

Measurement of D^{\pm}/D_s^{\pm} differential production cross-section and search for LFV decays in $\tau \rightarrow \mu\mu\mu$

Edwin Chow, Marcus Morgenstern, Matteo Bedognetti, Olya Igonkina

1st November, 2019

Motivation

Nikhef

- Why $\tau \rightarrow 3\mu$?
 - LFV decay
 - Rare in SM with neutrino mixing (BR < 10⁻¹⁴)
 - Predicted by some SUSY model (BR ~ 10⁻¹⁰ - 10⁻⁸)
- How?
 - LHC produces lots of D mesons
 - $-BR(D_s^{\pm} \rightarrow \tau \nu) \sim 5\%$
 - Measure D_s^{\pm} production rate and $N_{\tau \to 3\mu}$ originating from D_s^{\pm} \rightarrow compute $BR(\tau \to 3\mu)$

Analysis Goal

- Channel
 - $D_s^{\pm} \to \phi \pi \to \mu \mu \pi$
 - Doublet($\mu\mu$) and triplet($\mu\mu\pi$) built
- Goal 1: Non-prompt fraction measurement
 - $cc \rightarrow D_s^{\pm}$ prompt production
 - $bb \rightarrow D_s^{\pm}$ non-prompt production through B-mesons, more detached vertex
- Goal 2: Cross section measurement
 - Extract signal and efficiencies
 - Differential cross section in p_{T}
- Goal 3: Search for $\tau \rightarrow \mu\mu\mu$ rare decay
 - Take $D_s^{\pm} \rightarrow \phi \pi$ as normalization
 - Acquire Neural Networks approach

Edwin Chow

Selection

- Strategy for $D_s^{\pm} \rightarrow \phi \pi \rightarrow \mu \mu \pi$
 - Basic selection
 - Build analytic fit models
 - Extract parameters by fitting to data
- Key selection
 - Doublet(ϕ) mass
 - Detached secondary vertex
 - $p_T^{\mu} > 4 \text{ GeV}$ and $p_T^{\pi} > 1 \text{ GeV}$
 - One candidate per event
- Triggers
 - Dimuon triggers
 - Lowest p_T trigger is 2mu6 (2 muons with $p_T > 6GeV$)
 - Run out of stats below 12 GeV
 Trigger is the main limitation

2017

HLT_mu11_mu6_bDimu2700	BLS
HLT_mu11_mu6_bTau	BLS
HLT_mu11_mu6_bPhi	BLS
HLT_mu20_mu6noL1_bTau	BLS
2018	
HLT_2mu6_bPhi_L1LFV-MU6	BLS
HLT_mu11_mu6_bTau	BLS
HLT_mu11_mu6_bPhi	BLS
HLT_mu20_mu6noL1_bTau	BLS

Triplet Mass Fit

- Model components
 - Voigtian peaks verified in MC
 - Quadratic exponential verified in ϕ mass side band
- Combined model
 - $-N_{D_s^{\pm}} \text{Voigtian} + N_{D^{\pm}} \text{Voigtian} + N_{bkg} \text{Exp}(c_2 m^2 + c_1 m)$
- Result
 - $m_{D_{s}^{\pm}}$ and $m_{D^{\pm}}$ extracted roughly matches with PDG
 - Full run-II $N_{D_s^{\pm}}$ is 90k (post-selection)

Edwin Chow

Lifetime Templates

- Analytic function fitted to bb/cc MC samples
- Template parameter extracted and fixed

Lifetime Fit

- Signal extraction
 - Slice the dataset per lifetime
 - Extract number of signal in each slice
 - Plot as a function of lifetime for signal shape
- Combined model
 - $N_{sig} f PDF_{Non-prompt} + N_{sig} (1 f) PDF_{Prompt}$
 - Individual PDF parameters set to extracted values
 - Peak region and rising slope at low lifetime excluded (vulnerable to mis-modelling)
- Result
 - Number of signal matches (~90k)
 - Directly at fit level $f_{NP, fit} = 14.6 \pm 1.1 \%$
 - With known selection efficiencies for prompt and nonprompt processes, scaling back to production level $f_{NP, prod} = 17.2 \pm 1.3 \%$

30 mass fits for signal extraction

Differential Cross Section

- Ingredients
 - Signal shape extracted by mass fit
 - Efficiency obtained by simulation (weighted with measured f_{NP})
 - Luminosity
 - Branching ratio
- Main limitation
 - Trigger threshold
 - Low efficiency for low p_T
 - Signal starts from around 12 GeV

Cross Section Result

- Same procedure done for D^{\pm} and D_s^{\pm}
- Theory prediction from FONLL and GM-VFN included
- Run-II vs Run-I comparison
 - Inclusive values obtained by integrating over \boldsymbol{p}_{T}
 - For D_s^{\pm} : $\sigma_{\text{inclusive}}^{\text{run-II}} = 1.6 \pm 0.2 \sigma_{\text{inclusive}}^{\text{run-I}}$
 - For D^{\pm} : $\sigma_{\text{inclusive}}^{\text{run-II}} = 1.9 \pm 0.2 \sigma_{\text{inclusive}}^{\text{run-I}}$

LFV Search in $\tau \rightarrow \mu \mu \mu$

Using D_s measurement as normalization

$$- BR(\tau \to \mu \mu \mu) = \frac{N_{sig}}{(\epsilon \times A) N_{D_s} \times BR(D_s \to \tau + X)}$$

- Directly impacted by the precision of $\sigma_{D_s^\pm}$
- Some systematic error can be cancelled
- Key variables:
 - Lifetime
 - Vertex distances (L_{XY}, A_{OXY})

raction of events

Neural Network Approach

- Procedure
 - Basic selection
 - Build a neural network (NN) to distinguish signal from background
 - Perform a cut on the NN score
 - Fit on triplet mass to extract yield
- No significant signal?
 - Calculate the upper limit of $BR(\tau \rightarrow \mu\mu\mu)$
- Current status
 - optimizing NN and fit
 - Aiming at few times 10⁻⁸
 - Newest limit from CMS study with 2016 dataset is 8.8×10^{-8}

Summary

- Two parallel analysis on-going
- Measurement of D^{\pm}/D_s^{\pm}
 - Preliminary values obtained
 - Fine tuning on-going
 - Target to publish in 1st quarter of 2020
- Search for $\tau \rightarrow \mu \mu \mu$
 - Optimization still on-going
 - Expect to be competitive with a limit at few times 10⁻⁸
 - Target to publish late 2020
- B physics and low energy searches in ATLAS can be competitive

Back up

Feynmann diagram

- Lepton mixing
 - $- au
 ightarrow 3\mu$ is allowed by the SM (with neutrino mixing)
 - -Constraint to lepton mixing angle and neutrino mass ratio

• Constraint / rule out BSM theories

-BR($\tau \rightarrow 3\mu$) Standard Model : < 10⁻¹⁴ (EPJC May 1999) Minimal SUSY : 10⁻¹⁰ - 10⁻⁸ (arxiv: 0801.1826) Current best measurement : 2.1 × 10⁻⁸ (arxiv: 1001.3221)

Lifetime Definition

• Definition in Athena standard tool

```
double V0Tools::tau(const xAOD::Vertex * vxCandidate, const xAOD::Vertex* vertex, const std::vector<double> &masses) const
{
    unsigned int NTrk = vxCandidate->vxTrackAtVertex().size();
    if (masses.size() != NTrk) {
        ATH_MSG_DEBUG("The provided number of masses does not match the number of tracks in the vertex");
        return -999999.;
    }
    //double CONST = 1000./CLHEP::c_Light;
    double CONST = 1000./299.792;
    double M = invariantMass(vxCandidate, masses);
    double LXY = lxy(vxCandidate, vertex);
    double PT = V0Momentum(vxCandidate).perp();
    return CONST*M*LXY/PT;
}
```

• Formula

$$-L_{xy} = (\overrightarrow{r_{SV}} - \overrightarrow{r_{PV}}) \cdot \widehat{p_T}$$
$$-\tau = \frac{ML_{xy}}{p_T}$$

Trigger

Trigger	Periods online	stream
2015		
Data15 is not used		
2016		
HLT_mu20_12idonly_mu6noL1_nscan03		Main
HLT_2mu6_nomucomb_bPhi		Main
2017		
HLT_mu11_mu6_bDimu2700		BLS
HLT_mu11_mu6_bTau		BLS
HLT_mu11_mu6_bPhi		BLS
HLT_mu20_mu6noL1_bTau		BLS
2018		
HLT_2mu6_bPhi_L1LFV-MU6		BLS
HLT_mu11_mu6_bTau		BLS
HLT_mu11_mu6_bPhi		BLS
HLT_mu20_mu6noL1_bTau		BLS

Edwin Chow

Signal model study

Background model study

Edwin Chow

18

Unfolding non-prompt fraction

- Ingredients
 - For prompt events in MC: 1.25M events \rightarrow 60k events Selection efficiency $\alpha = 4.8\%$
 - For non-prompt events in MC: 1.25M events \rightarrow 47.8k events Selection efficiency $\beta = 3.8\%$
 - In data: Measured non-prompt fraction is f
- Consider the non-prompt to prompt ratio

$$- \frac{0.17}{\beta} / \frac{0.83}{\alpha} = \frac{f}{\beta} / \frac{1-f}{\alpha} = \frac{\alpha f}{\beta(1-f)} / 1$$

• Formula

- Weight
$$\frac{\alpha f}{\beta(1-f)}$$
 needed for non-prompt MC samples
- $f_{\text{unfolded}} = \frac{1}{1 + \frac{\beta(1-f)}{\alpha f}} = 20\%$

Efficiency Study

- Efficiency needed for cross-section calculation
- Distribution at different levels obtained (bb/cc samples mixed with non-prompt fraction of 20%)

New calculation with unfolding

N

Edwin Chow

Resolution and Unfolding

Figure 16: Closure test of the matrix inversion technique applied for unfolding in MC simulation. Left: Transverse momentum of the triplet system at generated (black) and reconstructed (blue) level. In red the unfolded distribution Edwin Chow is overlaid. Right: ratio of reconstructed and unfolded distribution w.r.t truth.

- Ds Internal Note
- BPHY7 Derivation
- <u>Twiki MC information</u>
- FONLL
- LHCb thesis
- Kohei data16
- <u>7TeV Run-I measurement paper</u>
- <u>7TeV Run-l internal notes</u>
- <u>CMS newest result</u>