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CKM MATRIX
➤ Quarks can change flavour through the emission 

of a W boson
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CKM MATRIX
➤ Quarks can change flavour through the emission 

of a W boson 

➤ The CKM matrix represents the coupling 
strength of quark transitions
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CKM MATRIX
➤ Because the CKM matrix is a unitary matrix ( ), this leads to 

the unitarity triangles:
VCKM ⋅ V†

CKM = I

VusV*ub + VcsV*cb + VtsV*tb = 0
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B MESON OSCILLATION
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B MESON OSCILLATION

➤ Mass eigenstates are a mixture of weak 
eigenstates: 

➤ Flavour at decay might be different 
from flavour at creation

|BL > = p | > + q | >

Δms = mH − mL

ΔΓs = ΓH − ΓL
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CP VIOLATION
➤ CP violating effects of a   decaying to a CP 

eigenstate depend on:
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CP VIOLATION
➤ CP violating effects of a   decaying to a CP 

eigenstate depend on: 

➤ Three types are usually distinguished;              
CP violation in: 

➤ 1. Decay
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Āf

Af

B0
s

B̄0
s

fCP

|BL > = p | > + q | >B0
s B̄0

s

|BH > = p | > − q | >B̄0
sB0

s

P(B0
s → f ) ≠ P(B̄0

s → f )
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CP VIOLATION
➤ CP violating effects of a   decaying to a CP 

eigenstate depend on: 

➤ Three types are usually distinguished;              
CP violation in: 

➤ 2. Mixing
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CP VIOLATION
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➤   for   transitions: ϕs c(c̄s)

WHY MEASURE  ?ϕs

ϕSM
s = arg(λcc̄s

f ) ≈ − 2 arg [
VtsV*tb
VcsV*cb ] = − 2βs

ϕSM
s = − 0.03686+0.00096

−0.00068 rad [CKM fitter]
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➤   for   transitions: ϕs c(c̄s)
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    (  TRANSITION)B0
s → J/ψ K+K− b → cc̄s

➤ Several modes can be used to measure   at LHCb 

➤ “Golden mode":    

➤ Relatively large branching fraction (high yield) 

➤ Clean experimental signature 

ϕs
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LHC   DETECTOR
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MEASURING  ϕs

➤ Time dependent CP asymmetry given as:

ACP(t) =
Γ(B̄0

s → f ) − Γ(B0
s → f )

Γ(B̄0
s → f ) + Γ(B0

s → f )
= ηf ⋅ sin(ϕs) ⋅ sin(Δmst)
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MEASURING  ϕs

➤ Time dependent CP asymmetry given as: 

➤ Experimentally this becomes: 

➤ Furthermore, decay time efficiency and angular efficiency need to be taken 
into account
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CP EIGENVALUE,   =  ηf ±1

➤   is an admixture of CP even and CP 
odd components (due to angular momentum 
conservation) 

➤ To determine   , an angular distribution is 
used to disentangle the CP eigenstates 

➤ CP even:      

➤ CP odd:     

J/ψK+K−

ηf

A0, A|| ηf = + 1

AS, A⊥ ηf = − 1
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DECAY TIME RESOLUTION
➤ Essential for resolving fast B meson 

oscillations 

➤ Determined on data using prompt sample of 
reconstructed   + 2 random kaons 
( ) 

J/ψ( → μμ)
t = 0 ± σt

�30
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DECAY TIME RESOLUTION
➤ Essential for resolving fast B meson 

oscillations 

➤ Determined on data using prompt sample of 
reconstructed   + 2 random kaons 
( ) 

➤   (sufficiently narrower than one 
oscillation period  ~ ) 

➤ D ~ 0.72

J/ψ( → μμ)
t = 0 ± σt

σeff ≈ 45.5 fs
354 fs
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D = e−σ2
i Δm2

s /2

https://arxiv.org/abs/1906.08356


DECAY TIME RESOLUTION
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FLAVOUR TAGGING
➤  Two different algorithms used: 

➤ Same side (SS) 

➤ Opposite side (OS) 
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FLAVOUR TAGGING
➤  Two different algorithms used: 

➤ Same side (SS) 

➤ Opposite side (OS) 

➤ Tagging power expressed as:  , where   and   is mistag 
probability 

➤   ~  (Run 1:  ) 

➤ Higher tagging power means a better exploitation of available data

ϵtagD2 D = (1 − 2ω) ω

ϵtagD2 4.73 ± 0.34 % 3.73 %
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RESULT

ACP(t) = ηf ⋅ e− 1
2 Δm2

s σ2
t ⋅ (1 − 2ω) ⋅ sin(ϕs) ⋅ sin(Δmst)
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➤ Latest result by LHCb, based on 2015 + 2016 data (0.3 + 1.6  ):fb−1

RESULT

ACP(t) = ηf ⋅ e− 1
2 Δm2

s σ2
t ⋅ (1 − 2ω) ⋅ sin(ϕs) ⋅ sin(Δmst)

ϕexp
s = − 0.080 ± 0.041 ± 0.006 rad
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SUMMARY (TAKE-AWAY MESSAGES)
➤   is a measure of CP violation caused by the interference of the mixing and decay of 

the   meson 

➤ Its SM value can be inferred and true value can be measured with high precision, 
making it an excellent probe for NP 

➤ Latest result by LHCb, using 2015 and 2016 data (1.9  ) , is in agreement with SM 
prediction 

➤2017 and 2018 (3.8  ) data currently being analysed, stay tuned!
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ϕexp
s = − 0.080 ± 0.041 ± 0.006 rad



�41


