only reconstruct ℓ^+ , $\ell^ \sim$ sub-% accuracy!
- ► important constraints in PDF fits [Boughezal et al. '17]
- probe various theory aspects:

very low p_T non-pert. effects low p_T resummation interm. p_T fixed order high p_T EW Sudakov logs

INCLUSIVE PT SPECTRUM



[Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan '16]

$$\frac{1}{\sigma} \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{Z}}}$$

► removes luminosity error (~ 3%)

undershoots data by 5–10%

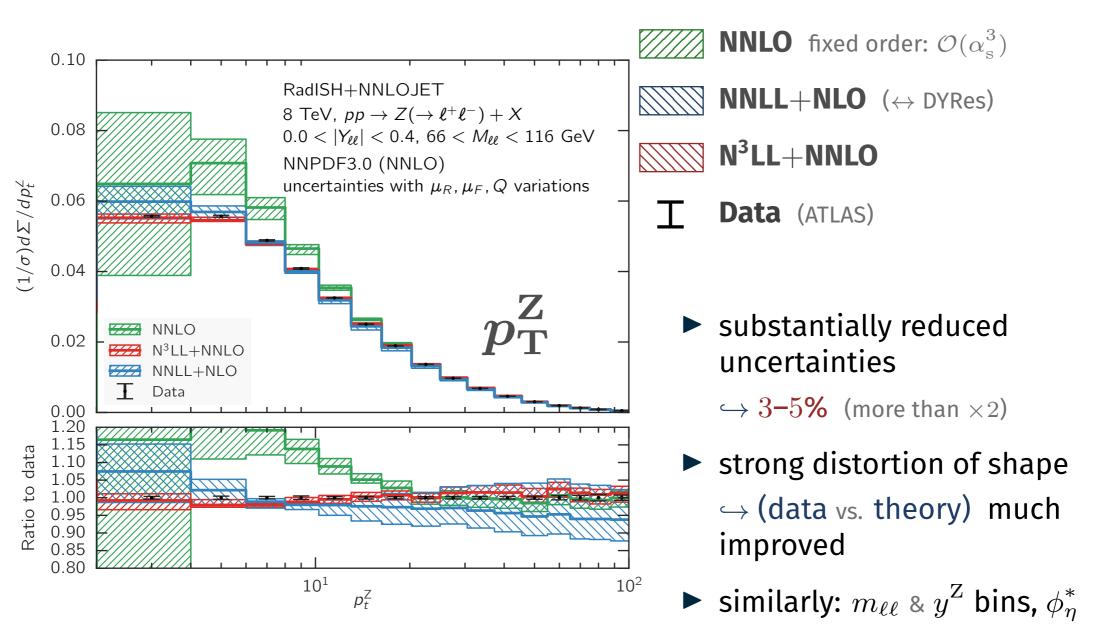
- NNLO

significant improvement in Data vs. Theory comparison

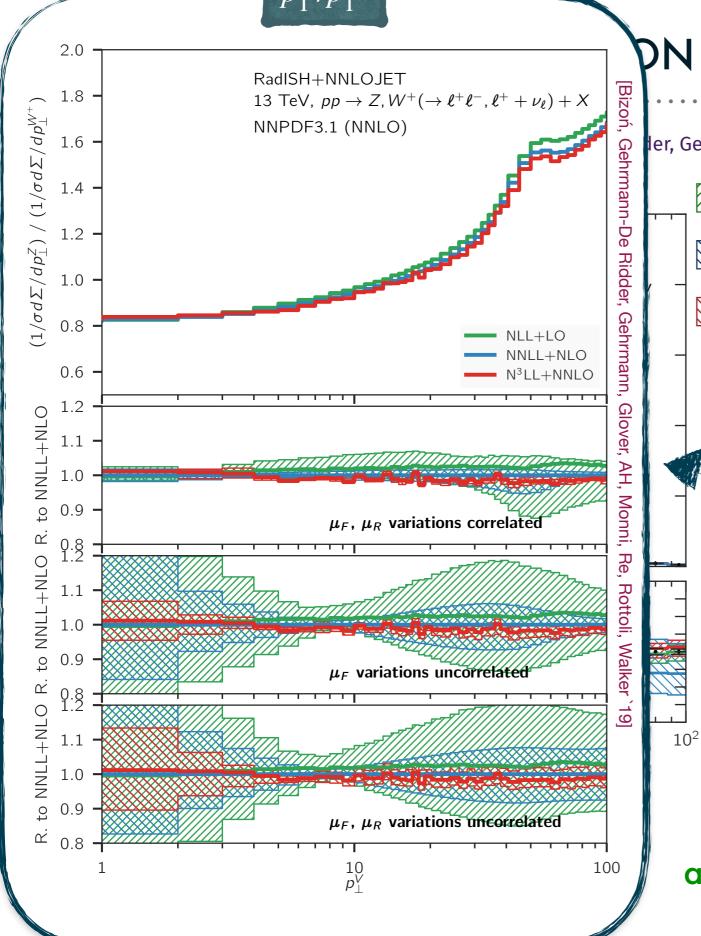
- + EW corrections: - - [Denner, Dittmaier, Kasprzik, Mück '11]
- \Rightarrow large impact in the high- $p_{\rm T}$ tail $\sim -20\%$ for $p_{\rm T}^{\rm Z} \sim 900~{
 m GeV}$ (Sudakov logatithms)

FIXED ORDER + RESUMMATION — NNLO + N3LL

[Bizoń, Chen, Gehrmann-De Ridder, Gehrmann, Glover, AH, Monni, Re, Rottoli, Torrielli '18]



also: $p_{
m T}^{
m W}$ & $p_{
m T}^{
m W}/p_{
m T}^{
m Z}$ (for $M_{
m W}$)



DN — NNLO + N3LL

ler, Gehrmann, Glover, AH, Monni, Re, Rottoli, Torrielli '18]

NNLO fixed order: $\mathcal{O}(\alpha_{\mathrm{s}}^3)$

 $NNLL+NLO \ (\leftrightarrow DYRes)$

N³LL+NNLO

Data (ATLAS)

- substantially reduced uncertainties
- ightharpoonup similarly: $m_{\ell\ell} \ \& \ y^{
 m Z}$ bins, ϕ_η^*

also: $p_{
m T}^{
m W}$ & $p_{
m T}^{
m W}/p_{
m T}^{
m Z}$ (for $M_{
m W}$)

DIS₁ @ N³LO using Projection-to-Born

DIS 2 jet

[Currie, Gehrmann, Niehues '16]
[Currie, Gehrmann, AH, Niehues '17]

CC: [Niehues, Walker '18]

Projection-to-Born

[Cacciari, et al. '15]

DIS structure function

[Moch, Vermaseren, Vogt '05]

DIS fully differential

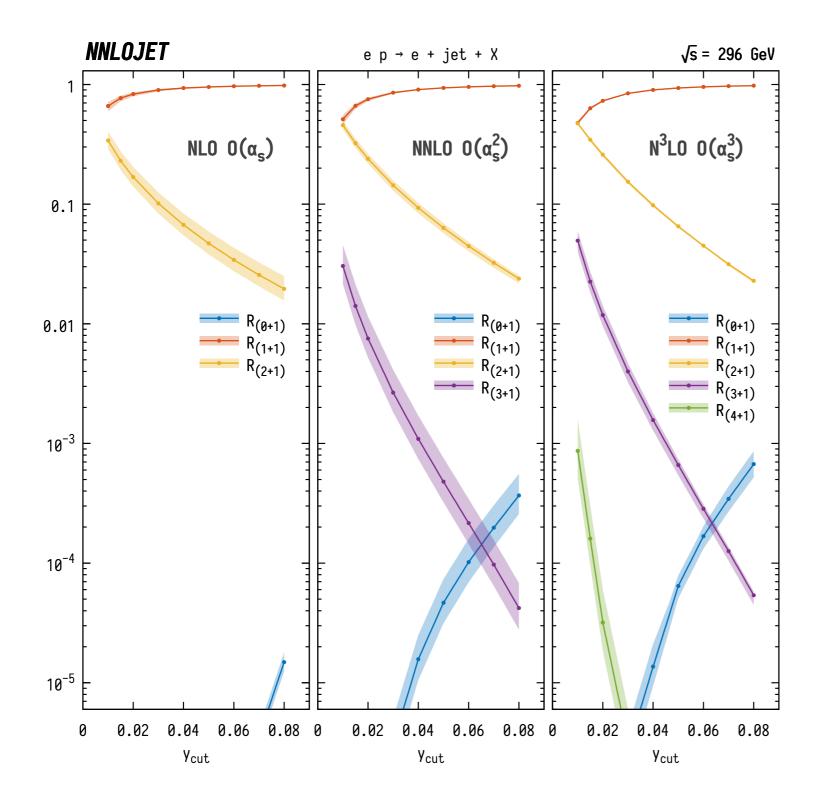
 \bigcirc N³LO

[Currie, Gehrmann, Glover, AH, Niehues, Vogt. '18] **CC:** [Gehrmann, Glover, AH, Niehues, Walker, Vogt '18]

* Born variables: (x, Q^2)

JET RATES (NEUTRAL-CURRENT DIS1)

[Currie, Gehrmann, Glover, AH, Niehues, Vogt. '18]



Jet rates:

$$R_{(n+1)} = N_{(n+1)}/N_{\text{tot}}$$

JADE algorithm

 \hookrightarrow cluster partons if:

$$\frac{2E_i E_j (1 - \cos \theta_{ij})}{W^2} < y_{\text{cut}}$$

HIGGS @ N³LO USING PROJECTION-TO-BORN ACCEPTANCES

[Chen, Dulat, Gehrmann, Glover, AH, Mistlberger, Pelloni (to appear)]

