

UNIVERSITY

KamLAND-Zen

Coping with decreasing PMT-gains in a ¹³⁶Xe 0vββ-decay experiment

> NNV symposium, 2019-11-01 Bouke Jung (bjung@nikhef.nl)

ββ-decay

Kant

Two modes:

- I. $2\nu\beta\beta$ -decay
 - $(A,Z) \longrightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$
 - SM process: $T_{1/2} \sim 10^{19} 10^{24} \text{ yr}$

ββ-decay

Two modes:

- 2vββ-decay Ι.
 - $(A, Z) \longrightarrow (A, Z+2) + 2e^- + 2\overline{\nu}_e$
 - SM process: $T_{1/2} \sim 10^{19} 10^{24} \text{ yr}$

II. $0v\beta\beta$ -decay

- $(A, Z) \longrightarrow (A, Z+2) + 2e^{-}$
- BSM, L-violating
- Majorana neutrino
- If observed: • →**Necessarily** implies Majorana-v (black-box theorem)

Experimental signature

Experimental considerations

• Experimental sensitivity:

Steven R. Elliot and Petr Vogel. - Annu. Rev. Nucl. Part. Sci.52(2002)

Experimental considerations

Kan, LA NI

• Experimental sensitivity

$$S(m_{\beta\beta}) \propto \left(\frac{1}{G^{0\nu} |M^{0\nu}|^2}\right)^{1/2} \left(\frac{c\Delta E}{\epsilon^2 M t}\right)^{1/4}$$

- Five ingredients:
 - 1. Energy resolution
 - 2. Isotope choice
 - 3. Background levels
 - 4. Detection efficiency
 - 5. Exposure
 - i. High Q-value
 - ii. Ease of enrichment
 - iii. High isotopic abundance
 - iv. Large target mass

KamLAND-Zen

Kam

Japan

- Tohoku University, RCNS
- University of Tokyo, Kavli IPMU
- Osaka University
- Tokushima University
- Kyoto University

US

- University of California, Berkeley
- University of Tennessee
- Triangle University Nuclear Laboratory
- University of Washington
- Massachusetts Institute of Technology
- Virginia Tech
- University of Hawaii
- Boston University

Netherlands

• Nikhef, University of Amsterdam

Currently ~50 people worldwide

KamLAND-Zen

Kam

Japan

- Tohoku University, RCNS
- University of Tokyo, Kavli IPMU
- Osaka University
- Tokushima University
- Kyoto University

US

- University of California, Berkeley
- University of Tennessee
- Triangle University Nuclear Laboratory
- University of Washington
- Massachusetts Institute of Technology
- Virginia Tech
- University of Hawaii
- Boston University

Netherlands

• Nikhef, University of Amsterdam

Currently ~50 people worldwide

Phase-II

- First to reach $T_{1/2} > 10^{26}$ yr
- First to reach $m_{\beta\beta} < 100 \text{ meV}$!
- Muon spallation products (e.g. ¹⁰C,¹²B) and 2vββ currently dominant BG

504 kg-yr exposure $T_{1/2}^{0
u} > 1.07 \times 10^{26} \, {
m yr}$ $\langle m_{etaeta}
angle < (61 - 165) \, {
m meV}$

KZ collaboration (2016), arXiv:1605.02889

Detector status

• Charge distributions shift to lower Q

Average Gain Value

- # masked PMTs 个
- Energy resolution worsens
- Intrinsic BG 个
- Causes
 - Short-circuit in bleeder
 - HV reductions

Masked PMTs

 Currently ~250 PMTs masked and increasing...

• Huge effects on discrimination power!

$$R_{0\nu/2\nu} \propto \left(\frac{\Delta E}{Q_{\beta\beta}}\right)^{-5.8}$$

A solution: new gain estimation

Kann LANIL

- Higher charge events should remain visible above threshold
- Find a way to fit 2 p.e. (or >2 p.e.) peaks
- Similar to standard approach:
 - 1. Collect charge histograms for each PMT
 - 2. Fit the >1 p.e. peaks
 - 3. Extract the gain
- But: very different considerations!
 - What model?
 - Data selection?
 - ...

New PMT response function

New PMT response function

Results

Prospects

- Taking p > 0.01 as criterion:
 - ~25% of masked PMTs retrievable
 - # active PMTs 1629 →1691
- Theoretically, ~3% improvement in E-res.

- From data:
 - 60Co: 0.049 → 0.048
 - n-Capture: 0.061 → 0.060
- 2% E-res. Improvement
 → 10% R0v/2v improvement

In summary

- $0\nu\beta\beta$ -decay research forms an important framework for studying v's
 - Observation necessarily implies Majorana-v!
 - Important complement for understanding mass hierarchy
- KamLAND-Zen stands at the forefront of $0\nu\beta\beta$ -studies
 - Most stringent limits as of yet from Phase I+II
 - 800-phase ongoing as of Jan. 2019 with 40 meV target sensitivity
- Improving E-res. necessary to counter $2\nu\beta\beta$ intrinsic BG going forward
 - Currently E-res. is decreasing! ← increasing # masked PMTs (~250 at present)
 - New gain estimation may recover ~25% of masked PMTs
 - \rightarrow ~2%-5% improvement E-res.
 - → ~10% decrease in relative intrinsic BG!
 - Implementation in **energy fitter** in progress
 - Further improvements to energy fitter under investigation

ありがとう ございます!

EXTRA

Neutrino Masses

1. Dirac neutrino scheme

Add right-chiral neutrinos

$$\mathscr{L}_{\text{mass}}^{\text{D}} = -m\,\overline{\nu}\,\nu = -m\,(\overline{\nu_R}\,\nu_L + \overline{\nu_L}\,\nu_R) = -m\,\overline{\nu_R}\,\nu_L + \text{H.c.}$$

Copy + paste SM massive fermion case

2. Majorana scheme

- Can we conjure mass without separate v_R?
- Yes! Provided v_L and v_R are not independent

$$\mathbf{v}_{\mathsf{L}}^{\mathsf{C}} = \mathbf{C} \mathbf{v}_{\mathsf{L}}^{\mathsf{H}} (= \mathbf{v}_{\mathsf{R}}^{\mathsf{H}})$$

Constructable from 2-comp. spinor
 Lorentz invariant
 Solutions to EOM satisfy rel. mom.

Neutrino Masses

1. Dirac neutrino scheme

• Add right-chiral neutrinos

$$\mathscr{L}_{\text{mass}}^{\text{D}} = -m\,\overline{\nu}\,\nu = -m\,(\overline{\nu_R}\,\nu_L + \overline{\nu_L}\,\nu_R) = -m\,\overline{\nu_R}\,\nu_L + \text{H.c.}$$

Copy + paste SM massive fermion case

2. Majorana scheme

- Can we conjure mass without separate v_R?
- Yes! Provided v_L and v_R are not independent

$$\mathscr{L}_{\text{mass}}^{\text{M}} = -\frac{1}{2} m \overline{\nu_L^C} \nu_L + \text{H.c.}$$
$$\mathbf{v_L^C} = \mathbf{C} \mathbf{v_L^\dagger} (= \mathbf{v_R})$$

Majoranas are their own antiparticles!

$$\nu = \nu_L + \nu_L^C$$
$$\nu^C = \nu$$

Neutrino Masses

Add right-chiral neutrinos

 $-\mathcal{L}_m^{Dirac} = \overline{L} \lambda \tilde{\Phi} \nu_R + \text{ h.c.}$

Copy + paste SM massive fermion case

2. Majorana scheme

- Can we conjure mass without separate v_R?
- Yes! Provided v_L and v_R are not independent

$$-\mathcal{L}_m^{Majorana} = \bar{L}\tilde{\phi} \; \alpha C\tilde{\phi}^T \bar{L}^T + h.c.,$$

 $\mathbf{v}_{\mathrm{L}}^{\mathrm{C}} = \mathbf{C} \mathbf{v}_{\mathrm{L}}^{\mathrm{+}} (= \mathbf{v}_{\mathrm{R}})$

Black-box theorem

Suppose there is a global symmetry prohibiting a Majorana mass term

0

- Only possible symmetry is discrete phase transformation
- This would imply that at the same time:

•
$$\varphi_d - \varphi_u + \varphi_e = 0$$
 $\varphi_\nu \neq$

•
$$\varphi_{
u} = \varphi_d - \varphi_u + \varphi_e$$

$$\mathcal{L}_{\mathrm{mass}}^{\mathrm{M},\nu_{e}} = -\frac{1}{2} m_{ee} \left(-\nu_{eL}^{T} \mathcal{C}^{\dagger} \nu_{eL} + \overline{\nu_{eL}} \mathcal{C} \overline{\nu_{eL}}^{T} \right)$$
$$\nu_{eL} \rightarrow e^{i\varphi_{\nu}} \nu_{eL} \qquad \varphi_{\nu} \neq 0$$
$$e \rightarrow e^{i\varphi_{e}} e, \quad u \rightarrow e^{i\varphi_{u}} u, \quad d \rightarrow e^{i\varphi_{d}} d, \quad W^{\rho} \rightarrow e^{i\varphi_{W}} W^{\rho}$$
$$\overline{\nu_{eL}} \gamma^{\rho} e_{L} W_{\rho} \quad \Rightarrow \quad \varphi_{\nu} - \varphi_{e} - \varphi_{W} = 0$$
$$\frac{1}{u_{L}} \gamma^{\rho} d_{L} W_{\rho} \quad \Rightarrow \quad \varphi_{u} - \varphi_{d} - \varphi_{W} = 0$$

Fundamentals of Neutrino Physics and Astrophysics – A. Giunti (2007)

NMEs

J.J. Gómez-Cadenas and Justo Martín-Albo (2017)

R&D for KamLAND2-Zen and future

PolyEthylene Naphthalate (PEN)

welding easier & strong enough

Timeline

28

Expected charge

30

Data selection procedure

- Expected charge **µ very hard to constrain**
 - Can use only use in-situ data
 - Light and charge yield not controlable...
- Two options:
 - 1. Very careful event type selection + occupancy
 - Sufficient run-by-run statistics close to PMTs (⁴⁰K, ²⁰⁸Tl)
 - Incidence angle selection
 - µ from occupancy:

$$\mu \equiv -\ln\left(P_{
m no-hit}
ight)$$

2. Estimate μ from distance to PMTs and light attenuation factors:

$$\mu_i = \sum_m Q_m^{\text{observed}} \cdot \left(\frac{\tilde{Q}_i^{\text{expected}}}{\sum_n \tilde{Q}_n^{\text{expected}}} \right)$$

$$\tilde{Q}_i^{\text{expected}} = \eta_i \xi_i \frac{\cos\left(\theta_i\right)}{L_i^2} e^{-L_i/\lambda}$$

(Q,µ)-mapping

- Charge distributions for gain fitting selected from projection ranges in (Q,μ) -maps
 - Central projection value varied from 1.0 p.e. to 2.5 p.e.
 - Width varied from 0.05 p.e. to 0.3 p.e.
 - N_{entries} > 10.000 counts

(Q,µ)-mapping

- Charge distributions for gain fitting selected from projection ranges in (Q,μ) -maps
 - Central projection value varied from 1.0 p.e. to 2.5 p.e.
 - Width varied from 0.05 p.e. to 0.3 p.e.
 - N_{entries} > 10.000 counts

- Implement new gain estimation in energy estimator
- Event Energy found through MLE
 - Includes no-hit probabilities

- Implement new gain estimation in energy estimator
- Event Energy found through MLE
 - Includes no-hit probabilities
 - Currently assume detection <u>in</u>efficiency $(\varepsilon_n) = 0$ for $n \ge 2$
 - Not sufficient for low-gain PMTs!
 → Fit ε_n(μ) for all PMTs

 ε_n : detection **in**efficiency for n p.e.

$$P_{\text{no-hit}} = P_0 + \epsilon_1 P_1 + \epsilon_2 P_2 + \epsilon_3 P_3 + \cdots$$

Kan LA NI

- Implement new gain estimation in energy estimator
- Event Energy found through MLE
 - Includes no-hit probabilities
 - Currently assume detection <u>in</u>efficiency $(\varepsilon_n) = 0$ for $n \ge 2$
 - Not sufficient for low-gain PMTs! \rightarrow Fit $\varepsilon_n(\mu)$ for all PMTs
 - Inclusion of $\epsilon_n(\mu)$ -fit improves E-res. in low-E region
 - But not in higher-E region
 - Work in progress:
 - Apply differential weights for signal events compared to background

Performance Summary

	New(1274 ch)	New (1110 ch)	Old (1110 ch)
¹³⁷ Cs (661 keV)	9.75 +/- 0.05 %	10.19 +/- 0.06 %	10.44 +/- 0.05 %
⁶⁰ Co (2505 keV)	5.94 +/- 0.05 %	6.63 +/- 0.02 %	5.17 +/- 0.01 %

