Understanding the Surface Detector signal in the upgraded Pierre Auger Observatory

Nik hef

Radboud

Niimegen

Mart Pothast NNV 2019

Artwork by Sandbox Studio, Chicago with Pedro Rivas

Understanding the Surface Detector signal in the upgraded Pierre Auger Observatory

Mart Pothast NNV 2019 Scintillator Surface Detector

Nik hef

Nijmegen

Pierre Auger Observatory O

Google

Lunteren

Fluorescence Detector

We measure extensive air showers from ultra high energy cosmic rays

Some results from the Pierre Auger Observatory

Spectrum

Features with high precision: ankle, cutoff

Composition

Heavier at higher energy

Amazing! But...

Photo-disintegration scenario *Cutoff due to propagation effects* Maximum rigidity scenario Cutoff due to power of sources

Need to know composition at highest energy

Time to upgrade!

Fluorescence Detector ~ 10% duty cycle

Surface Detector ~ 100%

Number of muons is a good mass discriminator

Other upgrades also planned: UMD, **Radio**, extend fluorescence cycle, electronics

NEW: Scintillator Surface Detector OLD: Water Cherenkov Detector (still important!)

How? -> Add a new detector

By the way

SSD only works for vertical showers

For inclined showers we will have radio

Scintillator Surface Detector (SSD)

SSD has a different response to the particle content than the Water Cherenkov Detector (WCD):

Can use this difference to resolve the signal from muons and from electromagnetic particles. Always need good old WCD.

Matrix inversion

$$\begin{pmatrix} S_{\text{SSD}} \\ S_{\text{WCD}} \end{pmatrix} = \begin{pmatrix} \lambda \,\mathcal{A}_{\text{SSD}} & \mathcal{A}_{\text{SSD}} \\ \beta \,\mathcal{A}_{\text{WCD}} & \mathcal{A}_{\text{WCD}} \end{pmatrix} \begin{pmatrix} \mathcal{F}_{\text{em}} \\ \mathcal{F}_{\mu} \end{pmatrix}$$

Shower universality

If we apply our *deep neural matrix inversion universality* algorithm on the raw signal, do we understand why it does (not) work?

-> Need to understand what the signal looks like

-> Simulate the signal for 1 particle, keep it simple (stupid)

What does the signal look like for 1 particle?

What does the signal look like for 1 particle?

But need to implement the energy spectrum

Electrons have on average much lower energy than muons

Injecting particles with the spectrum from an EAS:

WCD [VEM] SSD [MIP]

1.75

2.00

SSD counts particles, irrespective of energy. There are more electrons than muons so the **SSD signal is dominated by electrons.**

WCD is sensitive to high energy particles, these are mostly muons. So the WCD is on average more sensitive (*than the SSD*) to muons.

In progress:

Can we see that the response of the WCD/SSD is different in data?

Todo/in progress:

How can a *deep neural matrix inversion universality* algorithm distinguish between signal from muons and electromagnetic particles, with/without SSD?

Muons are early, electrons are late

Thank you!

Backup

Results from the Pierre Auger Observatory

A.Yushkov [Pierre Auger Coll.], PoS(ICRC2019) 482.

The Pierre Auger Coll., Science 357 (2017), 1266.