NikThef

GROUPMEETING

Rasa Muller

NikThef

"Well, here at last, dear friends, on the shores of the Sea comes the end of our fellowship in Middle-earth. Go in Peace! I will not say: do not weep; for not all tears are an evil."
middleear hquotations | tumblr

THANKS BRIAN!

TRY NEW SETUP

Week 1: regular groupmeeting
Week 2: paper meeting
Week 3: regular groupmeeting
Week 4: junior meeting

TRY NEW SETUP

Week 1: regular groupmeeting
Week 2: paper meeting
Week 3: regular groupmeeting
Week 4: junior meeting

BND

- Quantum field theory
- Electroweak theory
- Graviatational waves
- Electroweak experiments
- Tracking
- Flavour physics
- Long lived particles
- Cosmology
- Neutrino physics

CATALOG SEARCHES

1) What sources emit High Energy neutrinos?

What other signals do they emit?
2) Which experiments/telescopes detect all these signals?
3) How is this info stored in catalogs?
4) What are the most relevant catalogs? How complete are they (upto which redshift)?

CATALOG SEARCHES

Multimessenger astronomy:

The exploration of the Universe through combining information from a multitude of cosmic messengers
I. cosmic rays
II. gravitational waves
III. electromagnetic radiation
IV. neutrinos

Figure 2. Scenarios for sources of neutrinos, with varying degrees of jet formation.

1) What sources emit High Energy neutrinos?

What other signals do they emit?

CATALOG SEARCHES

I. Cosmic rays
\rightarrow Detector for atm particle showers + accompanying fluorescence and Cherenkov radiation
PierreAugier
II. Gravitational waves

LIGO/VIRGO and others

III. Electromagnetic radiation

$\rightarrow \gamma$-ray, X-ray unable to cross Earth's atmosphere thus primarily observed using satellites

- Fermi LAT
- Imaging Atmospheric Cherenkov

Telescope (IACT) systems
i. H.E.S.S.
ii. FACT
iii. VERI-TAS
iv. GFU
2) Which experiments/telescopes detect all
these signals?
Nik/hef

CATALOG SEARCHES

1) What sources emit High Energy neutrinos? What other signals do they emit?
2) Which experiments/telescopes detect all these signals?
3) How is this info stored in catalogs?
4) What are the most relevant catalogs? How complete are they (upto which redshift)?

CATALOG SEARCHES WITH KM3NET

PHYSICAL REVIEW D 96, 023003 (2017)

Prospects of establishing the origin of cosmic neutrinos using source catalogs

I. Bartos, ${ }^{1,{ }^{*}}$ M. Ahrens, ${ }^{2}$ C. Finley, ${ }^{2}$ and S. Márka ${ }^{1}$
${ }^{1}$ Department of Physics, Columbia University, New York, New York 10027, USA
${ }^{2}$ Oskar Klein Centre \& Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden (Received 26 November 2016; published 14 July 2017)
The cosmic neutrino flux recently discovered by IceCube will be instrumental in probing the highestenergy astrophysical processes. Nevertheless, the origin of these neutrinos is still unknown. While it would be more straightforward to identify a transient, or galactic source, class, finding a population of distant, continuous sources is challenging. We introduce a source-type classification technique that incorporates all available information from catalogs of source candidates. We establish the origin of cosmic neutrinos, even for the most challen AGN, or galaxy clusters-if neutrino track directions can be recons show that the source catalog out to $\sim 100 \mathrm{Mpc}$ can be sufficie allowing for more straightforward source surveys. We also characte angular resolution, size, and veto power in order to understand the

DOI: 10.1103/PhysRevD. 96.023003

FIG. 1. Fraction of astrophysical neutrinos detected from sources within a luminosity distance, as a function of the luminosity distance, for different cosmic evolution models (see legend and Sec. IIE). For comparison, the top axis shows the corresponding redshift.

FIG. 2. Simulated distribution of neutrino flux \mathcal{F}_{ν} corresponding to signal and background neutrinos. This example shows the densities for $\psi=0.3^{\circ}, d_{\mathrm{t}}=200 \mathrm{Mpc}$, for starburst galaxies. The dashed red line shows a power-law fit on the background density's tail. The black solid lines show power-law slopes with $\mathcal{F}_{\nu}{ }^{-3 / 2}$ and $\mathcal{F}_{\nu}{ }^{-5 / 2}$, the theoretical expectations for the signal and neutrino models, respectively, for the case in which the expected number of sources within d_{th} coincident with a neutrino is $\ll 1$.
n
.
 Nik【hef

