

Searching for exotic neutrinos at LHCb

Valeriia LUKASHENKO

01 November 2019

b-physics group Nikhef

Introduction

Neutrinos portrait

- Before 1998 : assumed to be massless and left-handed.
- In 1998 : neutrino oscillation evidence \Rightarrow neutrinos are massive.

Neutrino mixing matrix

Flavour states
$$\longrightarrow \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \overbrace{\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}}^{\text{Mixing matrix}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \longleftrightarrow \text{Mass states}$$

Pontecorvo-Maki-Nakagawa-Sakata matrix

- Mixing between different neutrino flavour can be described by the PMNS matrix
- In the Standard Model neutrinos are massless and left-handed
- Massive neutrinos ⇒ adjust the Standard Model accordingly, but how?

Dirac VS Majorana

Paul Dirac

• Particle \neq anti-particle :

 $\psi \neq \psi^C$

• No lepton number violation.

Ettore Majorana

• Particle = anti-particle :

$$\psi = \psi^C$$

• $\Delta L = 2 \Rightarrow$ lepton number violation.

Neutrinos and existential crisis

 ν_{μ}

Dirac VS Majorana

 $\bar{\nu}_{\mu}$

$$-L_{mass} = \begin{bmatrix} \bar{N}_1 & \bar{N}_2 \end{bmatrix} \begin{bmatrix} m_L & m_D \\ m_D & m_R \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$$

where N_1, N_2 are general neutrino states.

Neutrino mass and seesaw type I mechanism

$$-L_{mass} = \begin{bmatrix} \bar{N}_1 & \bar{N}_2 \end{bmatrix} \begin{bmatrix} \mathfrak{m}_L^{\bullet 0} m_D \\ m_D & m_R \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$$

$$-L_{mass} = \begin{bmatrix} \nu_L & N_R \end{bmatrix} \begin{bmatrix} -m_D^2/m_R & 0 \\ 0 & m_R \end{bmatrix} \begin{bmatrix} \nu_L \\ N_R \end{bmatrix}$$

where ν_L is a light neutrino, N_R is a heavy neutrino.

$$-L_{mass} = \begin{bmatrix} \nu_L & N_R \end{bmatrix} \begin{bmatrix} -m_D^2/m_R & 0 \\ 0 & M_R \end{bmatrix} \begin{bmatrix} \nu_L \\ N_R \end{bmatrix}$$

Difference between Majorana and Dirac signal

Majorana

Parameter of interest

Majorana

Current state of mixing parameter and our phase space

Grey area is excluded. [1805.00070]

A strategy to measure mixing parameter

 $= \varepsilon_{sig} \mathcal{L} \sigma_W BR(W \to \mu \nu)$ $BR(N_R \to \mu jet) |B_{\mu N_R}|^2$

$$=\varepsilon_{nor}\mathcal{L}\sigma_W BR(W\to\mu\nu)$$

Normalization channel

A strategy to measure mixing parameter

$$= \varepsilon_{sig} \mathcal{L} \sigma_W BR(W \to \mu \nu)$$
$$BR(N_R \to \mu jet) |B_{\mu N_R}|^2$$

Signal channel

Normalization channel

10

LHCb detector : an extremely quick overview

Reconstruction and Selection

 $20 < M(\mu_W \mu_N) < 70 \; [\text{GeV}]$

in LHCb acceptance $p_T(\mu_N) > 3$ [GeV]

in LHCb acceptance $20 < p_T(\mu_W) < 70 \text{ [GeV]}$

 $20 < M(\mu_W \mu_N) < 70 \; [\text{GeV}]$

in LHCb acceptance $p_T(\mu_N) > 3$ [GeV]

in LHCb acceptance $20 < p_T(\mu_W) < 70 \ [\text{GeV}]$

 $20 < M(\mu_W \mu_N) < 70 \; [\text{GeV}]$

Impact parameter cut

Impact parameter cut : control regions

A boost with Boosted decision tree classifiers

μ_W classifier	identification hypothesis for μ_W	like/not-like μ_W
		\checkmark/\times
μ_N classifier	identification hypothesis for μ_N	like/not-like μ_N
		✓/×
global classifier	explore kinematics of event	signal/background

	signal	Semileptonic	EW
μ_W classifier	\checkmark	×	\checkmark
μ_N classifier	\checkmark	×	×
global classifier	signal	background	background

Understanding backgrounds : $PT(\mu_W)$

Semileptonic region

EW region

Expected limit

Results

Expected limit as a function of a heavy neutrino mass

Conclusion and outlook

1. Expected limit has arrived : 10^{-4}

- 2. Space for improvements for this analysis
- 3. How competitive are we?

- 1. Expected limit has arrived : 10^{-4}
- 2. Space for improvements for this analysis
- 3. How competitive are we?

- 1. Expected limit has arrived : 10^{-4}
- 2. Space for improvements for this analysis
- 3. How competitive are we?

Thank you for attention!

Backup

μ_N candidates
isMuon
$2 < \eta < 4.5$
$p_T(\mu_N) > 3 \text{ GeV}$
$\frac{ (q/p) }{\sigma(q/p)} > 10$
μ_W candidates
isMuon, $p_T > 20 \text{ GeV}$
$2 < \eta < 4.5$
$20 < p_T(\mu_W) < 70 \text{ GeV}$
$(E_{ECAL} + E_{HCAL})/p < 4\%$
$P(\chi^2) > 0.01$
NumTThits > 0
$\frac{ (q/p) }{\sigma(q/p)} > 10$
$20 < M(\mu_W \mu_N) < 70 \text{ GeV}$

Table 1 - Candidate preselection.

jet candidates
$\begin{split} \mathbf{R} &= 0.5 \\ p_T > 10 ~\mathrm{GeV} \\ 1 ~\mathrm{track} ~ p_T > 1.2 ~\mathrm{GeV}, ~\mathrm{all} ~\mathrm{tracking} ~\mathrm{stations} \\ \mathrm{fraction} ~\mathrm{of} ~\mathrm{charged} ~\mathrm{particles} > 10\% \\ \mathrm{maximum} ~ p_T ~\mathrm{of} ~\mathrm{a} ~\mathrm{track} > 1.2 ~\mathrm{GeV} \end{split}$
N candidates
$\begin{array}{l} M(N) < 80 \ {\rm GeV} \\ p_T(N) > 10 \ {\rm GeV} \end{array}$
W candidates
60 < M(W) < 100 GeV

Table 2 – Candidate preselection.

$$W \to \mu \nu$$

 $\begin{array}{l} \mu_W \text{ is applied} \\ IP(\mu_W) < 0.04 \\ \mu_W \text{-like} \end{array}$

stripping line	description
Stripping21	$p_T > 20~{ m GeV}, \; { m isMuon}$
trigger line	description
LOMuonDecision Hlt1SingleMuonHighPTDecision Hlt2SingleMuonHighPTDecision	nSPDhits< 600, $p_T > 1.5~{\rm GeV}.$ LOMuon, $p_T > 4.8~{\rm GeV},~p > 8~{\rm GeV},~\chi^2/ndf < 4$ $p_T > 10~{\rm GeV}.$

Table 3 – Stripping and trigger lines cuts.

Normalization channel fit yield

- 1. Normalization channel yields are taken from a fit of p_T spectra with MC shapes.
- 2. Fits are performed in bins of η : 8 bins in total.

 $W^- p_T$ spectrum (2.0 < η < 2.25)

	total
Signal 5 [GeV]	$0.10\pm0.01\pm0.01~\%$
Signal 10 $[GeV]$	$0.15\pm0.01\pm0.02~\%$
Signal 15 $[GeV]$	$0.17 \pm 0.01 \pm 0.02~\%$
Signal 20 $[GeV]$	$0.15\pm0.01\pm0.02~\%$
Signal 30 $[GeV]$	$0.15\pm0.01\pm0.02~\%$
Signal 50 $[GeV]$	$0.06\pm0.01\pm0.01~\%$
Normalization	$8.80 \pm 0.89 \pm 0.26 \ \%$

Full list of systematics

Correction	Signal 15 $[GeV]$	$W ightarrow \mu \nu$
global event cut	0.80~%	-
total muon	0.92~%	0.48~%
Wmu_uBoost	0.20%	0.20%
Nmu_uBoost	0.73%	-
momentum calibration	-	2.65~%
jet energy scale [*]	8.64 %	-
jet energy resolution [*]	1.83~%	-
jet energy identification **	1.70~%	-
total	9.16%	3.19 %

*taken from prompt analysis **taken from [LHCB-PAPER-2016-011]

anti- k_T algorithm*

- Cone-shaped jet
- Collinear safe : collinear split safe
- Infrared (soft radiation) safe

anti- k_T jets *[0802.1189]

$$d_{ij} = \min(k_{Ti}^{-2}, k_{Tj}^{-2}) \frac{\Delta_{ij}^2}{R^2}$$
$$d_{iB} = k_{Ti}^{-2}$$
$$d_{ij} < d_{iB} \Rightarrow i + j = i$$
$$d_{ij} > d_{iB} \Rightarrow i = jet$$

 d_{ij} - distance betw. i- and j-particle d_{iB} - distance betw. i- particle and the beam k_T - transverse momentum R- jet radius $\Delta_{ij} = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 _{\ 28}$

Three uBoost classifiers :			
classifier	purpose	input	
Wmu_uBoost Nmu_uBoost	μ_W identification μ_N identification	isolation, PID, E/P isolation, PID, E/P, p_T	
global_uBoost	signal/background	kinematics	
*uBoost = uniform boosted decision tree;			
has a uniform signal efficiency as a function of a heavy neutrino			
mass.			

Multivariate analysis : Boosted Decision Tree

Input parameters		
μ_W uBDT	μ_N uBDT	global uBDT
muon isolation muon PID	muon isolation muon PID	cos between muons jet cone R
muon E/P	muon E/P	$p_T(\text{jet})$
	muon p_T	$\begin{array}{c} \text{missing } p_T \\ \text{M}(\mu_1 \mu_2) \\ \text{M}(\text{W}) \end{array}$

Table 4 - BDT input variables

For more on the BDT training consult Elena's Dall'Occo thesis.

BDT Efficiency

Figure 2 - BDT signal efficiency with respect to signal mass, MC.

Corrections data vs Monte Carlo

Never trust your Monte Carlo!

*taken from [LHCb-INT-2014-030]

GEC correction

- Number of SPD hits trigger cut efficiency in $Z \rightarrow \mu^+ \mu^-$ data.
- New number of SPD hits cut N with same efficiency in $Z \rightarrow \mu^+ \mu^-$ Monte Carlo.

•
$$c_{GEC} = \frac{\varepsilon(nSPDhits < N)}{\varepsilon(nSPDhits < 600)}$$

*nPVs = number of primary vertices

nSPD hits = number of SPD hits

33

uBoost correction

• $c = \frac{\varepsilon(data)}{\varepsilon(MC)}$

- Wmu_uBoost correction use cut and count on $Z \rightarrow \mu^+ \mu^-$
- Nmu_uBoost correction combine $Z \to \mu^+\mu^-$ and $\Upsilon(1S) \to \mu^+\mu^-$

Ipatia function

- two-tailed Crystal-Ball function with a hyperbolic core function
- fits a mass spectrum with unknown/different per-event mass uncertainties

$$I2 = N \begin{cases} G(m, \mu, \sigma, \lambda, \zeta, \beta) & -\alpha_1 < \frac{m-\mu}{\sigma} < \alpha_2 \\ \frac{G(m, \mu, \sigma, \lambda, \zeta, \beta)}{\left(1 - m/(n_1 \cdot \frac{G(m-\alpha_1 \sigma, \mu, \sigma, \lambda, \zeta, \beta)}{G'(m-\alpha_1 \sigma, \mu, \sigma, \lambda, \zeta, \beta)} - \alpha_1 \sigma)\right)^{n_1}} & \frac{m-\mu}{\sigma} \le -\alpha_1 \\ \frac{G(m, \mu, \sigma, \lambda, \zeta, \beta)}{\left(1 - m/(n_2 \cdot \frac{G(m-\alpha_2 \sigma, \mu, \sigma, \lambda, \zeta, \beta)}{G'(m-\alpha_2 \sigma, \mu, \sigma, \lambda, \zeta, \beta)} - \alpha_2 \sigma)\right)^{n_2}} & \frac{m-\mu}{\sigma} \ge \alpha_2 \end{cases}$$

I2 - Ipatia function; G - generalized hyperbolic function; N - normalization; α_1 and n_1 - left-side tail parameters; α_2 and n_2 - right-side tail parameters

Momentum calibration : before

Figure 3 – Mean dimuon mass from $Z \to \mu^+ \mu^-$ as a function of muons ϕ .

Momentum calibration : after

Figure 4 – Mean dimuon mass from $Z \to \mu^+ \mu^-$ as a function of muons ϕ before and after calibration, MU.