

Robbert Geertsema The characterisation of the timing aspects of Timepix3

- Short introduction into hybrid pixel detectors
- Explain two methods to measure timing systematics in Timepix3:
 - Charged particle beam from CERN SPS (testbeam)
 - Lab based laser system
- Show timing aspects of Timepix3 \rightarrow what do we gain from this?

(Hybrid) pixel detectors

- Rely on detecting material in which charge carriers are liberated by the particles
- Generated charge particles are measured as current \rightarrow can be detected!

Medipix and Timepix collaboration

- Collaboration of multiple institutes (Nikhef, CERN, ...) Currently two detectors produced which can measure time of arrival

Timepix

- Released 2006
- 25 ns time bins
- Time <u>or</u> charge measurement

- Released 2014 1.56 ns time bins Time <u>and</u> charge measurement

Timepix3

- Released 2020?
- 200 ps time bins
- Time and charge measurement

Medipix and Timepix collaboration

- Collaboration of multiple institutes (Nikhef, CERN, ...)
- Currently two detectors produced which can measure time of arrival

Timepix

- Released 2006
- 25 ns time bins
- Time <u>or</u> charge measurement

- Released 2014
- 1.56 ns time bins

Timepix3

Timepix4

Time <u>and</u> charge measurement

- Released 2020?
- 200 ps time bins
- Time and charge measurement

Timepix3 ASIC

Timepix3 [1]:

- 256 x 256 pixels
 - Pitch of 55 µm (high granulairity)
- Measures arrival time and charge of the hits
- Time bins of 1.56 ns
- Triggerless readout
- Maximum of 80 Mhits/s/ASIC

[1] Poikela, T et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of instrumentation 9, C05013 (2014).

Measurement with Timepix3

How to investigate the systematics

We want to investigate and correct the timing systematics of Timepix3 in order to increase the time resolution

Two requirements:

Known <u>position</u> of liberated charge Known <u>time</u> of liberation of charge

Two methods we used: Testbeam at CERN

Testbeam location at the North Area testbeam facilities

How to investigate the systematics

We want to investigate and correct the timing systematics of Timepix3 in order to increase the time resolution

Two requirements:

Known <u>position</u> of liberated charge Known <u>time</u> of liberation of charge

Two methods we used: Testbeam at CERN Laser setup at Nikhef

Testbeam location at the North Area testbeam facilities

Laser setup at Nikhef

How to investigate the systematics

We want to investigate and correct the timing systematics of Timepix3 in order to increase the time resolution

Two requirements:

Known <u>position</u> of liberated charge Known <u>time</u> of liberation of charge

Two methods we used: Testbeam at CERN ~ 10 hour drive Laser setup at Nikhef ~ 10 second walk

Laser Setup

Technique

- Use photons instead of charged particles
- 660 nm with a pulse length of 4.6 ns

Advantage

- Precise timing of photons is known
- Deposited charge can be controlled
- Timewalk effects cancel in pixel-to-pixel comparison
- Not limited to testbeam facilities making it possible to take data at Nikhef

Drawback

Deposition in top of sensor (not mimicking charged particle)

Nik hef

Specialised setup is needed to provide position and timing information on the particles: <u>Timepix3 telescope</u>

How it works:

Akiba, K. et al. LHCb VELO Timepix3 telescope. Journal of Instrumentation 14, P05026–P05026 (2019).

Specialised setup is needed to provide position and timing information on the particles: <u>Timepix3 telescope</u>

How it works:

Akiba, K. et al. LHCb VELO Timepix3 telescope. Journal of Instrumentation 14, P05026–P05026 (2019).

information on the particles: <u>Timepix3 telescope</u>

How it works:

Akiba, K. et al. LHCb VELO Timepix3 telescope. Journal of Instrumentation 14, P05026–P05026 (2019).

Testbeam: Analysis

Per particle the telescope provides a time reference

Compare this reference to measured time by DUT

Testbeam: Analysis

Per particle the telescope provides a time reference

Compare this reference to measured time by DUT

Collect enough statistics

Testbeam: Analysis

Compare this reference to measured time by DUT

Determine average delay for each pixel by fitting a normal distribution

Testbeam: Results

NNV Annual meeting – 2019

50 µm Si sensor 90 V bias 25 V full depletion

Periodic structure visible:

- Due to building blocks of pixel matrix (e.g. clock buffer), routing
- Maximum difference of ~4 ns \rightarrow large effect compared to time bins of 1.56 ns

Testbeam: Results

Measured average delay consists of two main contributions: global and local

- find the **local delay**

50 µm Si sensor 90 V bias 25 V full depletion

1. Calculate **global delay** from **average delay** 2. Subtract global delay from average delay to

Testbeam: Local Delay

Due to the bin size of 1.56 ns there is a relatively large error on the delay value of a single pixel (451 ps) \rightarrow Calculate the average of a row of the building block to decrease the error (for visualisation and comparison)

Delay [ns]

50 µm Si sensor 90 V bias 25 V full depletion

Testbeam: Local Delay

Due to the bin size of 1.56 ns there is a relatively large error on the delay value of a single pixel (451 ps) \rightarrow Calculate the average of a row of the building block to decrease the error (for visualisation and comparison)

Delay [ns]

50 µm Si sensor 90 V bias 25 V full depletion

Laser: Comparison of time delay

Testbeam

NNV Annual meeting – 2019

200 µm Si sensor 200 V bias 115 V full depletion

Delay [ns]

The average delay is determined in the same way as with the testbeam

Note that this is a different sensor from the previous slides

Laser: Comparison of time delay

Testbeam

- **Overall structure is similar**

200 µm Si sensor 200 V bias 115 V full depletion

• To make qualitative comparison, compare the row projection to reduce the systematic error

Laser: Comparison of time delay

NNV Annual meeting – 2019

200 µm Si sensor 200 V bias 115 V full depletion

Row projection for the periodic structure:

Both methods give similar results!

Time resolution improvements

Correcting for timing structure:

- Time resolution consists of two components:
 - ASIC resolution: $\sigma_{t,ASIC}$
 - Sensor resolution: $\sigma_{t.sensor}$
- $\sigma_{t,ASIC}$ consists of size of time bin and further non-uniformities \rightarrow can be decreased now that pixel systematics is known!
- The error due to different systematics is: σ_t (pixel systematics, 300 V) = 560 ps
- $\sigma_{t,sensor}$ estimated at 510 ps

Outlook

- Timepix4! Better time measurement: 200 ps
- Upgrade laser system to two-photon absorption
- Search for faster sensors: 3D sensors, thinner planar sensors, LGAD, ELAD
- New sensor designs? Who knows what the future holds!

Kramberger, G. et al. Radiation Hardness of Thin Low Gain Avalanche Detectors (2018).

NNV Annual meeting – 2019

X-ray photon 🐕

Backup: Etching of metallization

Normally a metal layer is on top of silicon to shield from stray light

Removed using a mixture of:

- Nitric acid
- Phosphoric acid
- Water

Etching took ~2 hours

0 min

NNV Annual meeting – 2019

100 min

Backup: Laser Setup

FBG stabilized laser diode

- Wavelength: 683 nm (absorbed within 15 µm)
- Max output: 2 mW
- FWHM (max): 1 nm
- Minimum spot size: 6.7 µm
- Working distance: ~12 mm

Backup: Calculation of Delay

Error on average delay µ:

$$\sigma_{\mu} = \sqrt{\sigma_{fit}^2 - \left(\frac{1.56}{\sqrt{12}}\right)^2 - \left(\frac{0.26}{\sqrt{12}}\right)^2}$$

Backup: Pixel Design

Poikela, T et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of instrumentation 9, C05013 (2014).

NNV Annual meeting – 2019

21

Backup: Pixel matrix

Not each pixel of the pixel matrix of Timepix3 are the same Difference between routing and components within the build

Shares common logic Such as 640 MHz clock Shares clock buffer Consists of 4 super-pixels Consists of 128x16 building blocks

Backup: Timepix3 telescope

Backup: Charge Deposition

Particle

Backup: Laser Properties

FBG stabilized laser diode @ 683 nm

- Max output: 2 mW
- FWHM (max): 1 nm
- Minimum spot size: 6.7 µm
- Focal length: ~12 mm
- Absorption depth: <15 µm

Green, M.A. and Keevers, M. "Optical properties of intrinsic silicon at 300 K", Progress in Photovoltaics, p.189-92, vol.3, no.3; (1995)

Nik hef

Backup: Timing information

Number of combinations to search for next pixel on tracks is decreased by looking at time information besides spatial information

