In collaboration with Anuradha Samajdar, Gideon Koekoek, Tanja Hinderer, Peter Tsun Ho Pang and Chris Van Den Broeck

Exploring resonances in binary inspiral using gravitational waves

Pawan Kumar Gupta

Nikhef

November 1, 2019

Pawan Kumar Gupta (Nikhef)

November 1, 2019 1 / 13

Introduction

- Binary system emits gravitational waves, as a result orbital frequency increases
- When gravitational frequency matches with resonance frequencies of the neutron star, orbital energy dissipated
 - inspiral speeds up
 - visible in gravitational waves signal
 - can be measured in principle

Gravitational wave signal

• Gravitational waves signal seen in the detector

$$h(t) = A(t)Cos(\phi(t))$$

• Fourier transform of it

$$\widetilde{h}(f) = A(f)e^{i\psi(f)}$$

Effect of r-modes in neutron star blackhole binary

• R-modes causes phase shift in orbital phase of binary

- r-modes resonances provide information about interior structure of neutron star
- Can effect of r-modes resonances can be measured ?

R-modes

- When neutron star spins then it has r-modes oscillations
- r-modes oscillation frequencies

$$\omega_{Im} = \frac{2m}{l(l+1)}\Omega_{\rm rot}$$

 $\Omega_{\rm rot}$ is spin frequency of neutron star

- Effect of r-modes can be seen during binary inspiral of binary neutron star or neutron star blackhole binary
- When orbital frequency matches with r-modes frequency during binary inspiral it causes phase shift

$$\psi(f) = \begin{cases} \psi_0(f) + (\frac{f}{f_{lm}} - 1)\Delta\phi_{lm}, & f \ge f_{lm}, \\ \psi_0(f), & f < f_{lm}. \end{cases}$$
(1)

Neutron star characterized by

- Mass *M*, moment of inertia *I*
- Dimesionless spin χ
- $\bullet\,$ Tidal Deformability λ It grows as the neutron star get close with other binary object
- R-modes frequencies f_{lm}

R-modes

• For I = 2, m = 1 and I = 2, m = 2 modes

$$f_{22}=rac{2}{2\pi3}\Omega_{
m rot} \qquad f_{21}=rac{1}{2\pi3}\Omega_{
m rot}$$

• $\Omega_{\rm rot}$ does not enter waveform directly

$$\chi = \frac{S}{M^2} = \frac{I\Omega_{\rm rot}}{M^2}$$

where χ is dimensionless spin I is moment of inertia, M is mass of neutron star S is angular momentum

• Moment of inertia I depends on tidal deformability λ through universal relation

$$f_{22} = \frac{2}{2\pi 3} \frac{\chi M^2}{I(\lambda)} \qquad f_{21} = \frac{1}{2\pi 3} \frac{\chi M^2}{I(\lambda)}$$

• Parameters are to be measured $\Delta \phi_{21}$ and $\Delta \phi_{22}$

Results with simulated signal

- For neutron star blackhole binary system
- $M_{blackhole} = 10~M_{\odot}$, $M_{neutron-star} = 1.2~M_{\odot}$
- $\lambda_{blackhole} = 0$, $\lambda_{neutron-star} = 1000$, $\chi_{neutron-star} = 0.1$
- Values for $\Delta \phi_{21} = 25$, $\Delta \phi_{22} = 25$ in simulated signal, signal to noise ratio = 34.22
- Measurement results of parameters in terms of probability distribution

Results with simulated signal

- $M_{blackhole} = 10~M_{\odot}$, $M_{neutron-star} = 1.2~M_{\odot}$
- $\lambda_{blackhole} = 0$, $\lambda_{neutron-star} = 1000$, $\chi_{neutron-star} = 0.1$
- Values for $\Delta \phi_{21} = 5$, $\Delta \phi_{22} = 5$ in simulated signal, signal to noise ratio = 34.22
- Measurement results of parameters in terms of probability distribution

Binary neutron star system

- For binary neutron star system where f_0 and $\Delta \phi$ are sampling parameters
- Values for $\Delta \phi = 25$, $f_0 = 100$ Hz in simulated signal, signal to noise ratio = 55.30
- Measurement results of parameters in terms of probability distribution

Binary neutron star system

- Values for $\Delta \phi = 2.5$, $f_0 = 100$ Hz in simulated signal, Network signal to noise ratio = 55.30
- Measurement results of parameters in terms of probability distribution

- Assessed the detectability of resonant r-modes in neutron star blackhole binary and binary neutron star with 2nd generation detectors
- Induced phase shifts of a few radians may be measurable
- Next step : search for r-modes in GW170817 binary neutron star event
- Measuring r-modes provide information about interior of neutron star

Thank you !

2