#### Measurement of the CP-violating phase $\phi_s$ at LHCb

#### Hilbrand Kuindersma

NNV annual meeting 01-11-2019



 Quarks can change flavour through the emission of a W boson



 Quarks can change flavour through the emission of a W boson



The <u>CKM</u> matrix represents the coupling strength of quark transitions

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

► Because the CKM matrix is a unitary matrix  $(V_{CKM} \cdot V_{CKM}^{\dagger} = I)$ , this leads to the unitarity triangles:

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \longrightarrow V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

► Because the CKM matrix is a unitary matrix  $(V_{CKM} \cdot V_{CKM}^{\dagger} = I)$ , this leads to the unitarity triangles:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cb} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \longrightarrow V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$





- Mass eigenstates are a mixture of weak eigenstates:
- Flavour at decay might be different from flavour at creation

 $|B_{L}\rangle = p |B_{s}^{0}\rangle + q |\bar{B}_{s}^{0}\rangle$  $|B_{H}\rangle = p |B_{s}^{0}\rangle - q |\bar{B}_{s}^{0}\rangle$  $\Delta m_{s} = m_{H} - m_{L}$  $\Delta \Gamma_{s} = \Gamma_{H} - \Gamma_{L}$ 



Mass eigenstates are a mixture of weak eigenstates:

 Flavour at decay might be different from flavour at creation

$$|B_{L}\rangle = p |B_{s}^{0}\rangle + q |\bar{B}_{s}^{0}\rangle$$
$$|B_{H}\rangle = p |B_{s}^{0}\rangle - q |\bar{B}_{s}^{0}\rangle$$
$$\Delta m_{s} = m_{H} - m_{L}$$
$$\Delta \Gamma_{s} = \Gamma_{H} - \Gamma_{L}$$





CP violating effects of a B<sup>0</sup><sub>s</sub> decaying to a CP eigenstate depend on:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad |B_L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle \\ |B_H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle$$

CP violating effects of a B<sup>0</sup><sub>s</sub> decaying to a CP eigenstate depend on:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad |B_L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle \\ |B_H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle$$

- Three types are usually distinguished;
   CP violation in:
  - ► 1. Decay

$$P(B_s^0 \to f) \neq P(\bar{B}_s^0 \to f)$$
$$|\bar{A}_f/A_f| \neq 1$$



• CP violating effects of a  $B_s^0$  decaying to a CP eigenstate depend on:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad |B_L\rangle = p | B_s^0 \rangle + q | \bar{B}_s^0 \rangle |B_H\rangle = p | B_s^0 \rangle - q | \bar{B}_s^0 \rangle$$

- Three types are usually distinguished;
   CP violation in:
  - ► 2. Mixing

$$P(B_s^0 \to \bar{B}_s^0) \neq P(\bar{B}_s^0 \to B_s^0)$$
$$|q/p| \neq 1$$



CP violating effects of a B<sup>0</sup><sub>s</sub> decaying to a CP eigenstate depend on:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad |B_L\rangle = p | B_s^0 \rangle + q | \bar{B}_s^0 \rangle |B_H\rangle = p | B_s^0 \rangle - q | \bar{B}_s^0 \rangle$$

- Three types are usually distinguished;
   CP violation in:
  - ► 3. The interference between mixing and decay

$$P(B_s^0 \to f) \neq P(B_s^0 \to \bar{B}_s^0 \to f)$$
$$arg(\lambda_f) \neq 0$$



CP violating effects of a B<sup>0</sup><sub>s</sub> decaying to a CP eigenstate depend on:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad |B_L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle \\ |B_H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle$$

- Three types are usually distinguished;
   CP violation in:
  - ► 1. Decay

$$P(B_s^0 \to f) \neq P(\bar{B}_s^0 \to f)$$

► 2. Mixing

$$P(B_s^0 \to \bar{B}_s^0) \neq P(\bar{B}_s^0 \to B_s^0)$$

► 3. The interference between mixing and decay

$$P(B_s^0 \to f) \neq P(B_s^0 \to \bar{B}_s^0 \to f)$$
$$arg(\lambda_f) \neq 0$$



CP violating effects of a B<sup>0</sup><sub>s</sub> decaying to a CP eigenstate depend on:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad |B_L\rangle = p | B_s^0 \rangle + q | \bar{B}_s^0 \rangle |B_H\rangle = p | B_s^0 \rangle - q | \bar{B}_s^0 \rangle$$

- Three types are usually distinguished;
   CP violation in:
  - ► 1. Decay

$$P(B_s^0 \to f) \neq P(\bar{B}_s^0 \to f)$$

► 2. Mixing

$$P(B_s^0 \to \bar{B}_s^0) \neq P(\bar{B}_s^0 \to B_s^0)$$

> 3. The interference between mixing and decay

$$P(B_s^0 \to f) \neq P(B_s^0 \to \bar{B}_s^0 \to f)$$
$$arg(\lambda_f) \neq 0$$



$$\phi_s = arg(\lambda_f)$$

16

#### WHY MEASURE $\phi_s$ ?

►  $\phi_s$  for  $c(\bar{c}s)$  transitions:

$$\phi_s^{SM} = \arg(\lambda_f^{c\bar{c}s}) \approx -2 \arg\left[\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right] = -2\beta_s$$

$$\phi_s^{SM} = -0.03686^{+0.00096}_{-0.00068} \ rad$$
 [CKM fitter]



#### WHY MEASURE $\phi_s$ ?

►  $\phi_s$  for  $c(\bar{c}s)$  transitions:

$$\phi_s^{SM} = \arg(\lambda_f^{c\bar{c}s}) \approx -2 \arg\left[\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right] = -2\beta_s$$

$$\phi_s^{SM} = -0.03686^{+0.00096}_{-0.00068} \ rad \ [CKM fitter]$$





 $\phi_s^{SM+NP} = -2\beta_s + \Delta\phi_{NP}$ 

#### WHY MEASURE $\phi_s$ ?

►  $\phi_s$  for  $c(\bar{c}s)$  transitions:

$$\phi_{s}^{SM} = \arg(\lambda_{f}^{c\bar{c}s}) \approx -2 \arg\left[\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right] = -2\beta_{s}$$

$$\phi_{s}^{SM} = -0.03686^{+0.00096}_{-0.00068} \operatorname{rad} [CKM fitter]$$

$$\bar{b}$$

$$B_{s}^{0} \quad u, c, t \quad NP \quad \bar{u}, \bar{c}, \bar{t} \quad \bar{B}_{s}^{0}$$

$$s \quad b$$

$$\phi_{s}^{SM+NP} = -2\beta_{s} + \Delta\phi_{NP}$$



$$\phi_s^{exp} \neq \phi_s^{SM}$$

$$\blacklozenge$$
*New physics!*

$$B_s^0 \rightarrow J/\psi \ K^+K^- \ (b \rightarrow c\bar{c}s \text{ transition})$$

► Several modes can be used to measure  $\phi_s$  at LHCb

► "Golden mode":  $B_s^0 \to J/\psi K^+K^-$ 

- Relatively large branching fraction (high yield)
- Clean experimental signature





## LHCb DETECTOR



# LHCb DETECTOR





#### MEASURING $\phi_{\scriptscriptstyle S}$

. . . . . . . . . . .

► Time dependent CP asymmetry given as:

. . . . . .

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to f) - \Gamma(B^0_s \to f)}{\Gamma(\bar{B}^0_s \to f) + \Gamma(B^0_s \to f)} = \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

#### MEASURING $\phi_{\scriptscriptstyle S}$

► Time dependent CP asymmetry given as:

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to f) - \Gamma(B^0_s \to f)}{\Gamma(\bar{B}^0_s \to f) + \Gamma(B^0_s \to f)} = \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

. . . . . . .

Experimentally this becomes:

$$A_{CP}(t) = e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

 $\sigma_t$ : Decay time resolution

 $\omega$  : Mistag probability

#### MEASURING $\phi_{s}$

► Time dependent CP asymmetry given as:

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to f) - \Gamma(B^0_s \to f)}{\Gamma(\bar{B}^0_s \to f) + \Gamma(B^0_s \to f)} = \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

. . . . . . .

Experimentally this becomes:

$$A_{CP}(t) = e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

 $\sigma_t$ : Decay time resolution

 $\omega$  : Mistag probability

#### MEASURING $\phi_{\scriptscriptstyle S}$

► Time dependent CP asymmetry given as:

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to f) - \Gamma(B^0_s \to f)}{\Gamma(\bar{B}^0_s \to f) + \Gamma(B^0_s \to f)} = \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

Experimentally this becomes:

$$A_{CP}(t) = e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \eta_f \cdot \sin(\phi_s) \cdot \sin(\Delta m_s)$$

 $\sigma_t$ : Decay time resolution

 $\omega$  : Mistag probability

Furthermore, decay time efficiency and angular efficiency need to be taken into account

#### CP EIGENVALUE, $\eta_f = \pm 1$

>  $J/\psi K^+K^-$  is an admixture of CP even and CP odd components (due to angular momentum conservation)

- ► To determine  $\eta_f$ , an angular distribution is used to disentangle the CP eigenstates
  - ► CP even:  $A_0, A_{||} \eta_f = +1$
  - ► CP odd:  $A_S, A_\perp \eta_f = -1$



#### CP EIGENVALUE, $\eta_f = \pm 1$

>  $J/\psi K^+K^-$  is an admixture of CP even and CP odd components (due to angular momentum conservation)

► To determine  $\eta_f$ , an angular distribution is used to disentangle the CP eigenstates

► CP even: 
$$A_0, A_{||}$$
  $\eta_f = +1$ 

► CP odd: 
$$A_S, A_\perp \eta_f = -1$$





#### CP EIGENVALUE, $\eta_f = \pm 1$

>  $J/\psi K^+K^-$  is an admixture of CP even and CP odd components (due to angular momentum conservation)

► To determine  $\eta_f$ , an angular distribution is used to disentangle the CP eigenstates

► CP even: 
$$A_0, A_{||}$$
  $\eta_f = +1$ 

► CP odd: 
$$A_S, A_\perp \eta_f = -1$$



29



# **DECAY TIME RESOLUTION**

- Essential for resolving fast B meson oscillations
- ► Determined on data using prompt sample of reconstructed  $J/\psi(\rightarrow \mu\mu) + 2$  random kaons  $(t = 0 \pm \sigma_t)$



[arXiv: 1906.08356]

# **DECAY TIME RESOLUTION**

- Essential for resolving fast B meson oscillations
- ► Determined on data using prompt sample of reconstructed  $J/\psi(\rightarrow \mu\mu) + 2$  random kaons  $(t = 0 \pm \sigma_t)$

►  $\sigma_{eff} \approx 45.5 \, fs$  (sufficiently narrower than one oscillation period ~354 fs)

► D ~ 0.72 
$$D = e^{-\sigma_i^2 \Delta m_s^2/2}$$



# **DECAY TIME RESOLUTION**



# FLAVOUR TAGGING

- ► Two different algorithms used:
  - ► Same side (SS)
  - ► Opposite side (OS)



# **FLAVOUR TAGGING**

- ► Two different algorithms used:
  - ► Same side (SS)
  - ► Opposite side (OS)



- ► Tagging power expressed as:  $\epsilon_{tag}D^2$ , where  $D = (1 2\omega)$  and  $\omega$  is mistag probability
- ►  $\epsilon_{tag} D^2 \sim 4.73 \pm 0.34 \%$  (Run 1: 3.73 %)

# **FLAVOUR TAGGING**

- ► Two different algorithms used:
  - ► Same side (SS)
  - ► Opposite side (OS)



- ► Tagging power expressed as:  $\epsilon_{tag}D^2$ , where  $D = (1 2\omega)$  and  $\omega$  is mistag probability
- ►  $\epsilon_{tag} D^2 \sim 4.73 \pm 0.34 \%$  (Run 1: 3.73 %)
- ► Higher tagging power means a better exploitation of available data

#### RESULT

. . . . . . . . . . . . . . . . . .

. .

$$A_{CP}(t) = \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

. . .

$$A_{CP}(t) = \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

► Latest result by LHCb, based on 2015 + 2016 data  $(0.3 + 1.6 fb^{-1})$ :

$$\phi_s^{exp} = -0.080 \pm 0.041 \pm 0.006 \ rad$$

[arXiv: 1906.08356]

$$A_{CP}(t) = \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin(\phi_s) \cdot \sin(\Delta m_s t)$$

► Latest result by LHCb, based on 2015 + 2016 data  $(0.3 + 1.6 fb^{-1})$ :

$$\phi_s^{exp} = -0.080 \pm 0.041 \pm 0.006 \ rad$$

[arXiv: 1906.08356]

$$\phi_s^{SM} = -0.03686^{+0.00096}_{-0.00068} \ rad$$

#### RESULT



# SUMMARY (TAKE-AWAY MESSAGES)

- ►  $\phi_s$  is a measure of CP violation caused by the interference of the mixing and decay of the  $B_s^0$  meson
- Its SM value can be inferred and true value can be measured with high precision, making it an excellent\_probe for NP
- Latest result by LHCb, using 2015 and 2016 data (<u>1.9 fb<sup>-1</sup></u>), is in agreement with SM prediction

 $\phi_s^{exp} = -0.080 \pm 0.041 \pm 0.006 \ rad$ 

> 2017 and 2018 ( $3.8 fb^{-1}$ ) data currently being analysed, stay tuned!

