To Infinity and Beyond!

Lodewijk Nauta

Goal

• Goal:

Show whether the Neutrino Mass Ordering sensitivity increases when using multiple categories in the PID variable \ensuremath{q}

 Method: introduce some binning scheme in PID variable q and calculate the sensitivity

Tool

• MONA: Mass Ordering Nikhef Analysis (previous name: nikhefNMO)

- Input: PID mass production files \rightarrow summary format
- Calculate Detector Response Matrix (R.M.)
- Apply RM to True flux calculated w/ oscillation parameters P
- Calculate #Evts after 3 years
- Fit oscillation parameters P to generated data (Asimov method) w/ RooFit
 - Simultaneous pdf fit:
 - χ^2 fit
 - Maximum likelihood
 - Pseudo-experiments
 - Contouring

Advantage of MONA:

- Very flexible in RM construction: changing #PID categories is trivial
- Uses well established RooFit package for fitting
- Standard summary data format for users
- URL: git.km3net.de/bstrand/MONA

https://git.km3net.de/bstr andberg/MONA

Issue

- We see: Sensitivity increases with more `PID categories`
- Due to signal in PID variable q
- Due to statistics of response matrix
 - More categories \rightarrow less events per Response Matrix (track, shower, etc.)
 - Response matrix mapping gets worse with less events
 - Event distributions deviate more from a true detector response
 - Easier to distinguish two hypotheses H0, H1
 - Sensitivity to hypothesis H1 goes up
- Decouple these 2 effects

Detector Response Matrix

Map true events to reco events

Response matrix property

• When calculating the average chi2 for a RM [1]:

$$\Delta \chi^2 \rangle(N) = \langle \Delta \chi^2_{\infty} \rangle + \sum_{i}^{true \ reco} \frac{K_{ij}}{N_i} + O(N^{-\frac{3}{2}})$$
$$K_{ij} \approx N_j^A \left(\frac{n_i^A}{N_j^A} - \frac{n_i^B}{N_j^B}\right) \Phi_i(X_j) V_j e_i$$

$$\langle \Delta \chi^2 \rangle (N) \approx \langle \Delta \chi^2_\infty \rangle + \frac{K}{N_{MC}}$$

• See backup for details on K_{ij}

[1] Neutrino oscillations and Earth tomography with KM3NeT-ORCA, S. Bourret, 2018

Fit to chi2 of sampled response matrix

- 1. Create response matrix with *fraction* of total MC events
- 2. Calculate sensitivity with *sampled* RM
- 3. Do 1. and 2. many times
- 4. Sensitivity should follow

$$\langle \Delta \chi^2 \rangle \approx \langle \Delta \chi^2_\infty \rangle + \frac{K}{N_{MC}}$$

- 5. Fit to function **p0 + (p1 / N)^p2** as a check on the behavior: p2 = 1
- 6. Fit to function **p0 + (p1 / N)**

$$\Delta\chi^2(1) = 7.65$$
$$\langle\Delta\chi^2_{\infty}\rangle = 5.66$$

Extrapolated Sensitivities

 $\Delta \chi^2$ extrapolated to infinite statistics

Extrapolated Sensitivities – enhance!

 $\Delta~\chi^2$ extrapolated to infinite statistics

Cross-check: random track score

 Random* track score for the events removes any possible signal in our data, showing the baseline sensitivity

*Random means: randomize the track score of a MC event within its own class of event (track/shower) while keeping the track score distribution identical.

How many events does it take?

Current production: 10M events

$$\langle \Delta \chi^2 \rangle \approx \langle \Delta \chi^2_\infty \rangle + \frac{K}{N_{MC}}$$

• Calculate N! (to reach 1% accuracy)

PID Categories	Number of MC events needed
2	29.3M
3	40.2M
4	52.1M
5	62.0M

Conclusion

Make conclusion FINAL

- We can extrapolate to infinite statistics and sensitivity of the *true* detector
- Using more than 2 PID categories increases our sensitivity to the NMO signal: by 0.2-0.4 σ
- The ideal number of PID categories used with this scheme is: 3
 OR 4
- To negate DR effects in the calculation we would need >20 times more MC events
- Model breaks down for 5+ PID categories
- Different cuts for the PID categories might be better

Backup

Extrapolated Sensitivities - IO

Cross-check: random track score

Sensitivity comparison: 2 PID categories IO

Sensitivity comparison: 3 PID categories IO

Literature

Determining the Neutrino Mass Hierarchy with the Precision IceCube Next Generation Upgrade, *L. Schulte*, 2015

Measuring the neutrino mass hierarchy with the future KM3NeT/ORCA detector, *J. Hofestädt*, 2017

Neutrino oscillations and Earth tomography with KM3NeT-ORCA, *S. Bourret*, 2018

Backup: K parameter

$$\langle \Delta \chi^2 \rangle(N) = \langle \Delta \chi^2_{\infty} \rangle + \sum_{i}^{true} \sum_{j}^{reco} \frac{K_{ij}}{N_i} + O(N^{-\frac{3}{2}})$$

$$K_{ij} \approx N_j^A \left(\frac{n_i^A}{N_j^A} - \frac{n_i^B}{N_j^B}\right) \Phi_i(X_j) V_j e_i$$

 N_i^A : average number of events in reco bin j under hypothesis A

 n_i^B : average number of events in true bin i under hypothesis B

 Φ_i : the pdf that maps true events from bin i to bin j

 X_j : bin center of reco bin j

 V_j : bin volume of reco bin j

 e_i : detector efficiency at true bin i

NB: When randomizing the track score, this K is **NOT** the same as not randomizing. K depends the pdf Φ . Randomizing will change the value of this pdf, since events can now be mapped to another bin (in 2+ categories).

9.5

Chi2 dist at 25.12 percent MC in RM

22

20 18 16

14

12 10 8

h chi2 dist 7

100

10.5

0.6762

20.02 / 16

 9.14 ± 1.34

 $\textbf{10.51} \pm \textbf{0.08}$

 0.6499 ± 0.0657

Entries

Mean

Std Dev

z² / ndf

Constant

Mean

Sigma

12

10 L

6.881

3.954e-07

2.705e-09/0

 129.2 ± 192.5

 $\textbf{7.061} \pm \textbf{0.515}$

 0.2476 ± 0.6127

Parameters, track quality, fit procedure

- For *Nature*: evaluate the model for N at PDG central values.
- RooFit: χ^2 -minimization, fitted in both θ_{23} quadrants
- Simultaneous pdf fit for track and shower channels (2/3/4/5 PID bins)
- Sensitivity: $S = \sqrt{\Delta \chi^2}$

Parameter	Central value NO	Central value IO	Treatment
θ ₁₂ (°)	0.297	0.297	Fixed
θ ₁₃ (°)	0.215	0.216	Fixed
θ ₂₃ (°)	0.425	0.589	Fitted
$\Delta m^2_{21} (\mathrm{eV}^2)$	7.37e-5	7.37e-5	Fixed
$\Delta m_{31}^2 (\mathrm{eV}^2)$	2.56e-3	-2.54e-3	Fitted
δ_{CP}	1.38π	1.31π	Fixed

Do we still u PDG value i MONA or do use nufit, something els

18

Multi-binned event classification

- Reconstruct all events as shower and track
- Use PID algorithm to give all events a track-like quality factor q

Asimov Sensitivity

"How well can we reject the other hypothesis?"

Model: N(θ_{ij} , Δm_{ij}^2 , δ_{CP}) in (E, cos θ) after 3 years

- 1. Assuming NO: $N(\Delta m_{31}^2 > 0) = Nature$
- 2. Fit N in IO-parameter space on *Nature* data: $N(\Delta m_{31}^2 < 0)$ Fitted parameters: θ_{23} , Δm_{31}^2 , **no systematics** in this work
- 3. N(Fitted parameters) = *Fitted*
- 4. Calculate $S = \sqrt{\chi^2}$ between *Nature* and *Fitted*

