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Introduction
CP Violation and Flavour Physics

Within the SM, CP violation is described by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix

I the complex phase⇒ source of CP violation in SM

Goal: test the SM
precisely determine CKM parameters in SM
search for possible indirect signals of New Physics (NP)

B meson decays are significant for these studies

A key parameter is the extraction of the CKM angle γ
I for precision measurements of γ
⇒ we can use Bs → D±s K∓ decays
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Angle γ and the Unitarity Triangle

The important question is whether:
I the curves (from different decays and transitions- using SM

formulae) intersect in a single point and
I the triangle angles agree with the angles from CP asymmetries

in B systems and CP conserving B decays

Any inconsistency will give hints about physics beyond the SM
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γ = arg

[
−

VudV∗
ub

VcdV∗
cb

]

Unitarity Triangle

VudV∗
ub + VcdV∗

cb + VtdV∗
tb = 0



Motivation
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Intriguing value of the angle γ by LHCb[3]

γ =
(

128+17
−22

)◦
Shed more light on the B0

s → D±
s K∓ decay



Bs→ D±s K∓
non-leptonic decay⇒ not clean decays
(due to the hadronic matrix elements)
only tree diagram contributions
both B0

s and B̄0
s may decay into the same final state

neutral B meson −→ B0
s − B̄0

s mixing
interference effects between B0

s − B̄0
s mixing and decay

processes
clean determination of γ + φs
(φs: determined with B0

s → J/ψφ)
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Theoretical Background
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Amplitudes and the parameter ξs
We can write the amplitude in the general form:

A(B0
s → D+

s K−) =< K−D+
s |Heff (B

0
s → D+

s K−)|B0
s >

Introducing the:
υs,υs,υ∗

s : CKM factors and
Ms, Ms: hadronic matrix elements

we can rewrite the amplitudes in the form:

A(B0
s → D+

s K−) =
GF√

2
ῡsM̄s

A(B0
s → D+

s K−) = (−1)LeiφCP
GF√

2
υ∗

s Ms

We define the parameter ξs as:

ξs = −e−iφs

[
eiφCP

A(B0
s → D+

s K−)

A(B0
s → D+

s K−)

]
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Amplitudes and the parameter ξs
Similarly, for the final state D−s K+ and again with the help of:

υs,υs,υ
∗
s : CKM factors and

Ms, Ms: hadronic matrix elements
we write the amplitudes in the form:

A(B0
s → D−s K+) =

GF√
2
ῡsM̄s

A(B0
s → D−s K+) = (−1)LeiφCP

GF√
2
υ∗

s M̄s

We define the parameter ξs as:

ξs = −e−iφs

[
eiφCP

A(B0
s → D−s K+)

A(B0
s → D−s K+)

]
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Rewriting the Parameters ξs and ξs

Inserting the amplitude formulas in the previous relation,
the convention dependent phase φCP gets cancelled:

ξs = −(−1)Le−i(φs+γ)

[
1

xseiδs

]

I where the term xs is defined as: xs = Rbas and

aseiδs = e−i[φCP(D)−φCP(K)] Ms

Ms

I with aseiδs being a physical observable
(φCP phases: cancelled in hadronic matrix elements ratio)

Similarly, for the CP conjugate case, we get:

ξs = −(−1)Le−i(φs+γ)
[
xseiδs

]
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Combining ξs and ξs
Important relation

ξs × ξs = e−i2(φs+γ)

where the hadronic parameters xseiδs cancels.

We may extract φs + γ in a theoretically clean way from the
observables.

Otherwise: factorization⇒ to handle hadronic matrix elements

Plugging form factor F0 and decay constants fK into the
factorised matrix element, the decay amplitude takes the form:

< D+
s K−|Heff |B̄0

s >= i
GF√

2
VCKM a(µ) fK F0

B̄0
s→Ds

(M2
K) (M2

Bs
−M2

Ds
)
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Observables
Time-dependent CP Asymmetry

Γ(B0
s (t)→ f )− Γ(B0

s (t)→ f )

Γ(B0
s (t)→ f ) + Γ(B0

s (t)→ f )
=

[
C cos(∆Ms t) + S sin(∆Ms t)

cosh(∆Γs t/2) +A∆Γsinh(∆Γs t/2)

]

∗ where we have the asymmetries:

C =
1− |ξs|2

1 + |ξs|2
=
|A(B0

s → f )|2 − |A(B̄0
s → f )|2

|A(B0
s → f )|2 + |A(B̄0

s → f )|2

S =
2 Imξs

1 + |ξs|2
−→ mixing induced CP asymmetry

∗ Due to the ∆Γs, we get access to another observable, the A∆Γ,
which depends on C and S:

A∆Γ =
2 Reξs

1 + |ξs|2
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Analysis
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SM expressions for the CP Asymmetries
With the help of

xs =

∣∣∣∣A(B̄0
s → D+

s K−)

A(B0
s → D+

s K−)

∣∣∣∣
we rewrite the asymmetries as follows:

C = −
[

1− x2
s

1 + x2
s

]
, C = +

[
1− x2

s
1 + x2

s

]

S =
2 xs sin(φs + γ+δs)

1 + x2
s

, S =
2 xs sin(φs + γ−δs)

1 + x2
s

A∆Γ = −2 xs cos(φs + γ+δs)

1 + x2
s

, A∆Γ = −2 xs cos(φs + γ−δs)

1 + x2
s

Eleftheria Malami (Nikhef) Bs→ D±
s K∓ November 1, 2019 13 / 22



SM expressions for the CP Asymmetries
With the help of

xs =

∣∣∣∣A(B̄0
s → D+

s K−)

A(B0
s → D+

s K−)

∣∣∣∣
we rewrite the asymmetries as follows:

C = −
[

1− x2
s

1 + x2
s

]
, C = +

[
1− x2

s
1 + x2

s

]

S =
2 xs sin(φs + γ+δs)

1 + x2
s

, S =
2 xs sin(φs + γ−δs)

1 + x2
s

A∆Γ = −2 xs cos(φs + γ+δs)

1 + x2
s

, A∆Γ = −2 xs cos(φs + γ−δs)

1 + x2
s

Eleftheria Malami (Nikhef) Bs→ D±
s K∓ November 1, 2019 13 / 22



SM expressions for the CP Asymmetries
With the help of

xs =

∣∣∣∣A(B̄0
s → D+

s K−)

A(B0
s → D+

s K−)

∣∣∣∣
we rewrite the asymmetries as follows:

C = −
[

1− x2
s

1 + x2
s

]
, C = +

[
1− x2

s
1 + x2

s

]

S =
2 xs sin(φs + γ+δs)

1 + x2
s

, S =
2 xs sin(φs + γ−δs)

1 + x2
s

A∆Γ = −2 xs cos(φs + γ+δs)

1 + x2
s

, A∆Γ = −2 xs cos(φs + γ−δs)

1 + x2
s

Eleftheria Malami (Nikhef) Bs→ D±
s K∓ November 1, 2019 13 / 22



SM expressions for the CP Asymmetries
With the help of

xs =

∣∣∣∣A(B̄0
s → D+

s K−)

A(B0
s → D+

s K−)

∣∣∣∣
we rewrite the asymmetries as follows:

C = −
[

1− x2
s

1 + x2
s

]
, C = +

[
1− x2

s
1 + x2

s

]

S =
2 xs sin(φs + γ+δs)

1 + x2
s

, S =
2 xs sin(φs + γ−δs)

1 + x2
s

A∆Γ = −2 xs cos(φs + γ+δs)

1 + x2
s

, A∆Γ = −2 xs cos(φs + γ−δs)

1 + x2
s

Eleftheria Malami (Nikhef) Bs→ D±
s K∓ November 1, 2019 13 / 22



LHCb Collaboration Measurements

C̄s = 0.73± 0.15

Ss = 0.49± 0.21 Ss = 0.52± 0.21

A∆Γs = 0.31± 0.32 A∆Γs = 0.39± 0.32

We use φs, taking the average determined by HFLAV:

φs = (−1.2± 1.8)◦

Measurements of the B0
s → D±s K∓ branching ratios from LHCb:

BR(B0
s → D±s K∓)exp

BR(B0
s → D±s π∓)exp

= 0.0646± 0.0043± 0.0025
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Using data from B0
d → D±π∓ decay

We can combine information from the two systems
linked by U-spin symmetry
With U-spin flavour symmetry of strong interactions:

I hadronic parameters xs and δs of B0
s → D±

s K∓

are related to xd and δd of the B0
d → D±π∓

xs = −xd
ε

= 0.31+0.046
−0.053|input ± 0.06|SU(3)

δs = δd =
[
−35+69

−40|input ± 20|SU(3)

]◦
With the help of hadronic parameters, we may calculate
B0

s → D±s K∓ observables

However, we have enough info to analyse each one of the
systems separately [and to avoid the hadronic parameters]
⇒ we don’t have to make any U-spin assumptions and
⇒ we may use these decays to test the U-spin symmetry.
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Illustrating the Discrete Ambiguities

C2 + S2 +A2
∆Γ = 1 = C̄2 + S̄2 + Ā2

∆Γ

A∆Γ + iS = −(−1)L
√

1− C2 e−i(φs+γ+δs)

Ā∆Γ + iS̄ = −(−1)L
√

1− C̄2 e−i(φs+γ−δs)

Assumption: C = −C̄
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The picture we get for the Current data
From Cs we may determine xs yielding: xs =

√
1−Cs
1+Cs

= 0.4± 0.13

and plug that into S, S, A∆Γ, A∆Γ to obtain contours in (δs, (φs + γ))

-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150
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The solutions for δs and γ

(δs, γ) = (−181+17
−18,−52+16

−19)
o

(δs, γ) = (−0.8+17
−17, 128+16

−19)
o



Moving to New Physics...
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Could it be New Physics?

How would it enter?
I Might NP appear at the amplitude level?

How would it affect the observables?

Interplay with other New Physics constraints?

This is still work in progress
Stay tuned!



Conclusions
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Final Remarks

Our Strategy:

ξs × ξs can be calculated from the corresponding observables
and leads to the determination of φs + γ

Even though Bs → D±s K∓ is not a clean decay (non-leptonic),
it allows a clean extraction of φs + γ (φs is determined)

The value of
(
γ = 128+17

−22

)◦
by LHCb is intriguing

The observable A∆Γ (and A∆Γ) is crucial to resolve ambiguities

Room to explore NP [work in progress]
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Thank you!
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Backup Slides
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Branching Ratios
Experimental branching ratio:

BR(Bs → f )exp =
1
2

∫
< Γ(Bs(t)→ f ) > dt

Theoretical branching ratio:

BR(Bs → f )theo =
τBs

2
< Γ(B0

s (t)→ f ) > |t = 0

Connecting the experimental to the theoretical branching ratio

BR(Bs → f )theo =
1− y2

s
1 +A∆Γys

BR(Bs → f )exp

Importance of ∆Γs

ys =
∆Γs

2Γs
≈ 0.1

Eleftheria Malami (Nikhef) Bs→ D±
s K∓ November 1, 2019 2 / 2


	Bfys group
	Bfys group
	Bringing Theory and Experiment Together

	Appendix

