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• Why 𝜏 → 3𝜇 ?

‒ LFV decay

‒ Rare in SM with neutrino mixing
(BR < 10-14)

‒ Predicted by some SUSY model
(BR ~ 10-10 - 10-8)

• How?

‒ LHC produces lots of D mesons

‒ BR Ds
± → 𝜏𝜈 ~5%

‒ Measure Ds
± production rate and 

𝑁𝜏→3𝜇 originating from Ds
±

→ compute BR 𝜏 → 3𝜇

Motivation
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• Channel

‒ 𝐷𝑠
± → 𝜙𝜋 → 𝜇𝜇𝜋

‒ Doublet(𝜇𝜇) and triplet(𝜇𝜇𝜋) built

• Goal 1: Non-prompt fraction measurement

‒ 𝑐𝑐 → 𝐷𝑠
±

prompt production

‒ 𝑏𝑏 → 𝐷𝑠
±

non-prompt production

through B-mesons, more detached vertex

• Goal 2: Cross section measurement

‒ Extract signal and efficiencies

‒ Differential cross section in pT

• Goal 3: Search for 𝜏 → 𝜇𝜇𝜇 rare decay

‒ Take 𝐷𝑠
± → 𝜙𝜋 as normalization

‒ Acquire Neural Networks approach

Analysis Goal
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𝑏𝑏 → 𝐷𝑠
±

𝑐𝑐 → 𝐷𝑠
±

𝐷𝑠
± → 𝜏 𝜇𝜇𝜇 + 𝜈𝜏

Normalization
XS measurement

LFV decay
𝜏 → 𝜇𝜇𝜇 search



• Strategy for 𝐷𝑠
± → 𝜙𝜋 → 𝜇𝜇𝜋

‒ Basic selection

‒ Build analytic fit models

‒ Extract parameters by fitting to data

• Key selection
‒ Doublet(𝜙) mass

‒ Detached secondary vertex

‒ 𝑝𝑇
𝜇
> 4 GeV and 𝑝𝑇

𝜋 > 1 GeV

‒ One candidate per event

• Triggers
‒ Dimuon triggers

‒ Lowest pT trigger is 2mu6
(2 muons with pT > 6GeV )

‒ Run out of stats below 12 GeV
Trigger is the main limitation

Selection
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Side band used for 
background study



• Model components

‒ Voigtian peaks verified in MC

‒ Quadratic exponential verified in
𝜙 mass side band

• Combined model

‒ 𝑁𝐷𝑠
± Voigtian + 𝑁𝐷± Voigtian +

𝑁𝑏𝑘𝑔Exp(𝑐2𝑚
2 + 𝑐1𝑚)

• Result

‒ 𝑚𝐷𝑠
± and 𝑚𝐷± extracted roughly 

matches with PDG

‒ Full run-II N𝐷𝑠
± is 90k 

(post-selection)

Triplet Mass Fit
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• Analytic function fitted to bb/cc MC samples

• Template parameter extracted and fixed

Lifetime Templates
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bb → B + X1 → Ds + X2 → 𝜙𝜋 + X2

PDFnon-prompt = Exp1 ⊗ Exp2 ⊗ Gaussian ⊗ Erf
cc → Ds + X → 𝜙𝜋 + X

PDFprompt = Exp ⊗ Gaussian ⊗ Erf



• Signal extraction

‒ Slice the dataset per lifetime

‒ Extract number of signal in each slice

‒ Plot as a function of lifetime for signal shape

• Combined model

‒ 𝑁𝑠𝑖𝑔 𝑓 PDFNon−prompt + 𝑁𝑠𝑖𝑔 1 − 𝑓 PDFPrompt

‒ Individual PDF parameters set to extracted values

‒ Peak region and rising slope at low lifetime excluded
(vulnerable to mis-modelling)

• Result

‒ Number of signal matches (~90k)

‒ Directly at fit level
𝑓𝑁𝑃, 𝑓𝑖𝑡 = 14.6 ± 1.1 %

‒ With known selection efficiencies for prompt and non-
prompt processes, scaling back to production level
𝑓𝑁𝑃, 𝑝𝑟𝑜𝑑 = 17.2 ± 1.3 %

Lifetime Fit
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30 mass fits for signal extraction

Extracted 𝐷𝑠
± signal

Prompt

Non-prompt



𝑑𝜎Ds
𝑑𝑝T

=
N𝐷𝑠

±(extracted from fit)

𝐿𝑑𝑡 𝐵𝑅 𝐷𝑠 → 𝜙𝜋 → 𝜇𝜇𝜋 𝜖 𝐵𝑖𝑛𝑊𝑖𝑑𝑡ℎ(𝑝T)

Differential Cross Section
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• Ingredients

‒ Signal shape extracted by mass fit

‒ Efficiency obtained by simulation
(weighted with measured  𝑓𝑁𝑃 )

‒ Luminosity

‒ Branching ratio 

• Main limitation

‒ Trigger threshold

‒ Low efficiency for low pT

‒ Signal starts from around 12 GeV



• Same procedure done for 𝐷± and 𝐷𝑠
±

• Theory prediction from FONLL and GM-VFN included

• Run-II vs Run-I comparison

‒ Inclusive values obtained by integrating over pT

‒ For 𝐷𝑠
± : 𝜎inclusive

run−II = 1.6 ± 0.2 𝜎inclusive
run−I

‒ For 𝐷± : 𝜎inclusive
run−II = 1.9 ± 0.2 𝜎inclusive

run−I

Cross Section Result
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• Using Ds measurement as normalization

‒ BR 𝜏 → 𝜇𝜇𝜇 =
𝑁𝑠𝑖𝑔

𝜖×𝐴 𝑁𝐷𝑠×𝐵𝑅 𝐷𝑠→𝜏+𝑋

‒ Directly impacted by the precision of 𝜎𝐷𝑠
±

‒ Some systematic error can be cancelled

• Key variables:
‒ Lifetime

‒ Vertex distances (LXY, A0XY)

LFV Search in 𝜏 → 𝜇𝜇𝜇
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• Procedure

‒ Basic selection

‒ Build a neural network (NN) to 
distinguish signal from background

‒ Perform a cut on the NN score

‒ Fit on triplet mass to extract yield

• No significant signal?

‒ Calculate the upper limit of 
BR 𝜏 → 𝜇𝜇𝜇

• Current status

‒ optimizing NN and fit

‒ Aiming at few times 10-8

‒ Newest limit from CMS study with 
2016 dataset is 8.8 × 10-8

Neural Network Approach
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• Two parallel analysis on-going

• Measurement of 𝐷±/𝐷𝑠
±

‒ Preliminary values obtained

‒ Fine tuning on-going

‒ Target to publish in 1st quarter of 2020

• Search for 𝜏 → 𝜇𝜇𝜇

‒ Optimization still on-going

‒ Expect to be competitive with a limit at few times 10-8

‒ Target to publish late 2020

• B physics and low energy searches in ATLAS can be competitive

Summary 
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Back up



Feynmann diagram
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• Lepton mixing
‒𝜏 → 3𝜇 is allowed by the SM (with neutrino mixing)

‒Constraint to lepton mixing angle and neutrino mass ratio

• Constraint / rule out BSM theories

‒BR(𝜏 → 3𝜇)
Standard Model : < 10-14 (EPJC May 1999)
Minimal SUSY : 10-10 - 10-8 (arxiv: 0801.1826)
Current best measurement : 2.1 × 10-8 (arxiv: 1001.3221)

https://link.springer.com/article/10.1007/s100529901088
https://arxiv.org/pdf/0801.1826.pdf
https://arxiv.org/abs/1001.3221


• Definition in Athena standard tool

• Formula

‒ Lxy = 𝑟𝑆𝑉 − 𝑟𝑃𝑉 ∙ ෞ𝑝𝑇

‒ τ =
MLxy

pT

Lifetime Definition
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Trigger
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Signal model study
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Background model study
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• Ingredients

‒ For prompt events in MC:
1.25M events → 60k events 
Selection efficiency 𝛼 = 4.8%

‒ For non-prompt events in MC:
1.25M events → 47.8k events 
Selection efficiency 𝛽 = 3.8%

‒ In data: 
Measured non-prompt fraction is 𝑓

• Consider the non-prompt to prompt ratio

‒
0.17

𝛽
/
0.83

𝛼
=

𝑓

𝛽
/
1−𝑓

𝛼
=

𝛼𝑓

𝛽 1−𝑓
/1

• Formula

‒ Weight 
𝛼𝑓

𝛽 1−𝑓
needed for non-prompt MC samples

‒ 𝑓unfolded =
1

1+
𝛽 1−𝑓

𝛼𝑓

= 20%

Unfolding non-prompt fraction
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• Efficiency needed for cross-section calculation

• Distribution at different levels obtained 
(bb/cc samples mixed with non-prompt fraction of 20%)

Efficiency Study
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Evgen AOD DAOD Ntuple Plots&Fits
Filter

Reco

Derivation Base Tight



New calculation with unfolding
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AOD
(1M)

DAOD
(0.7M)

Ntuple
(0.5M)

NTuple
(0.05M)

Normal
Derivation Base Tight

Ntuple reco pT
Unfolding matrix

Base reco pT

Base truth pT

AOD truth pT

ϵDeriv+Base =
Base truth pT

AOD truth pT
ϵTight =

Ntuple reco pT

Base reco pT

𝜎 =
1

𝐿𝑢𝑚𝑖 × 𝐵𝑅
∗

1

ϵ3.5,3.5,0.7
∗

1

ϵDeriv+Base
∗ 𝑀unfold ∗

𝑁𝐷𝑠
ϵTight

reco

Unfolded Reco (Truth)Truth



Resolution and Unfolding
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• Ds Internal Note

• BPHY7 Derivation

• Twiki – MC information

• FONLL

• LHCb thesis

• Kohei data16

• 7TeV Run-I measurement paper

• 7TeV Run-I internal notes

• CMS newest result

Edwin Chow23
Links
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https://gitlab.cern.ch/atlas-physics-office/BPHY/ANA-BPHY-2018-10/ANA-BPHY-2018-10-INT1
https://gitlab.cern.ch/atlas/athena/blob/21.2/PhysicsAnalysis/DerivationFramework/DerivationFrameworkBPhys/share/BPHY7.py
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/BPhysicsRareDecaysLfv#MC_samples
http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html
https://inspirehep.net/record/1381388/files/CERN-THESIS-2015-021.pdf
https://indico.cern.ch/event/609980/contributions/2459166/attachments/1404137/2144670/Ds0131_2017.pdf
https://arxiv.org/pdf/1512.02913.pdf
https://cds.cern.ch/record/1693816/files/ATL-COM-PHYS-2014-275.pdf
https://cds.cern.ch/record/2668282/files/BPH-17-004-pas.pdf

