

Testbeam and gas issues

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting August 26, 2019

Preparations for Bonn testbeam

- Testbox sandwiched between 2 x 3 Mimosa planes
- Mechanically very well coupled
- Testbox position relative to the telescope has 3 degrees of freedom
 - Horizontally by remote control
 - ~ 1 mm accuracy
 - Manual adjustment vertically
 - ~ 10 μm accuracy
 - Manual rotation around vertical axis by goniometer
 - +/- 14 deg
 - ~ 0.1 deg accuracy

Preparations for Bonn testbeam

- Most mechanics finished
 - Mimosa rails and pedestal still to be done
- Expected to be completed beginning of September

4

Status ELSA still unclear

Probably no testbeam for us this year

■ Alternative Desy TB24/1

DESY Test Beam Schedule 2019 - Version 8 02/08/2019

Ralf Diener, Norbert Meyners, Marcel Stanitzki - DESY Test Beam Coordinators

	Week		TB21		TB22		TB24/1		TB24		
				DATURA		DURANTA	PCMAG	Telescope in PCMAG		AZALEA	
2-Sep-19	36		CMS-Pixel-Phase2		Setup Time						
9-Sep-19	37		CMS-Pixel-Phase2	х	ATLAS-ITk-Strips	х			CEPC-STCF	х	
16-Sep-19	38		AFP-TOF	х	Mu3e	х			CEPC-STCF	х	-
23-Sep-19	39		CLIC PIXEL	х	ATLAS-ITk-Pixel	х	TPEX		тотем	х	
30-Sep-19	40		X-Ray-Crystal-Rad	х	ATLAS-ITk-Pixel	х	ТРЕХ				Ż
7-Oct-19	41										Q
14-Oct-19	42		BL4S	х	SHiP-SplitCAL				ATLAS-ITk-TJCMOS		
21-Oct-19	43		BL4S	х	SHiP-SciFi						
28-Oct-19	44		CMS-Pixel-Phase2	х	SHiP-SciFi				SHiP-Emulsion+Ship-SBT		B
4-Nov-19	45		CMS-Pixel-Phase2	х	ATLAS-HGTD	х			LHCb-ECAL	х	-
11-Nov-19	46		FCAL	х	ATLAS-HGTD	х			LHCb-ECAL	х	
18-Nov-19	47				Setup Time						
25-Nov-19	48		CMS Outer Tracker	х	ATLAS-ITk-Strips	х			ATLAS-ITk-Pixel	х	
2-Dec-19	49		CMS Outer Tracker	х	ATLAS-ITk-Strips	х			ATLAS-ITk-Pixel	х	
9-Dec-19	50		ELIOT		CMS-Pixel-Phase2	х			Mu3e	х	
16-Dec-19	51	Beam till 20/12 0800	ELIOT		CMS-Pixel-Phase2	х			CLIC PIXEL	х	
23-Dec-19	52		Shutdown								
30-Dec-19	1		Shutuowii								

Options

Integration in LCTPC setup

Includes magnetic field

Requires NEW testbox

- Design
- **Fabrication**
- Testing (laser)
- 0.5 to 1 year needed to get this operational

Alternative: run parasitically outside the LCTPC setup

- Using the testbeam setup prepared for ELSA
- Probably not much work
- We would need a Desy movable table to get it in place

7

Unexpected transport behavior using the T2K mixture

- Vdrift always lower than expected
 - Suspects on CF4 bottle

90 bar left

Single electron efficiency with 55Fe source

- Source Fe-55-04
 - 5.6 keV gamma
- Expecting with Ar a peak of ~220 e- and a second peak at ~ 110 e- (escape peak)
- Test repeated with T2K made from the new CF4 bottle

- Cluster tracing by finding hits within -40 to 400 ns window from 1st hit
- Cluster rate 25 100 Hz depending on chip position
 - => Igrid ~ 10 pA/chip
 - => hardly voltage drop across the protection layer

~ 10V higher Vgrid
needed to get the same
number of hits per cluster

Hits per cluster under 55Fe irradiation

Gas gain old vs new CF4

For the new CF4 we need 10 V higher Vgrid to get the same ToT i.e. the same gas gain

Secondary emission

- For the new CF4 we win on the secondary emission
- $\bullet 40 50\%$ less at the same ToT
- Second states a state of the state of the
- At 40 % secondary emission we have
 - 79% efficiency for the old CF4 mixture
 - 87% efficiency for the new CF4 mixture

Secondary emission fraction vs mean ToT for T2K gas From 55Fe irradiation Data 23-30 - 4 - 2019

From 55Fe irradiation Data 21-8-2019 From 55Fe with new CF4

Deduced from 18% iC4H10 measurements: Single electron efficiency vs mean ToT

The acceptable working range (up to 50% secondary emission hits) has been significantly increased for the new CF4

Diagram Nikhef gas filling system

Discussion

- Old CF4 bottle might be polluted with argon in the early days of the system (2010)
- CF4 bottle pressure 17 bar
- Filling pressure 21 bar
 - => in case of a leaking valve the bottle mixture may flow backwards into the CF4 bottle

For the new bottle this is excluded

- Backflow valve installed since then
- CF4 bottle pressure >> filling pressure

■ We will not soon empty the CF4 bottle as long as it is only used for T2K mixture

Bottle content sufficient for ~ 1500 T2K fillings

Reference

 $J(nA/cm^2)$

- During testbeam we may easily have **30 – 40 V potential drop** across protection layer
- we need an extended working range

Comparison of 3 different gases for chip 0 at mean ToT = 640 - 730 ns

Comparison of 3 different gases for chip 0 at mean ToT = 1000 - 1200 ns

Comparison of 3 different gases for chip 0 at mean ToT = 1525 – 1600 ns

=> single electron efficiency 95 %

