NNV Subatomic Physics Meeting

$B_{s} \rightarrow D_{s}^{ \pm} K^{\mp}$ decays
 Can they reveal New Physics?

Eleftheria Malami

Nikhef, Theory Group

National Institute for Subatomic Physics

November 1, 2019

Based on:

1. arXiv:hep-ph/0304027
2. arXiv: 1208.6463 [hep-ph]
3. arXiv:1712.07428

Introduction

CP Violation and Flavour Physics

- Within the SM, CP violation is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix
- the complex phase \Rightarrow source of CP violation in SM
- Goal: test the SM
precisely determine CKM parameters in SM search for possible indirect signals of New Physics (NP)
- B meson decays are significant for these studies
- A key parameter is the extraction of the CKM angle γ
- for precision measurements of γ
\Rightarrow we can use $B_{s} \rightarrow D_{s}^{ \pm} K^{\mp}$ decays

Angle γ and the Unitarity Triangle

$$
\gamma=\arg \left[-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right]
$$

Unitarity Triangle

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

- The important question is whether:
- the curves (from different decays and transitions- using SM formulae) intersect in a single point and
- the triangle angles agree with the angles from CP asymmetries in B systems and CP conserving B decays
- Any inconsistency will give hints about physics beyond the SM

Motivation

- Intriguing value of the angle γ by $\mathrm{LHCb}_{[3]}$

$$
\gamma=\left(128_{-22}^{+17}\right)^{\circ}
$$

- Shed more light on the $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ decay

Measurement of $C P$ asymmetry in
$B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$decays

Abstract

We report the measurements of the $C P$-violating parameters in $B_{s}^{0} \rightarrow D_{*}^{\mp} K^{ \pm}$decays observed in $p p$ collisions, using a data set corresponding to an integrated luminosity $A^{\Delta \Gamma}=0.39+0.28+0.15, A^{\Delta \Gamma}=0.31 \pm 0.28+0.15, S=-0.52 \pm 0.20 \pm 0.07$ $A_{f}^{\Delta \Gamma}=0.39 \pm 0.28 \pm 0.15, A_{f}^{\Delta \Gamma}=0.31 \pm 0.28 \pm 0.15, S_{f}=-0.52 \pm 0.20 \pm 0.07$ $S_{7}=-0.49 \pm 0.20 \pm 0.07$, where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of
 $B_{*}^{0} \rightarrow D_{*}^{\mp} K^{ \pm}$decays, yielding $\left.\gamma=\left(128_{-22}^{+17}\right)^{\circ}\right)^{\text {nodulo }} 180^{\circ}$, where the uncertainty contains both statistical and sysmmantiontributions. This corresponds to 3.8σ evidence for $C P$ violation in the intefference between decay and decay after mixing
$\boldsymbol{B}_{\boldsymbol{s}} \rightarrow \boldsymbol{D}_{s}^{ \pm} \boldsymbol{K}^{\mp}$

- non-leptonic decay \Rightarrow not clean decays (due to the hadronic matrix elements)
- only tree diagram contributions
- both B_{s}^{0} and \bar{B}_{s}^{0} may decay into the same final state

- neutral B meson $\longrightarrow B_{s}^{0}-\bar{B}_{s}^{0}$ mixing
- interference effects between $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing and decay processes
- clean determination of $\gamma+\phi_{s}$
$\left(\phi_{s}:\right.$ determined with $\left.B_{s}^{0} \rightarrow J / \psi \phi\right)$

Theoretical Background

Amplitudes and the parameter ξ_{s}

We can write the amplitude in the general form:

$$
A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=<K^{-} D_{s}^{+}\left|H_{e f f}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)\right| \overline{B_{s}^{0}}>
$$

Amplitudes and the parameter ξ_{s}

We can write the amplitude in the general form:

$$
A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=<K^{-} D_{s}^{+}\left|H_{e f f}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)\right| \overline{B_{s}^{0}}>
$$

Introducing the:

- $\boldsymbol{v}_{\boldsymbol{s}}, \bar{v}_{\boldsymbol{s}}, \boldsymbol{v}_{\boldsymbol{s}}^{*}$: CKM factors and
- M_{s}, \bar{M}_{s} : hadronic matrix elements we can rewrite the amplitudes in the form:

$$
\begin{aligned}
& A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=\frac{G_{F}}{\sqrt{2}} \bar{v}_{\boldsymbol{s}} \bar{M}_{s} \\
& A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=(-1)^{L} e^{i \phi_{C P}} \frac{G_{F}}{\sqrt{2}} v_{\boldsymbol{s}}^{*} M_{s}
\end{aligned}
$$

Amplitudes and the parameter ξ_{s}

We can write the amplitude in the general form:

$$
A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=<K^{-} D_{s}^{+}\left|H_{e f f}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)\right| \overline{B_{s}^{0}}>
$$

Introducing the:

- $\boldsymbol{v}_{\boldsymbol{s}}, \bar{v}_{\boldsymbol{s}}, \boldsymbol{v}_{\boldsymbol{s}}^{*}$: CKM factors and
- M_{s}, \bar{M}_{s} : hadronic matrix elements we can rewrite the amplitudes in the form:

$$
\begin{aligned}
& A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=\frac{G_{F}}{\sqrt{2}} \bar{v}_{s} \bar{M}_{s} \\
& A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)=(-1)^{L} e^{i \phi_{C P}} \frac{G_{F}}{\sqrt{2}} v_{\boldsymbol{s}}^{*} M_{s}
\end{aligned}
$$

- We define the parameter ξ_{s} as:

$$
\xi_{\boldsymbol{s}}=-e^{-i \phi_{s}}\left[e^{i \phi_{C P}} \frac{A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}{A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}\right]
$$

Amplitudes and the parameter $\bar{\xi}_{s}$

Similarly, for the final state $D_{s}^{-} K^{+}$and again with the help of:

- $v_{s}, \bar{v}_{\boldsymbol{s}}, v_{\boldsymbol{s}}^{*}$: CKM factors and
- M_{s}, \bar{M}_{s} : hadronic matrix elements we write the amplitudes in the form:

$$
\begin{aligned}
& A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)=\frac{G_{F}}{\sqrt{2}} \bar{v}_{s} \bar{M}_{s} \\
& A\left(B_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)=(-1)^{L} e^{i \phi_{C P}} \frac{G_{F}}{\sqrt{2}} v_{\boldsymbol{s}}^{*} \bar{M}_{s}
\end{aligned}
$$

Amplitudes and the parameter $\bar{\xi}_{s}$

Similarly, for the final state $D_{s}^{-} K^{+}$and again with the help of:

- $\boldsymbol{v}_{\boldsymbol{s}}, \overline{\boldsymbol{v}}_{\boldsymbol{s}}, \boldsymbol{v}_{\boldsymbol{s}}^{*}$: CKM factors and
- M_{s}, \bar{M}_{s} : hadronic matrix elements we write the amplitudes in the form:

$$
\begin{aligned}
& A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)=\frac{G_{F}}{\sqrt{2}} \bar{v}_{s} \bar{M}_{s} \\
& A\left(B_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)=(-1)^{L} e^{i \phi_{C P}} \frac{G_{F}}{\sqrt{2}} v_{s}^{*} \bar{M}_{s}
\end{aligned}
$$

- We define the parameter $\bar{\xi}_{s}$ as:

$$
\bar{\xi}_{\boldsymbol{s}}=-e^{-i \phi_{\boldsymbol{s}}}\left[e^{i \phi_{\boldsymbol{C P}}} \frac{A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)}{A\left(B_{s}^{0} \rightarrow D_{s}^{-} K^{+}\right)}\right]
$$

Rewriting the Parameters ξ_{s} and $\bar{\xi}_{s}$

- Inserting the amplitude formulas in the previous relation, the convention dependent phase $\phi_{\boldsymbol{C P}}$ gets cancelled:

$$
\xi_{s}=-(-1)^{L} e^{-i\left(\phi_{s}+\gamma\right)}\left[\frac{1}{x_{s} e^{i \delta_{s}}}\right]
$$

Rewriting the Parameters ξ_{s} and $\bar{\xi}_{s}$

- Inserting the amplitude formulas in the previous relation, the convention dependent phase $\phi_{\boldsymbol{C P}}$ gets cancelled:

$$
\boldsymbol{\xi}_{s}=-(-1)^{L} e^{-i\left(\phi_{s}+\gamma\right)}\left[\frac{1}{x_{s} e^{i \delta_{s}}}\right]
$$

- where the term x_{s} is defined as: $x_{s}=R_{b} a_{s}$ and

$$
a_{s} e^{i \delta_{s}}=e^{-i\left[\phi_{\boldsymbol{C P}}(D)-\phi_{\boldsymbol{C P}}(K)\right]} \frac{M_{s}}{\bar{M}_{s}}
$$

Rewriting the Parameters ξ_{s} and $\bar{\xi}_{s}$

- Inserting the amplitude formulas in the previous relation, the convention dependent phase $\phi_{\boldsymbol{C P}}$ gets cancelled:

$$
\xi_{s}=-(-1)^{L} e^{-i\left(\phi_{s}+\gamma\right)}\left[\frac{1}{x_{s} e^{i \delta_{s}}}\right]
$$

- where the term x_{s} is defined as: $x_{s}=R_{b} a_{s}$ and

$$
a_{s} e^{i \delta_{s}}=e^{-i\left[\phi_{C P}(D)-\phi_{\mathbf{C P}}(K)\right]} \frac{M_{s}}{\bar{M}_{s}}
$$

- with $a_{s} e^{i \delta_{s}}$ being a physical observable ($\phi_{\boldsymbol{C} \boldsymbol{P}}$ phases: cancelled in hadronic matrix elements ratio)

Rewriting the Parameters ξ_{s} and $\bar{\xi}_{s}$

- Inserting the amplitude formulas in the previous relation, the convention dependent phase $\phi_{\boldsymbol{C P}}$ gets cancelled:

$$
\xi_{s}=-(-1)^{L} e^{-i\left(\phi_{s}+\gamma\right)}\left[\frac{1}{x_{s} e^{i \delta_{s}}}\right]
$$

- where the term x_{s} is defined as: $x_{s}=R_{b} a_{s}$ and

$$
a_{s} e^{i \delta_{s}}=e^{-i\left[\phi_{C P}(D)-\phi_{\mathbf{C P}}(K)\right]} \frac{M_{s}}{\bar{M}_{s}}
$$

- with $a_{s} e^{i \delta_{s}}$ being a physical observable ($\phi_{\boldsymbol{C P}}$ phases: cancelled in hadronic matrix elements ratio)
- Similarly, for the CP conjugate case, we get:

$$
\bar{\xi}_{s}=-(-1)^{L} e^{-i\left(\phi_{s}+\gamma\right)}\left[x_{s} e^{i \delta_{s}}\right]
$$

Combining ξ_{s} and $\bar{\xi}_{s}$

Important relation

$$
\boldsymbol{\xi}_{s} \times \overline{\boldsymbol{\xi}}_{s}=e^{-i 2\left(\phi_{s}+\gamma\right)}
$$

where the hadronic parameters $x_{s} e^{i \delta_{s}}$ cancels.

Combining ξ_{s} and $\bar{\xi}_{s}$

Important relation

$$
\boldsymbol{\xi}_{s} \times \overline{\boldsymbol{\xi}}_{s}=e^{-i 2\left(\phi_{s}+\gamma\right)}
$$

where the hadronic parameters $x_{s} e^{i \delta_{s}}$ cancels.
We may extract $\phi_{s}+\gamma$ in a theoretically clean way from the observables.

Combining ξ_{s} and $\bar{\xi}_{s}$

Important relation

$$
\boldsymbol{\xi}_{s} \times \overline{\boldsymbol{\xi}}_{s}=e^{-i 2\left(\phi_{s}+\gamma\right)}
$$

where the hadronic parameters $x_{s} e^{i \delta_{s}}$ cancels.
We may extract $\phi_{s}+\gamma$ in a theoretically clean way from the observables.

- Otherwise: factorization \Rightarrow to handle hadronic matrix elements
- Plugging form factor F_{0} and decay constants f_{K} into the factorised matrix element, the decay amplitude takes the form:

$$
<D_{s}^{+} K^{-}\left|H_{e f f}\right| \overline{B_{s}^{0}}>=i \frac{G_{F}}{\sqrt{2}} V_{C K M} a(\mu) f_{K} F_{\bar{B}_{s}^{0} \rightarrow D_{s}}^{0}\left(M_{K}^{2}\right)\left(M_{B_{s}}^{2}-M_{D_{s}}^{2}\right)
$$

Observables

- Time-dependent CP Asymmetry
$\frac{\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)-\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)}{\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)}=\left[\frac{C \cos \left(\Delta M_{s} t\right)+S \sin \left(\Delta M_{s} t\right)}{\cosh \left(\Delta \Gamma_{s} t / 2\right)+\mathcal{A}_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{s} t / 2\right)}\right]$

Observables

- Time-dependent CP Asymmetry
$\frac{\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)-\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)}{\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)}=\left[\frac{C \cos \left(\Delta M_{s} t\right)+S \sin \left(\Delta M_{s} t\right)}{\cosh \left(\Delta \Gamma_{s} t / 2\right)+\mathcal{A}_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{s} t / 2\right)}\right]$
* where we have the asymmetries:

$$
\begin{gathered}
C=\frac{1-\left|\xi_{s}\right|^{2}}{1+\left|\xi_{s}\right|^{2}}=\frac{\left|A\left(B_{s}^{0} \rightarrow f\right)\right|^{2}-\left|A\left(\overline{B_{s}^{0}} \rightarrow f\right)\right|^{2}}{\left|A\left(B_{s}^{0} \rightarrow f\right)\right|^{2}+\left|A\left(\overline{B_{s}^{0}} \rightarrow f\right)\right|^{2}} \\
S=\frac{2 \operatorname{Im} \xi_{s}}{1+\left|\xi_{s}\right|^{2}} \longrightarrow \text { mixing induced CP asymmetry }
\end{gathered}
$$

Observables

- Time-dependent CP Asymmetry
$\frac{\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)-\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)}{\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)}=\left[\frac{C \cos \left(\Delta M_{s} t\right)+S \sin \left(\Delta M_{s} t\right)}{\cosh \left(\Delta \Gamma_{s} t / 2\right)+\mathcal{A}_{\Delta \Gamma} \sinh \left(\Delta \Gamma_{s} t / 2\right)}\right]$
* where we have the asymmetries:

$$
\begin{gathered}
C=\frac{1-\left|\xi_{s}\right|^{2}}{1+\left|\xi_{s}\right|^{2}}=\frac{\left|A\left(B_{s}^{0} \rightarrow f\right)\right|^{2}-\left|A\left(\overline{B_{s}^{0}} \rightarrow f\right)\right|^{2}}{\left|A\left(B_{s}^{0} \rightarrow f\right)\right|^{2}+\left|A\left(\overline{B_{s}^{0}} \rightarrow f\right)\right|^{2}} \\
S=\frac{2 \operatorname{Im} \xi_{s}}{1+\left|\xi_{s}\right|^{2}} \longrightarrow \text { mixing induced CP asymmetry }
\end{gathered}
$$

* Due to the $\Delta \Gamma_{s}$, we get access to another observable, the $\mathcal{A}_{\Delta \Gamma}$, which depends on C and S :

$$
\mathcal{A}_{\Delta \Gamma}=\frac{2 \operatorname{Re} \xi_{s}}{1+\left|\xi_{s}\right|^{2}}
$$

Analysis

SM expressions for the CP Asymmetries

- With the help of

$$
x_{s}=\left|\frac{A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}{A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}\right|
$$

we rewrite the asymmetries as follows:

SM expressions for the CP Asymmetries

- With the help of

$$
x_{s}=\left|\frac{A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}{A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}\right|
$$

we rewrite the asymmetries as follows:

$$
C=-\left[\frac{1-x_{s}^{2}}{1+x_{s}^{2}}\right], \quad \bar{C}=+\left[\frac{1-x_{s}^{2}}{1+x_{s}^{2}}\right]
$$

SM expressions for the CP Asymmetries

- With the help of

$$
x_{s}=\left|\frac{A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}{A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}\right|
$$

we rewrite the asymmetries as follows:

$$
\begin{aligned}
C=-\left[\frac{1-x_{s}^{2}}{1+x_{s}^{2}}\right], & \bar{C}=+\left[\frac{1-x_{s}^{2}}{1+x_{s}^{2}}\right] \\
S=\frac{2 x_{s} \sin \left(\phi_{s}+\gamma+\delta_{s}\right)}{1+x_{s}^{2}}, & \bar{S}=\frac{2 x_{s} \sin \left(\phi_{s}+\gamma-\delta_{s}\right)}{1+x_{s}^{2}}
\end{aligned}
$$

SM expressions for the CP Asymmetries

- With the help of

$$
x_{s}=\left|\frac{A\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}{A\left(B_{s}^{0} \rightarrow D_{s}^{+} K^{-}\right)}\right|
$$

we rewrite the asymmetries as follows:

$$
\begin{aligned}
C=-\left[\frac{1-x_{s}^{2}}{1+x_{s}^{2}}\right], & \bar{C}=+\left[\frac{1-x_{s}^{2}}{1+x_{s}^{2}}\right] \\
S=\frac{2 x_{s} \sin \left(\phi_{s}+\gamma+\delta_{s}\right)}{1+x_{s}^{2}}, & \bar{S}=\frac{2 x_{s} \sin \left(\phi_{s}+\gamma-\delta_{s}\right)}{1+x_{s}^{2}} \\
\mathcal{A}_{\Delta \Gamma}=-\frac{2 x_{s} \cos \left(\phi_{s}+\gamma+\delta_{s}\right)}{1+x_{s}^{2}}, & \overline{\mathcal{A}}_{\Delta \Gamma}=-\frac{2 x_{s} \cos \left(\phi_{s}+\gamma-\delta_{s}\right)}{1+x_{s}^{2}}
\end{aligned}
$$

LHCb Collaboration Measurements

$$
\begin{aligned}
& \bar{C}_{s}=0.73 \pm 0.15 \\
& S_{s}=0.49 \pm 0.21 \quad \bar{S}_{s}=0.52 \pm 0.21 \\
& \mathcal{A}_{\Delta \Gamma s}=0.31 \pm 0.32 \quad \overline{\mathcal{A}}_{\Delta \Gamma s}=0.39 \pm 0.32
\end{aligned}
$$

We use ϕ_{s}, taking the average determined by HFLAV:

$$
\phi_{s}=(-1.2 \pm 1.8)^{\circ}
$$

Measurements of the $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ branching ratios from LHCb:

$$
\frac{B R\left(B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}\right)_{\exp }}{B R\left(B_{s}^{0} \rightarrow D_{s}^{ \pm} \pi^{\mp}\right)_{\exp }}=0.0646 \pm 0.0043 \pm 0.0025
$$

Using data from $B_{d}^{0} \rightarrow D^{ \pm} \pi^{\mp}$ decay

- We can combine information from the two systems linked by U-spin symmetry
- With U-spin flavour symmetry of strong interactions:
- hadronic parameters x_{s} and δ_{s} of $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ are related to x_{d} and δ_{d} of the $B_{d}^{0} \rightarrow D^{ \pm} \boldsymbol{\pi}^{\mp}$

$$
\begin{gathered}
x_{s}=-\frac{x_{d}}{\epsilon}=\left.0.31_{-0.053}^{+0.046}\right|_{\text {input }} \pm\left. 0.06\right|_{\mathrm{SU}(3)} \\
\delta_{s}=\delta_{d}=\left[-\left.35_{-40}^{+69}\right|_{\text {input }} \pm\left. 20\right|_{\mathrm{SU}(3)}\right]^{\circ}
\end{gathered}
$$

$$
\epsilon=\frac{\lambda^{2}}{1-\lambda^{2}}
$$

$$
\lambda=\mid \hat{V}_{u s} \hat{\mid}
$$

- With the help of hadronic parameters, we may calculate $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ observables

Using data from $B_{d}^{0} \rightarrow D^{ \pm} \pi^{\mp}$ decay
 - We can combine information from the two systems

 linked by U-spin symmetry- With U-spin flavour symmetry of strong interactions:
- hadronic parameters x_{s} and δ_{s} of $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ are related to x_{d} and δ_{d} of the $B_{d}^{0} \rightarrow D^{ \pm} \pi^{\mp}$

$$
\begin{gathered}
x_{s}=-\frac{x_{d}}{\epsilon}=\left.0.31_{-0.053}^{+0.046}\right|_{\text {input }} \pm\left. 0.06\right|_{\mathrm{SU}(3)} \\
\delta_{s}=\delta_{d}=\left[-\left.35_{-40}^{+69}\right|_{\text {input }} \pm\left. 20\right|_{\mathrm{SU}(3)}\right]^{\circ}
\end{gathered}
$$

- With the help of hadronic parameters, we may calculate $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ observables

However, we have enough info to analyse each one of the systems separately [and to avoid the hadronic parameters]

Using data from $B_{d}^{0} \rightarrow D^{ \pm} \pi^{\mp}$ decay

- We can combine information from the two systems linked by U-spin symmetry
- With U-spin flavour symmetry of strong interactions:
- hadronic parameters x_{s} and δ_{s} of $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ are related to x_{d} and δ_{d} of the $B_{d}^{0} \rightarrow D^{ \pm} \pi^{\mp}$

$$
\begin{gathered}
x_{s}=-\frac{x_{d}}{\epsilon}=\left.0.31_{-0.053}^{+0.046}\right|_{\text {input }} \pm\left. 0.06\right|_{\mathrm{SU}(3)} \\
\delta_{s}=\delta_{d}=\left[-\left.35_{-40}^{+69}\right|_{\text {input }} \pm\left. 20\right|_{\mathrm{SU}(3)}\right]^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \epsilon=\frac{\lambda^{2}}{1-\lambda^{2}} \\
& \lambda=\left|V_{u s}\right|
\end{aligned}
$$

- With the help of hadronic parameters, we may calculate $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ observables

However, we have enough info to analyse each one of the systems separately [and to avoid the hadronic parameters]
\Rightarrow we don't have to make any U-spin assumptions and
\Rightarrow we may use these decays to test the U-spin symmetry.

Illustrating the Discrete Ambiguities

$$
\begin{gathered}
C^{2}+S^{2}+\mathcal{A}_{\Delta \Gamma}^{2}=1=\bar{C}^{2}+\bar{S}^{2}+\overline{\mathcal{A}}_{\Delta \Gamma}^{2} \\
\mathcal{A}_{\Delta \Gamma}+i S=-(-1)^{L} \sqrt{1-C^{2}} e^{-i\left(\phi_{s}+\gamma+\delta_{s}\right)} \\
\overline{\mathcal{A}}_{\Delta \Gamma}+i \bar{S}=-(-1)^{L} \sqrt{1-\bar{C}^{2}} e^{-i\left(\phi_{s}+\gamma-\delta_{s}\right)}
\end{gathered}
$$

Assumption: $C=-\bar{C}$

The picture we get for the Current data

From \bar{C}_{s} we may determine x_{s} yielding: $x_{s}=\sqrt{\frac{1-\bar{C}_{s}}{1+\bar{C}_{s}}}=0.4 \pm 0.13$ and plug that into $S, \bar{S}, \overline{\mathcal{A}}_{\Delta \Gamma}, \mathcal{A}_{\Delta \Gamma}$ to obtain contours in $\left(\delta_{s},\left(\phi_{s}+\gamma\right)\right)$

The picture we get for the Current data

From \bar{C}_{s} we may determine x_{s} yielding: $x_{s}=\sqrt{\frac{1-\bar{C}_{s}}{1+\bar{C}_{s}}}=0.4 \pm 0.13$ and plug that into $S, \bar{S}, \overline{\mathcal{A}}_{\Delta \Gamma}, \mathcal{A}_{\Delta \Gamma}$ to obtain contours in $\left(\delta_{s},\left(\phi_{s}+\gamma\right)\right)$

Moving to New Physics...

- Could it be New Physics?
- How would it enter?
- Might NP appear at the amplitude level?
- How would it affect the observables?
- Interplay with other New Physics constraints?

This is still work in progress
Stay tuned!

Conclusions

Final Remarks

- Our Strategy:
$\boldsymbol{\xi}_{s} \times \overline{\boldsymbol{\xi}}_{s}$ can be calculated from the corresponding observables and leads to the determination of $\phi_{s}+\gamma$
- Even though $B_{s} \rightarrow D_{s}^{ \pm} K^{\mp}$ is not a clean decay (non-leptonic), it allows a clean extraction of $\phi_{s}+\gamma\left(\phi_{s}\right.$ is determined)
- The value of $\left(\gamma=128_{-22}^{+17}\right)^{\circ}$ by LHCb is intriguing
- The observable $\mathcal{A}_{\Delta \Gamma}$ (and $\overline{\mathcal{A}}_{\Delta \Gamma}$) is crucial to resolve ambiguities
- Room to explore NP [work in progress]

Thank you!

Backup Slides

Branching Ratios

- Experimental branching ratio:

$$
B R\left(B_{s} \rightarrow f\right)_{\exp }=\frac{1}{2} \int<\Gamma\left(B_{s}(t) \rightarrow f\right)>d t
$$

- Theoretical branching ratio:

$$
B R\left(B_{s} \rightarrow f\right)_{t h e o}=\frac{\tau_{B_{s}}}{2}<\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)>\mid t=0
$$

- Connecting the experimental to the theoretical branching ratio

$$
B R\left(B_{s} \rightarrow f\right)_{\text {theo }}=\frac{1-y_{s}^{2}}{1+\mathcal{A}_{\Delta \Gamma} y_{s}} B R\left(B_{s} \rightarrow f\right)_{\exp }
$$

- Importance of $\Delta \Gamma_{s}$

$$
y_{s}=\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}} \approx 0.1
$$

