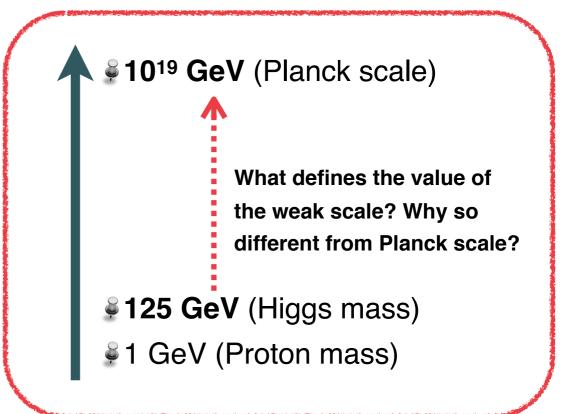
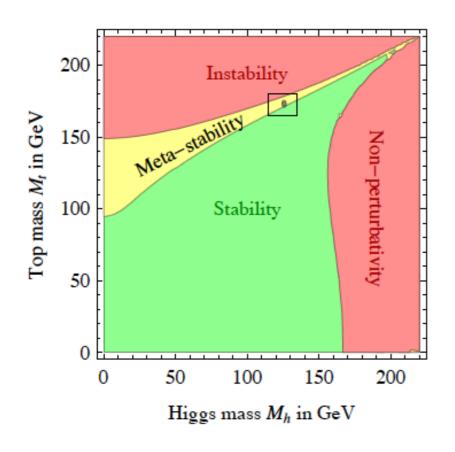
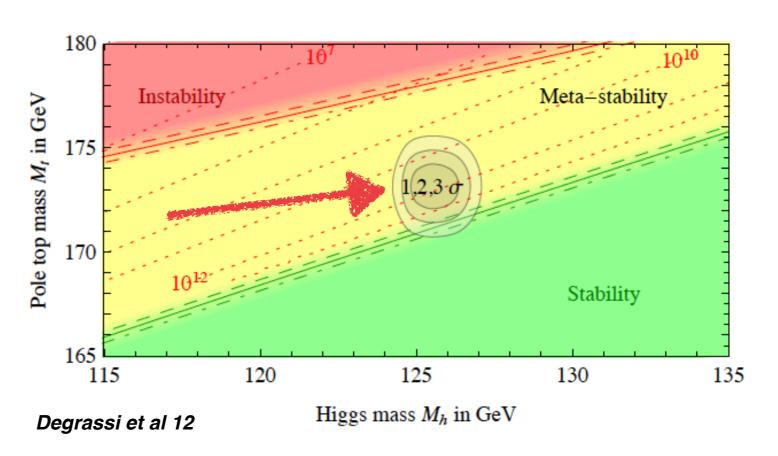


The Standard Model EFT: The top quark sector

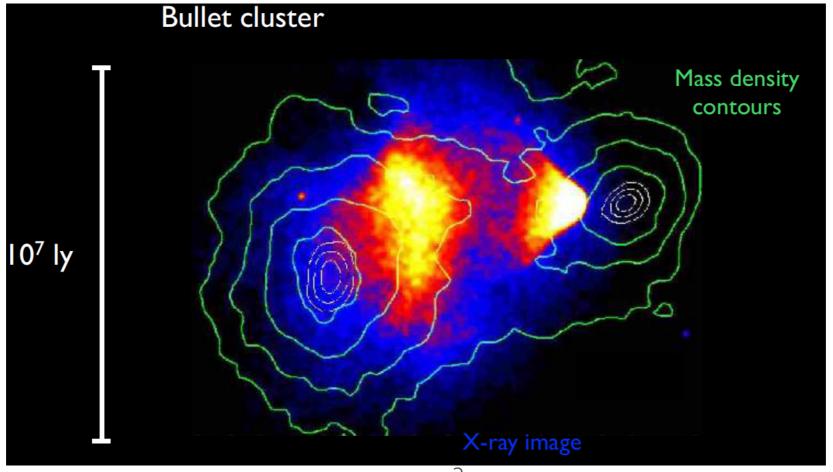

Juan Rojo


VU Amsterdam & Theory group, Nikhef


Nikhef Topical Lectures on Flavour Physics and CP violation 14th June 2019

The Higgs boson

- Huge gap between weak and Plank scales?
- Compositeness? Non-minimal Higgs sector?
- © Coupling to **Dark Matter**? Role in cosmological phase transitions?
- Is the vacuum state of the Universe stable?



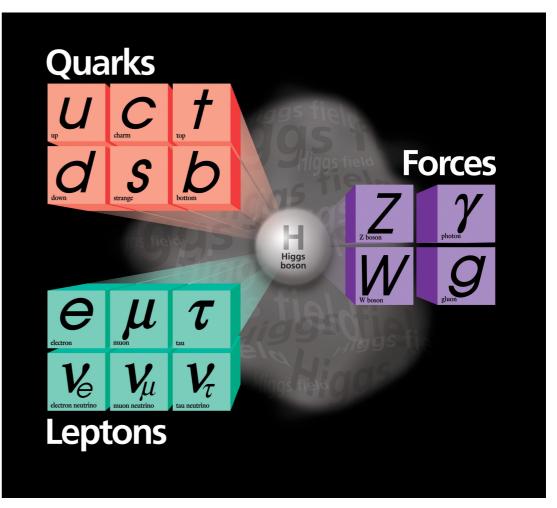
The Higgs boson

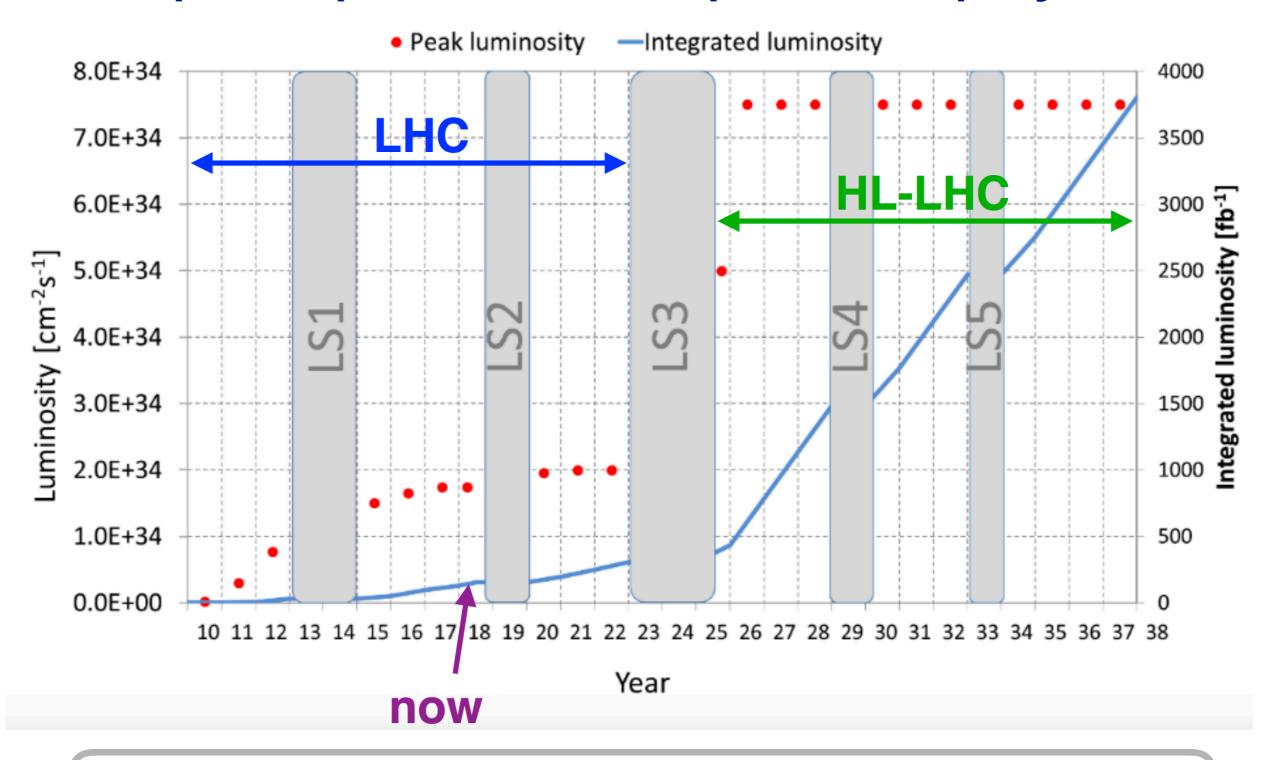
- Huge gap between weak and Plank scales?
- Compositeness? Non-minimal Higgs sector?
- © Coupling to **Dark Matter**? Role in cosmological phase transitions?
- Is the vacuum state of the Universe stable?

Dark matter

- Weakly interacting massive particles?
 Neutrinos? Ultralight particles (axions)?
- Interactions with SM particles? Selfinteractions?
- Structure of the Dark Sector?

The Higgs boson

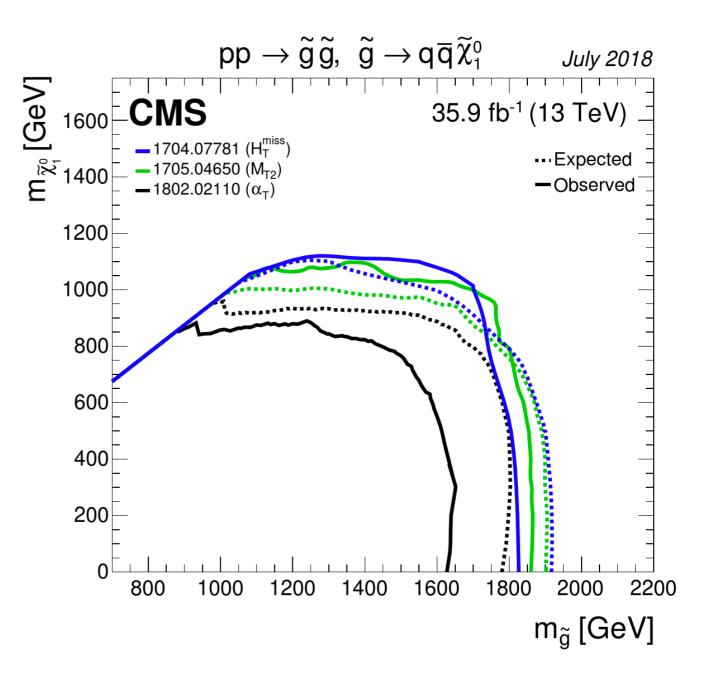

- Huge gap between weak and Plank scales?
- Compositeness? Non-minimal Higgs sector?
- © Coupling to **Dark Matter**? Role in cosmological phase transitions?
- Is the vacuum state of the Universe stable?


Quarks and leptons

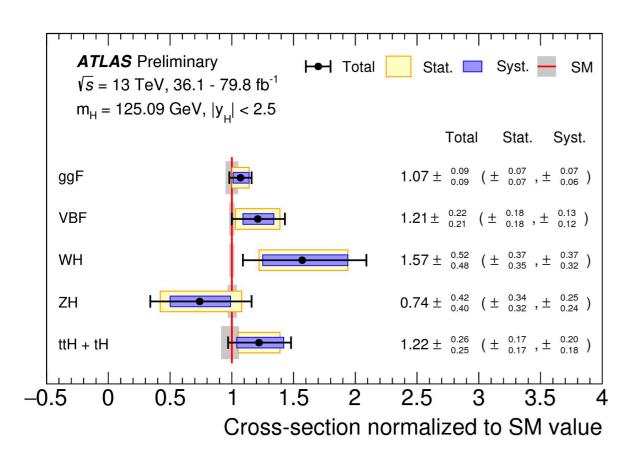
- Why 3 families? Origin of masses, mixings?
- Origin of Matter-Antimatter asymmetry?

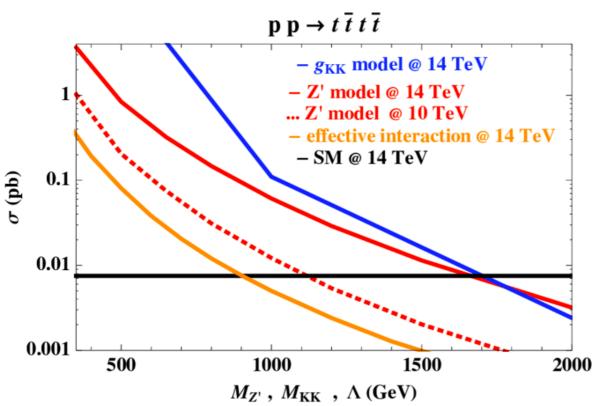
Dark matter

- Weakly interacting massive particles?
 Neutrinos? Ultralight particles (axions)?
- Interactions with SM particles? Selfinteractions?
- Structure of the Dark Sector?



Crucial information on these fundamental questions will be provided by the LHC: the **exploration of the high-energy frontier** has just started!


The quest for New Physics at the LHC


Model-Dependent Searches

- Map parameter space of **specific theories**, or specific realisations of theories
 (SUSY, Higgs compositeness, ...)
- Reinterpretation/recasting challenging, since requires Monte Carlo showering, detector simulation, ...
- Ad-hoc restrictions of the BSM parameter space to facilitate interpretation
- Sensitive to O(1) deviations

The quest for New Physics at the LHC

Juan Rojo

Model-Independent Searches

- ☑ ``SM'' measurements to constrain BSM
- Allows the use of highest possible precision in theory calculations
- ✓ Interpreted in multiple BSM frameworks (including those not thought of yet!)
- ✓ In the long-term, measurements have the largest impact in the HEP community
- ✓ Sensitive to O(0.1) or O(0.01) deviations

The quest for New Physics at the LHC

Model-Dependent Searches

Model-Independent Searches

- Map parameter space of **specific theories**, or specific realisations of theories
 (SUSY, Higgs compositeness, ...)
- Reinterpretation/recasting challenging, since requires Monte Carlo showering, detector simulation, ...
- Ad-hoc restrictions of the BSM parameter space to facilitate interpretation
- Sensitive to O(1) deviations

- ☑ ``SM'' measurements to constrain BSM
- Allows the use of highest possible precision in theory calculations
- ✓ Interpreted in multiple BSM frameworks (including those not thought of yet!)
- ✓ In the long-term, measurements have the largest impact in the HEP community
- ✓ Sensitive to O(0.1) or O(0.01) deviations

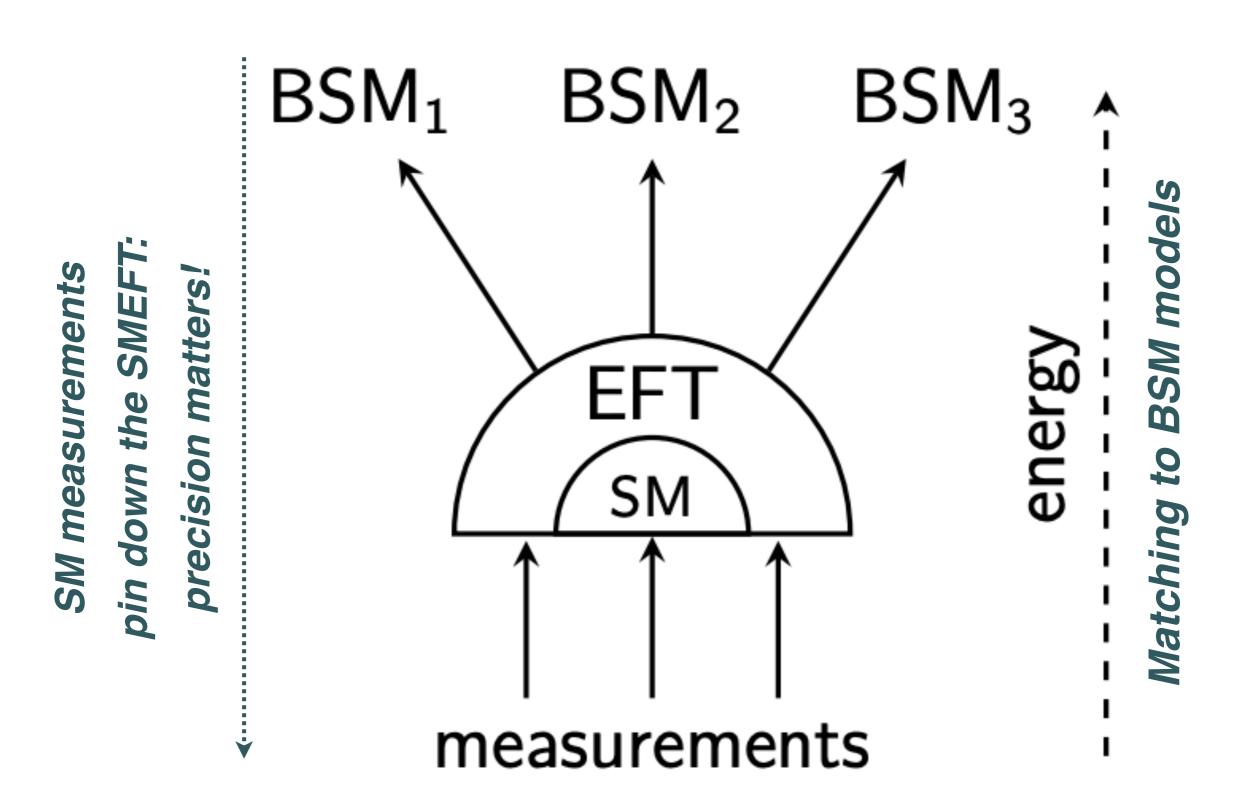
The Standard Model Effective Field Theory

Systematic parametrisation of the **theory space** in vicinity of Standard Model

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

- SMEFT: low-energy limit of generic UV-complete theories at high energies
- Assumes SM field content and symmetries (except the accidental ones!)
- Fully renormalizable, full-fledged QFT: can compute higher orders in QCD and EW
- Can be matched to any BSM model that reduces to the SM at low energies

Systematic parametrisation of the **theory space** in vicinity of Standard Model


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

- SMEFT: low-energy limit of generic UV-complete theories at high energies
- Assumes SM field content and symmetries (except the accidental ones!)
- Fully renormalizable, full-fledged QFT: can compute higher orders in QCD and EW
- Can be matched to any BSM model that reduces to the SM at low energies

Systematic parametrisation of the **theory space** in vicinity of Standard Model

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

(...) if one writes down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, (...) the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry. [Phenomenological Lagrangians, Weinberg '79]

Heavy bSM physics beyond the direct reach of the LHC can be parametrised in a model-independent in terms of complete basis of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots,$$

Heavy bSM physics beyond the direct reach of the LHC can be parametrised in a model-independent in terms of complete basis of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots,$$

Some operators induce growth with the partonic centre-of-mass energy: increased sensitivity in LHC cross-sections in the TeV region

$$\sigma(\mathbf{E}) = \sigma_{\text{SM}}(\mathbf{E}) \left(1 + \sum_{i}^{N_{d6}} \omega_{i} \frac{c_{i} m_{\text{SM}}^{2}}{\Lambda^{2}} + \sum_{i}^{N_{d6}} \widetilde{\omega}_{i} \frac{c_{i} \mathbf{E}^{2}}{\Lambda^{2}} + \mathcal{O}\left(\Lambda^{-4}\right) \right)$$

enhanced sensitivity from **TeV-scale processes:** unique feature of LHC

Heavy bSM physics beyond the direct reach of the LHC can be parametrised in a model-independent in terms of complete basis of higher-dimensional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots,$$

Some operators induce growth with the partonic centre-of-mass energy: increased sensitivity in LHC cross-sections in the TeV region

$$\sigma(\mathbf{E}) = \sigma_{\mathrm{SM}}(\mathbf{E}) \left(1 + \sum_{i}^{N_{d6}} \omega_{i} \frac{c_{i} m_{\mathrm{SM}}^{2}}{\Lambda^{2}} + \sum_{i}^{N_{d6}} \widetilde{\omega}_{i} \frac{c_{i} \mathbf{E}^{2}}{\Lambda^{2}} + \mathcal{O}\left(\Lambda^{-4}\right) \right)$$

- Fig. The number of SMEFT operators is large: 59 non-redundant operators at dimension 6 with Minimal Flavour Violation, > 2000 operators without any flavour assumption
- A global SMEFT analysis needs to explore a huge complicated parameter space

Operators involving up-type quarks in the Warsaw basis:

[Grzadkowski et al '10]

Four-quark operators (11)	Two-quark operators (9)
$O_{qq}^{1(ijkl)}=(ar{q}_i\gamma^\mu q_j)(ar{q}_k\gamma_\mu q_l),$	$\mathcal{O}_{uarphi}^{(ij)}=ar{q}_{i}u_{j} ilde{arphi}\left(arphi^{\dagger}arphi ight),$
$O_{qq}^{3(ijkl)}=(ar{q}_i\gamma^\mu au^Iq_j)(ar{q}_k\gamma_\mu au^Iq_I),$	$\mathcal{O}_{arphi q}^{1(ij)} = (arphi^\dagger \stackrel{\longleftrightarrow}{iD}_\mu arphi) (ar{q}_i \gamma^\mu q_j),$
$O_{qu}^{1(ijkl)}=(ar{q}_i\gamma^\mu q_j)(ar{u}_k\gamma_\mu u_l),$	$\mathcal{O}_{arphi q}^{3(ij)} = (arphi^\dagger \stackrel{\longleftrightarrow}{iD}^I_{\ \mu} arphi) (ar{q}_i \gamma^\mu au^I q_j),$
$O_{qu}^{8(ijkl)}=(ar{q}_i\gamma^\mu T^Aq_j)(ar{u}_k\gamma_\mu T^Au_l),$	$\mathcal{O}_{arphi u}^{(ij)} = (arphi^\dagger \stackrel{\longleftrightarrow}{iD}_\mu arphi) (ar{u}_i \gamma^\mu u_j),$
$O_{qd}^{1(ijkl)}=(ar{q}_i\gamma^\mu q_j)(ar{d}_k\gamma_\mu d_l),$	$\mathcal{O}^{(ij)}_{arphi u d} = (ilde{arphi}^\dagger i D_\mu arphi) (ar{u}_i \gamma^\mu d_j),$
$O_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^\mu T^A q_j) (\bar{d}_k \gamma_\mu T^A d_l),$	$\mathcal{O}_{uW}^{(ij)} = \left(ar{q}_i \sigma^{\mu u} au^I u_j ight) ilde{arphi} \ W_{\mu u}^I,$
$O_{uu}^{(ijkl)}=(\bar{u}_i\gamma^{\mu}u_j)(\bar{u}_k\gamma_{\mu}u_l),$	$\mathcal{O}_{dW}^{(ij)} = \left(ar{q}_i \sigma^{\mu u} au^I d_j ight) arphi \; W_{\mu u}^I,$
$O_{ud}^{1(ijkl)}=(ar{u}_i\gamma^\mu u_j)(ar{d}_k\gamma_\mu d_l),$	$\mathcal{O}_{uB}^{(ij)} = \left(ar{q}_i \sigma^{\mu u} u_j ight) ilde{arphi} \; B_{\mu u},$
$O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} T^A d_l),$	$\mathcal{O}_{uG}^{(ij)} = \left(ar{q}_i \sigma^{\mu u} T^A u_j ight) ilde{arphi} G_{\mu u}^A,$
$\mathcal{O}_{quqd}^{1(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l),$	
$\mathcal{O}_{quqd}^{8(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l),$	
!!!d =======!=== !==d====	!

+ ijkl generation index assignments

q, l: left-handed doublets u, d, e: right-h. singlets

Two-quark-two-lepton operators (8)

$$O_{lq}^{1(ijkl)} = (\bar{l}_{j}\gamma^{\mu}l_{j})(\bar{q}_{k}\gamma^{\mu}q_{l}),$$

$$O_{lq}^{3(ijkl)} = (\bar{l}_{j}\gamma^{\mu}t^{l}l_{j})(\bar{q}_{k}\gamma^{\mu}\tau^{l}q_{l}),$$

$$O_{lq}^{(ijkl)} = (\bar{l}_{j}\gamma^{\mu}l_{j})(\bar{u}_{k}\gamma^{\mu}u_{l}),$$

$$O_{eq}^{(ijkl)} = (\bar{e}_{j}\gamma^{\mu}e_{j})(\bar{q}_{k}\gamma^{\mu}q_{l}),$$

$$O_{eq}^{(ijkl)} = (\bar{e}_{j}\gamma^{\mu}e_{j})(\bar{u}_{k}\gamma^{\mu}u_{l}),$$

$$O_{lequ}^{(ijkl)} = (\bar{l}_{i}e_{j}) \varepsilon (\bar{q}_{k}u_{l}),$$

$$O_{lequ}^{3(ijkl)} = (\bar{l}_{i}\sigma^{\mu\nu}e_{j}) \varepsilon (\bar{q}_{k}\sigma_{\mu\nu}u_{l}),$$

$$O_{ledq}^{(ijkl)} = (\bar{l}_{i}e_{j})(\bar{d}_{k}q_{l}),$$

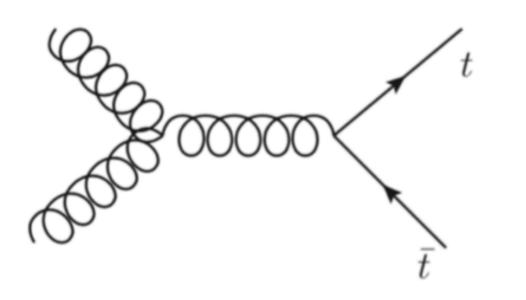
$$\mathcal{B} \text{ and } \mathcal{L} \text{ operators (5)}$$

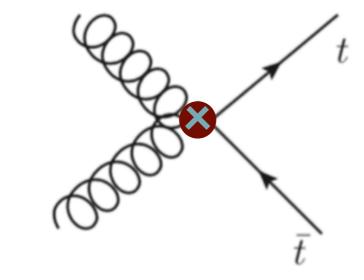
$$O_{qqq}^{(ijkl)} = (\bar{q}^{c}_{i\alpha}u_{j\beta})(\bar{q}^{c}_{k\gamma}\varepsilon l_{l}) \varepsilon^{\alpha\beta\gamma},$$

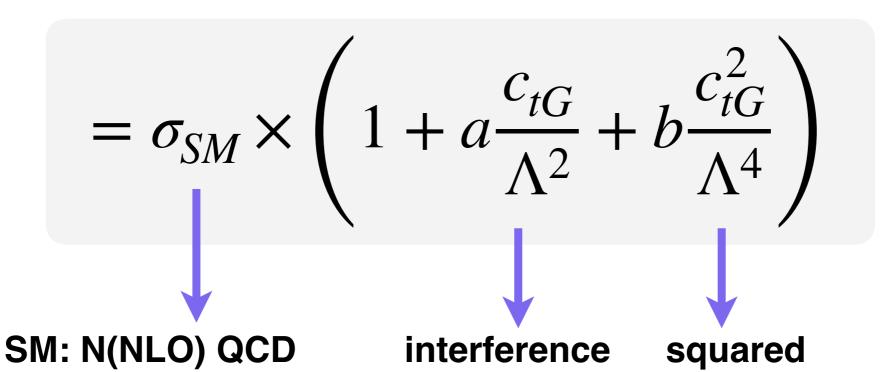
$$O_{qqq}^{(ijkl)} = (\bar{q}^{c}_{i\alpha}\varepsilon q_{j\beta})(\bar{q}^{c}_{k\gamma}\varepsilon l_{l}) \varepsilon^{\alpha\beta\gamma},$$

$$O_{qqq}^{3(ijkl)} = (\bar{q}^{c}_{i\alpha}\varepsilon q_{j\beta})(\bar{q}^{c}_{k\gamma}\varepsilon l_{l}) \varepsilon^{\alpha\beta\gamma},$$

$$O_{qqq}^{3(ijkl)} = (\bar{q}^{c}_{i\alpha}\tau^{l}\varepsilon q_{j\beta})(\bar{q}^{c}_{k\gamma}\tau^{l}\varepsilon l_{l}) \varepsilon^{\alpha\beta\gamma},$$

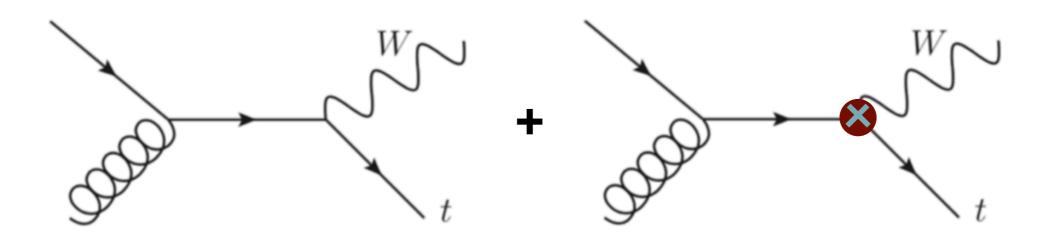

$$O_{qqq}^{3(ijkl)} = (\bar{q}^{c}_{i\alpha}u_{i\beta})(\bar{q}^{c}_{k\gamma}\tau^{l}\varepsilon l_{l}) \varepsilon^{\alpha\beta\gamma},$$

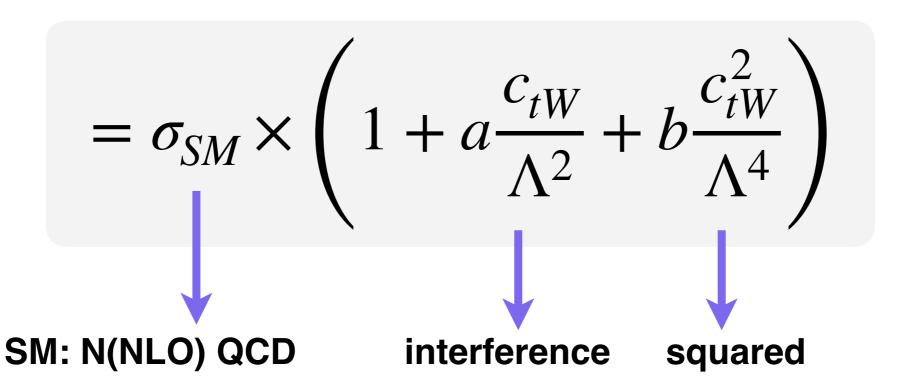

$$O_{qqq}^{(ijkl)} = (\bar{q}^{c}_{i\alpha}u_{i\beta})(\bar{q}^{c}_{k\gamma}\tau^{l}\varepsilon l_{l}) \varepsilon^{\alpha\beta\gamma}.$$


SMEFT effects

Standard Model

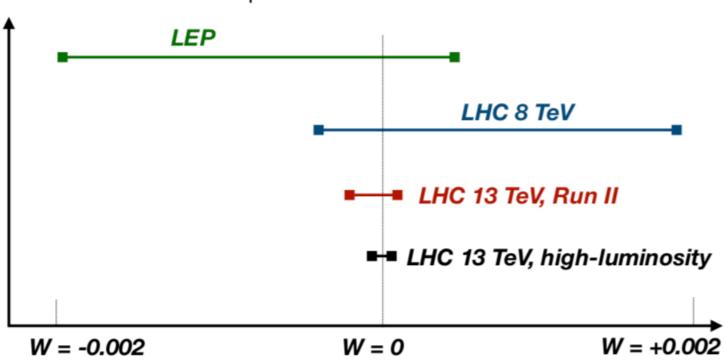
$${^{\ddagger}O_{uG}^{(ij)}} = (\bar{q}_i \sigma^{\mu\nu} T^A u_j) \, \tilde{\varphi} G_{\mu\nu}^A \,,$$

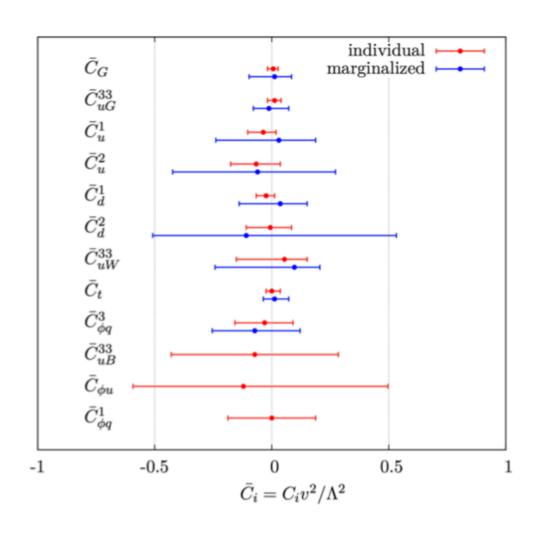




SMEFT effects

Standard Model


$$O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \, \tilde{\varphi} W_{\mu\nu}^I$$



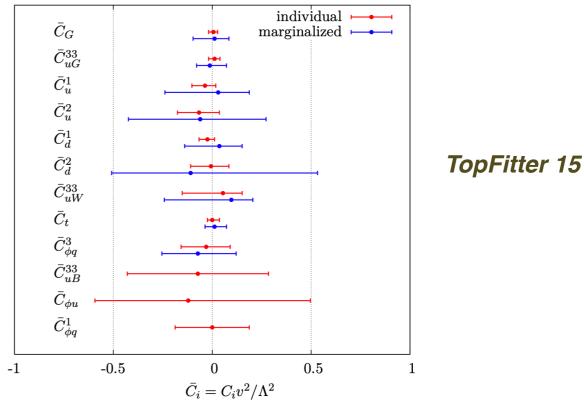
SMEFT constraints from LHC

Bounds on the SMEFT parameter W from LEP and LHC Drell-Yan data

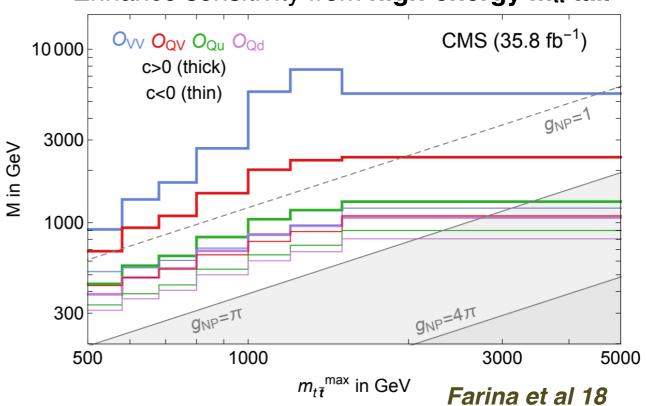
LHC data can markedly improve the LEP bounds on SMEFT coefficients: Precision **Electroweak Tests at hadron colliders**

Farina et al PLB (16)

Varying all parameters simultaneously results in **looser bounds** that varying a few parameters at a time due to degeneracies in parameter space


TopFitter, Buckley et al, JHEP (15)

SMEFT constraints from LHC


Exploit rarer processes at LHC eg t+Z+j

Combine different processes in global fit

Enhance sensitivity from high-energy mtt tail

Recipe for a global SMEFT analysis

Theory

(N)NLO QCD + NLO EW for SM xsecs

NLO QCD for SMEFT contributions

State-of-the-art Parton Distributions

Data

Higgs and **gauge boson** production

Top quark and jet production

Precision LEP, low energies, flavour

Global SMEFT fit

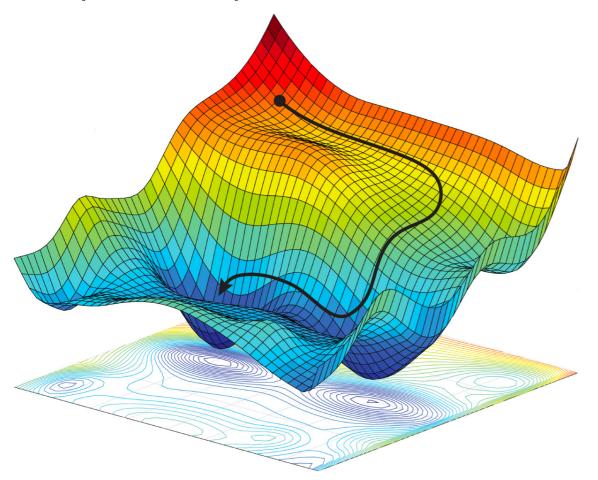
Bounds can be compared with

specific UV completions

New data incorporated without redoing fit

Delivery

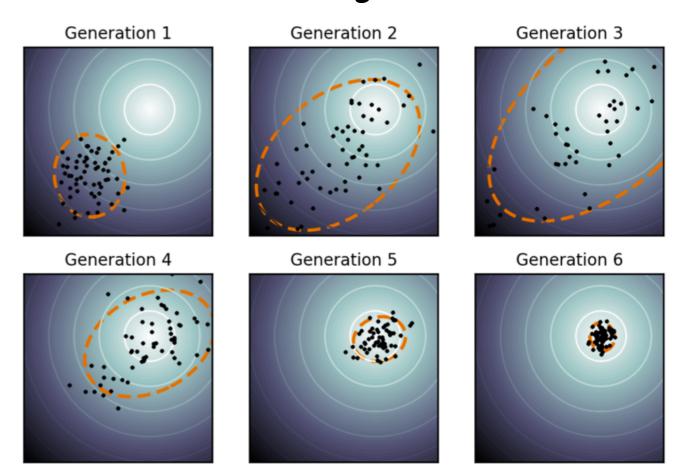
Efficient exploration of parameter space


Faithful uncertainty estimate

Avoiding under- and over-fitting

Methodology

The optimisation conundrum

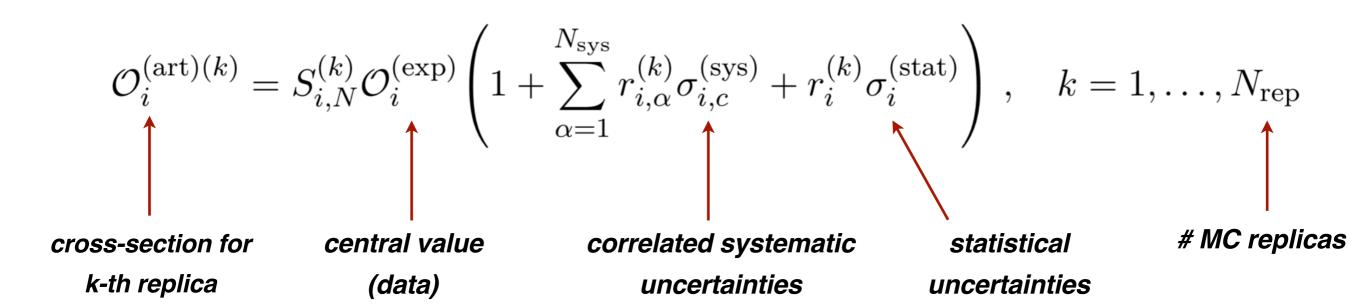

(Stochastic) Gradient Descent

- Deterministic algorithms: follow the gradient of the cost function
- Evolutionary algorithms: act on population of solutions with random mutations and selection

- A challenge for any SMEFT global analysis is the efficient exploration of the huge parameter space
- Several pitfalls to be avoided: underfitting, over-fitting, **local minima**, saddle points,

Genetic Algorithms

The optimisation conundrum

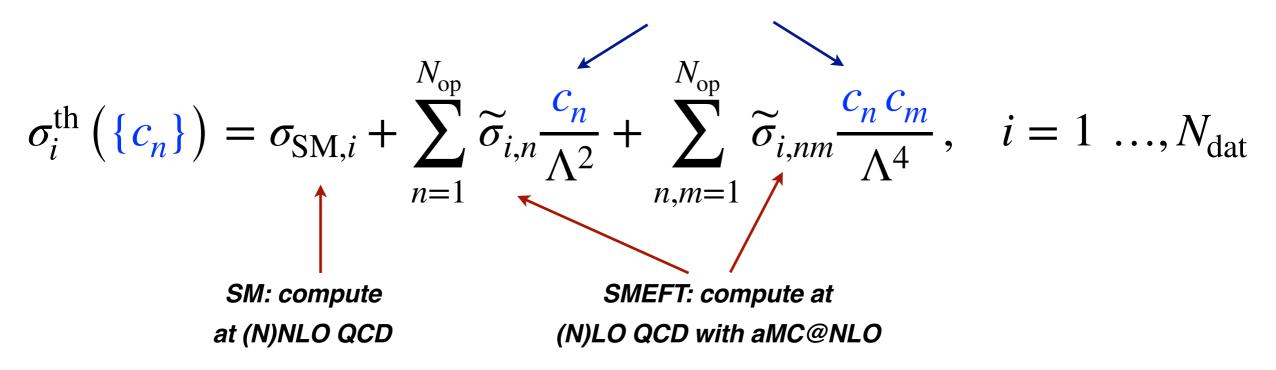

https://www.youtube.com/watch?v=RiWc0ZDSTyY

The SMEFiT framework

A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector,

Nathan P. Hartland, Fabio Maltoni, Emanuele R. Nocera, Juan Rojo, Emma Slade, Eleni Vryonidou, Cen Zhang, arXiv:1901.05965, JHEP in press

Generate a large sample of Monte Carlo replicas to construct the probability distribution in the space of experimental data



Generate a large sample of Monte Carlo replicas to construct the probability distribution in the space of experimental data

$$\mathcal{O}_{i}^{(\text{art})(k)} = S_{i,N}^{(k)} \mathcal{O}_{i}^{(\text{exp})} \left(1 + \sum_{\alpha=1}^{N_{\text{sys}}} r_{i,\alpha}^{(k)} \sigma_{i,c}^{(\text{sys})} + r_{i}^{(k)} \sigma_{i}^{(\text{stat})} \right) , \quad k = 1, \dots, N_{\text{rep}}$$

Construct theory calculations where the SM is extended by SMEFT corrections

to be determined from the data

Generate a large sample of Monte Carlo replicas to construct the probability distribution in the space of experimental data

$$\mathcal{O}_i^{(\mathrm{art})(k)} = S_{i,N}^{(k)} \mathcal{O}_i^{(\mathrm{exp})} \left(1 + \sum_{\alpha=1}^{N_{\mathrm{sys}}} r_{i,\alpha}^{(k)} \sigma_{i,c}^{(\mathrm{sys})} + r_i^{(k)} \sigma_i^{(\mathrm{stat})} \right) , \quad k = 1, \dots, N_{\mathrm{rep}}$$

Construct theory calculations where the SM is extended by SMEFT corrections

$$\mathcal{O}_{i}^{\text{th}}\left(\left\{c_{n}\right\}\right) = \sigma_{\text{SM},i} + \sum_{n=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,n} \frac{c_{n}}{\Lambda^{2}} + \sum_{n,m=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,nm} \frac{c_{n} c_{m}}{\Lambda^{4}}, \quad i = 1 \dots, N_{\text{dat}}$$

Determine the SMEFT coefficients replica-by-replica by minimising a cost function

$$E(\{c_{l}^{(k)}\}) \equiv \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(\mathcal{O}_{i}^{(\text{th})} \left(\{c_{n}^{(k)}\} \right) - \mathcal{O}_{i}^{(\text{art})(k)} \right) (\cos^{-1})_{ij} \left(\mathcal{O}_{j}^{(\text{th})} \left(\{c_{n}^{(k)}\} \right) - \mathcal{O}_{j}^{(\text{art})(k)} \right)$$

Determine the SMEFT coefficients replica-by-replica by minimising a cost function

$$E(\{c_{l}^{(k)}\}) \equiv \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(\mathcal{O}_{i}^{(\text{th})} \left(\{c_{n}^{(k)}\} \right) - \mathcal{O}_{i}^{(\text{art})(k)} \right) (\cos^{-1})_{ij} \left(\mathcal{O}_{j}^{(\text{th})} \left(\{c_{n}^{(k)}\} \right) - \mathcal{O}_{j}^{(\text{art})(k)} \right)$$

Fig. The covariance matrix includes all sources of experimental errors + some theory errors

t₀ prescription

$$(\operatorname{cov}_{\mathsf{t}_0})_{ij}^{(\operatorname{exp})} \equiv \left(\sigma_i^{(\operatorname{stat})}\right)^2 \delta_{ij} + \left(\sum_{\alpha=1}^{N_{\operatorname{sys}}} \sigma_{i,\alpha}^{(\operatorname{sys})} \sigma_{j,\alpha}^{(\operatorname{exp})} \mathcal{O}_i^{(\operatorname{exp})} + \sum_{\beta=1}^{N_{\operatorname{norm}}} \sigma_{i,\beta}^{(\operatorname{norm})} \sigma_{j,\beta}^{(\operatorname{norm})} \mathcal{O}_i^{(\operatorname{th},0)} \mathcal{O}_j^{(\operatorname{th},0)}\right)$$

$$cov_{ij} = cov_{ij}^{(exp)} + cov_{ij}^{(th)}$$

th uncertainties: PDFs

can be extended to MHOUs

$$\operatorname{cov}_{ij}^{(\operatorname{th})} = \left\langle \mathcal{O}_{i}^{(\operatorname{th})(r)} \mathcal{O}_{j}^{(\operatorname{th})(r)} \right\rangle_{\operatorname{rep}} - \left\langle \mathcal{O}_{i}^{(\operatorname{th})(r)} \right\rangle_{\operatorname{rep}} \left\langle \mathcal{O}_{j}^{(\operatorname{th})(r)} \right\rangle_{\operatorname{rep}},$$

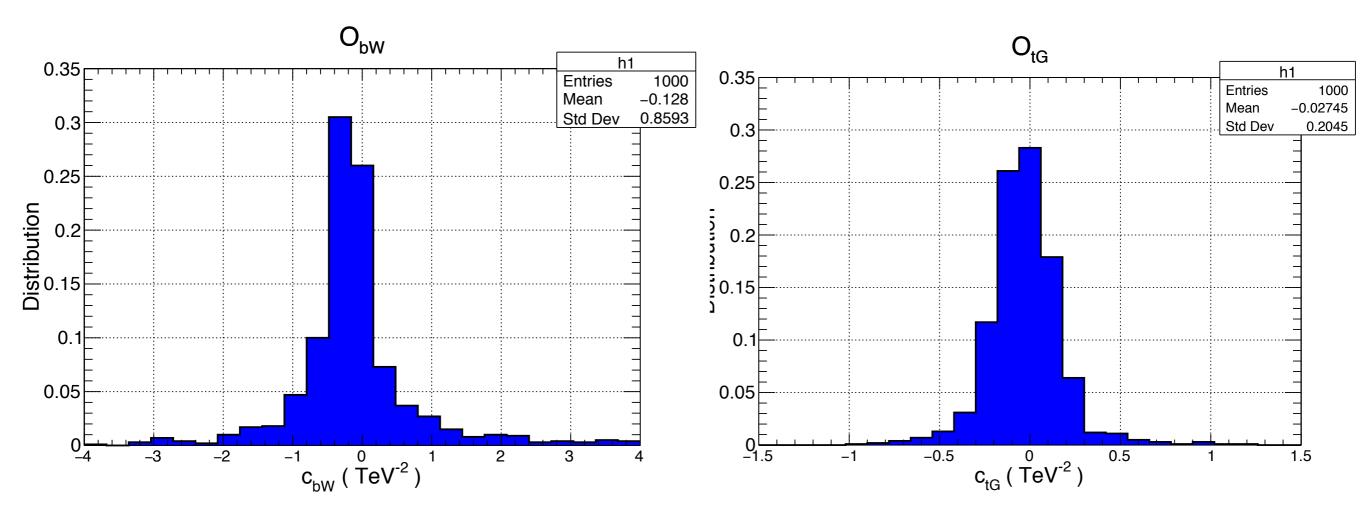
Determine the SMEFT coefficients replica-by-replica by minimising a cost function

$$E(\{c_{l}^{(k)}\}) \equiv \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(\mathcal{O}_{i}^{(\text{th})} \left(\{c_{n}^{(k)}\} \right) - \mathcal{O}_{i}^{(\text{art})(k)} \right) (\cos^{-1})_{ij} \left(\mathcal{O}_{j}^{(\text{th})} \left(\{c_{n}^{(k)}\} \right) - \mathcal{O}_{j}^{(\text{art})(k)} \right)$$

Fig. The covariance matrix includes all sources of experimental errors + some theory errors

$$cov_{ij} = cov_{ij}^{(exp)} + cov_{ij}^{(th)}$$

Arr The ensemble of coefficients $\{c_l^{(k)}\}$ then provides a sampling of the **probability density** in the **SMEFT parameter space**

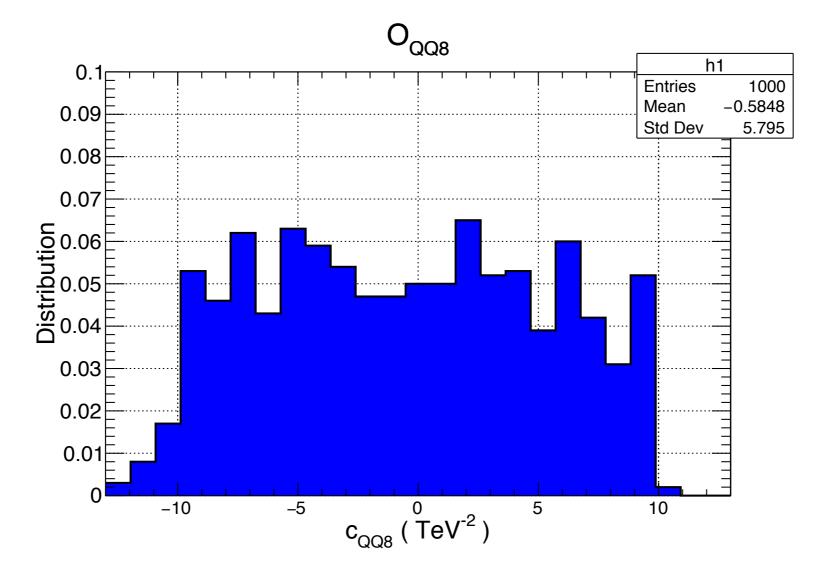

$$\left\langle c_{l}\right\rangle \equiv \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} c_{l}^{(k)} \quad \rho\left(c_{i}, c_{j}\right) = \frac{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} c_{i}^{(k)} c_{j}^{(k)} - \left\langle c_{i}\right\rangle \left\langle c_{j}\right\rangle}{\delta c_{i} \delta c_{j}}.$$

Sampling the SMEFT probability distribution

From The output of SMEFiT is a sampling of the probability distribution in the SMEFT space

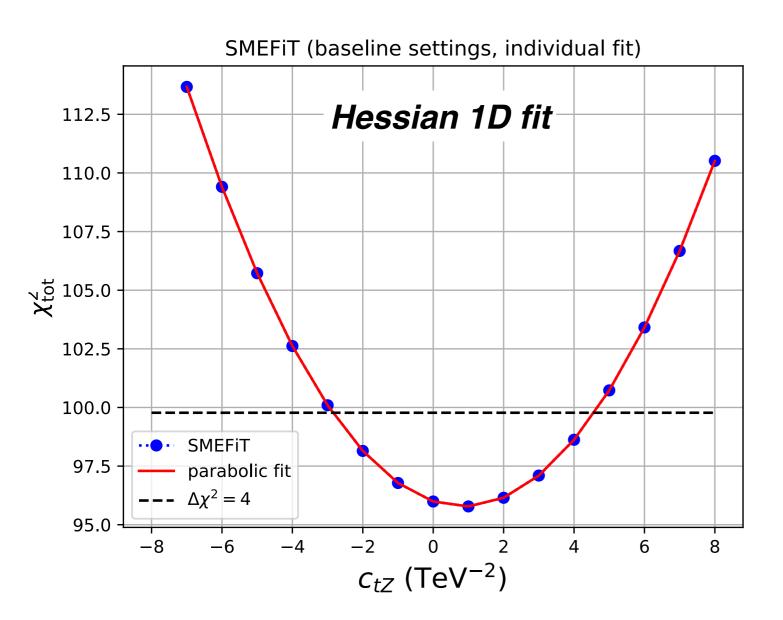
$$\left\{c_n^{(k)}\right\}, \quad n = 1 ..., N_{\text{op}}, \quad k = 1 ..., N_{\text{rep}}$$

- Used to evaluate statistical estimators such as variances, correlations, higher moments, ...
- Distributions are reasonably Gaussian for well-constrained degrees of freedom

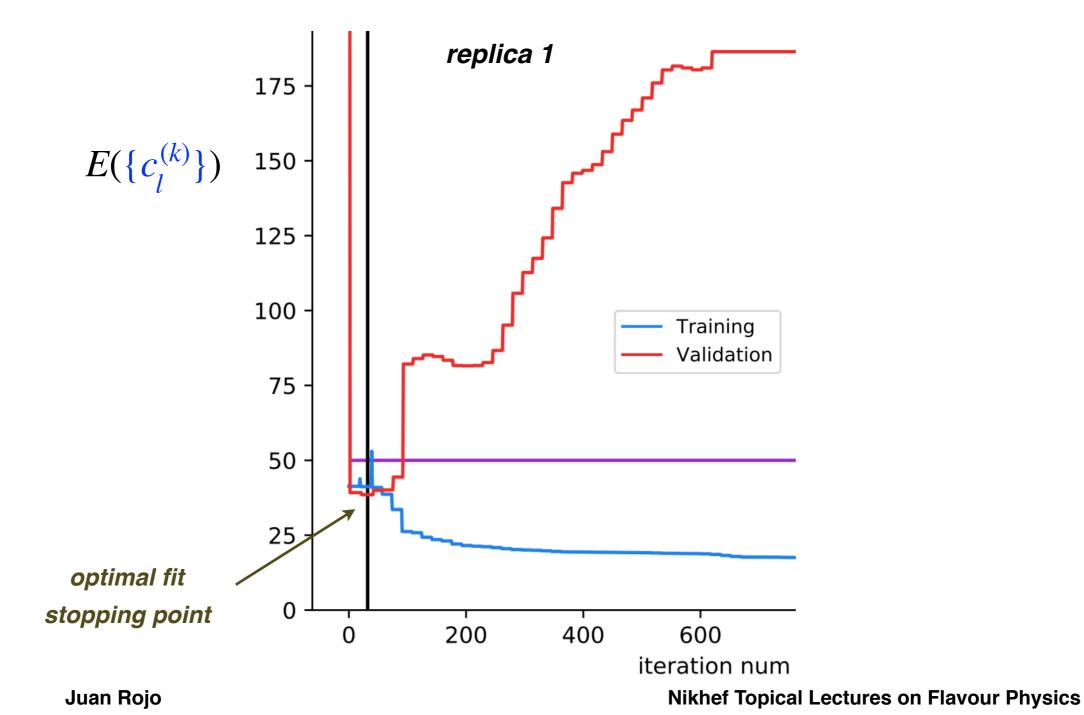


Sampling the SMEFT probability distribution

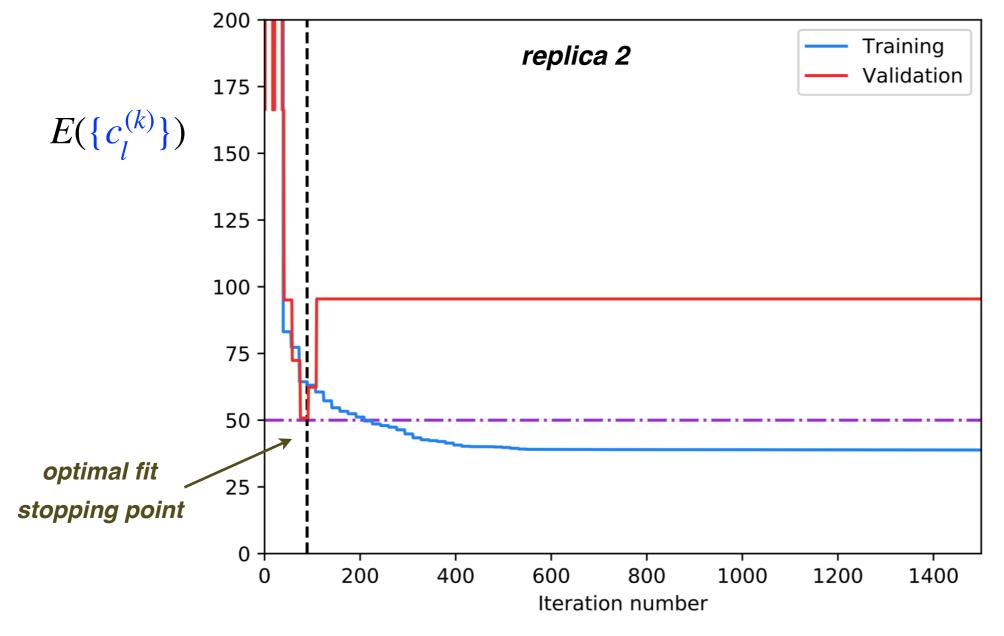
From The output of SMEFiT is a sampling of the probability distribution in the SMEFT space


$$\left\{c_n^{(k)}\right\}, \quad n = 1 ..., N_{\text{op}}, \quad k = 1 ..., N_{\text{rep}}$$

- Used to evaluate statistical estimators such as variances, correlations, higher moments, ...
- but much less so for under-constrained or redundant operators


Uncertainties on the SMEFT degrees of freedom evaluated from variance of MC sample

$$\left(\delta c_n\right)^2 = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \left(c_n^{(k)}\right)^2 - \left\langle c_n \right\rangle^2$$



- For single-parameter fits, Monte Carlo results benchmarked with Hessian method, finding good agreement
- The Hessian method numerically less stable as dimensionality of parameter space increases

- Since in general there will be unconstrained/degenerate directions in the parameter space, it is crucial to avoid overfitting (that is, fitting statistical fluctuations)
- Achieved by the cross-validation look-back validation stopping method

- Since in general there will be unconstrained/degenerate directions in the parameter space, it is crucial to avoid overfitting (that is, fitting statistical fluctuations)
- Achieved by the cross-validation look-back validation stopping method

SMEFiT code structure

Stand-alone **Python code**, which exploits functionalities of the **NNPDF framework**

NNPDF code

- Experimental data and covariance matrices

aMC@NLO

- § NLO QCD (benchmark)
- **§** LO, NLO **SMEFT**
- § Both $O(Λ^{-2})$ and $O(Λ^{-4})$ from d=6 operators

MCFM

- NLO QCD (consistent choice of PDFs)
- Cross-checks of aMC@NLO

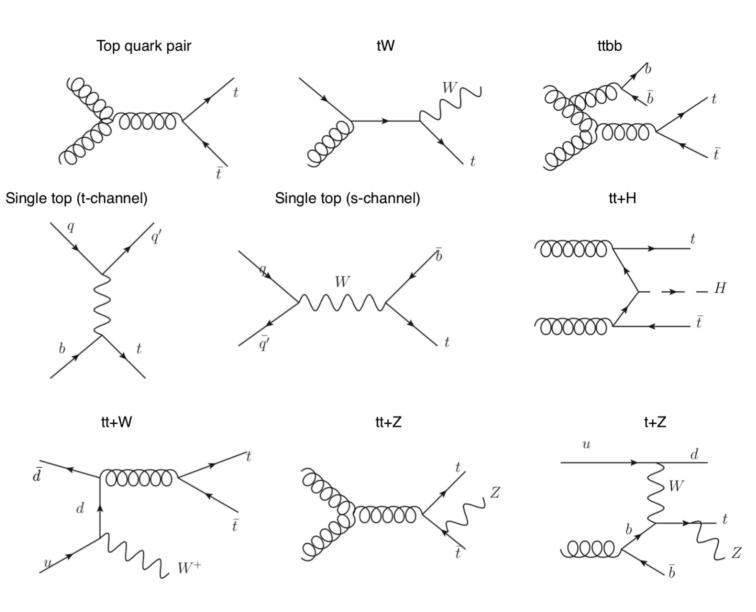
Python analysis code

- Assemble theory predictions for generic SMEFT Wilson coefficients
- Optimisation with Sequential Quadratic Programming (SciPy)
- Look-back cross-validation stopping
- Monte Carlo replicas for uncertainty propagation

SMEFiT: the top quark case

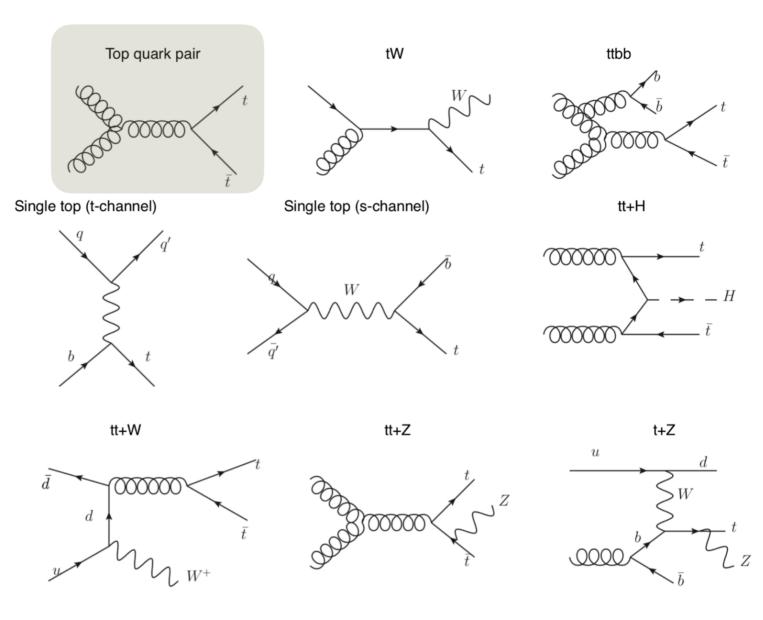
A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector,

Nathan P. Hartland, Fabio Maltoni, Emanuele R. Nocera, Juan Rojo, Emma Slade, Eleni Vryonidou, Cen Zhang, arXiv:1901.05965, JHEP in press

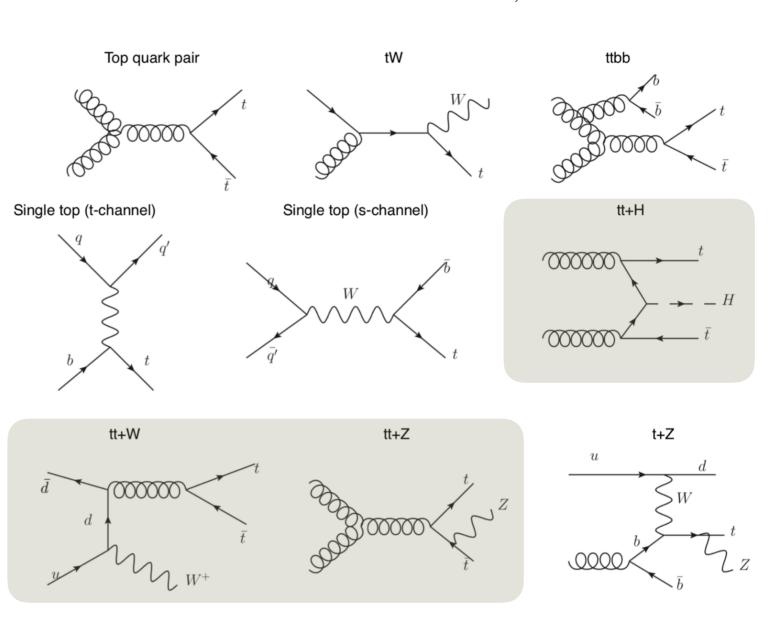

Operator basis

- We follow the same flavour assumptions as in the LHC Top WG note
- Minimal Flavour Violation (MFV), diagonal CKM, zero Yukawas for first two quark gens, CP conservation assumed
- Include those SMEFT dimension-6 operators of Warsaw basis with at least one top quark
- The fit includes a total of 34 independent degrees of freedom
- Include both interference and quadratic contributions from these operators

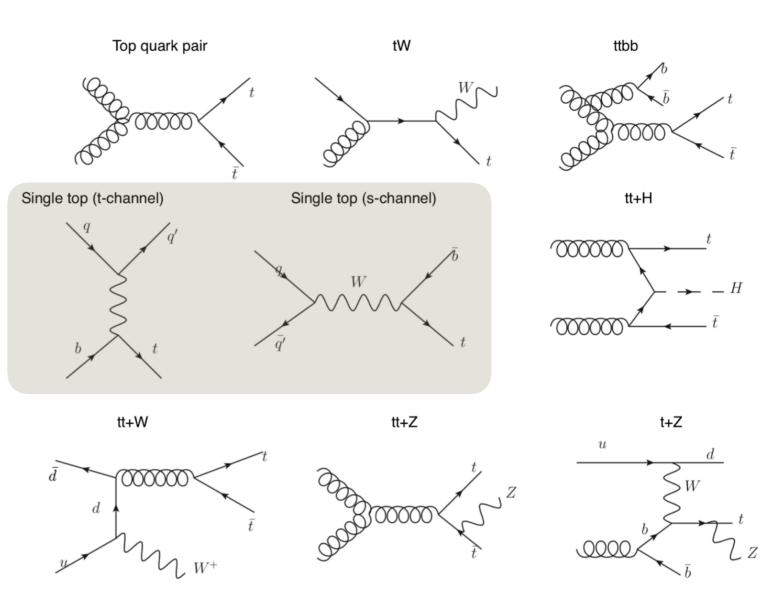
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Class	Notation	Degree of Freedom	Operator Definition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0QQ1	c_{QQ}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0QQ8		$8C_{qq}^{3(3333)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0Qt1		$C_{qu}^{1(3333)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0Qt8		$C_{qu}^{8(3333)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QQQQ	OQb1		$C_{ad}^{1(3333)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0Qъ8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-	heavy	Ott1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	neavy	Otb1	c_{tb}^1	$C_{ud}^{1(3333)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Otb8	c_{tb}^8	$C_{ud}^{8(3333)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OQtQb1	c_{QtQb}^1	$C_{quqd}^{1(3333)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OQtQb8	c_{QtQb}^{8}	$C_{quqd}^{8(3333)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			081qq		$C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$C_{qq}^{1(ii33)} + \frac{1}{6}C_{qq}^{1(i33i)} + \frac{1}{2}C_{qq}^{3(i33i)}$
$QQqq \begin{tabular}{c c c c c c c c c c c c c c c c c c c $				$c_{Oq}^{3,8}$	
$QQqq \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$C_{qq}^{3(ii33)} + \frac{1}{6}(C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$
QQqq			08qt		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			01qt		$C_{qu}^{1(ii33)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		000	08ut		$2C_{uu}^{(i33i)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		QQqq	01ut	c_{tu}^1	$C_{uu}^{(ii33)} + \frac{1}{3}C_{uu}^{(i33i)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			08qu	c_{Qu}^8	$C_{qu}^{8(33ii)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-l	neavy-	01qu	c_{Qu}^1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	08dt	c_{td}^8	
$ \begin{array}{ c c c c } \hline & \text{O1qd} & c_{Qd}^1 & C_{qd}^{1(33ii)} \\ \hline & \text{OtG} & c_{tG} & \text{Re}\{C_{uG}^{(33)}\} \\ & \text{OtW} & c_{tW} & \text{Re}\{C_{uW}^{(33)}\} \\ & \text{ObW} & c_{bW} & \text{Re}\{C_{dW}^{(33)}\} \\ & \text{OtZ} & c_{tZ} & \text{Re}\{-s_W C_{uB}^{(33)} + c_W C_{uW}^{(33)}\} \\ \hline & QQ + V, G, \varphi & \text{Off} & c_{\varphi tb} & \text{Re}\{C_{\varphi ud}^{(33)}\} \\ \hline & 2-heavy & \text{OpQM} & c_{\varphi Q}^- & C_{\varphi q}^{3(33)} \\ & + \textit{V/h} & \text{Opt} & c_{\varphi t} & C_{\varphi u}^{(33)} \\ \hline \end{array} $		19111	01dt	c_{td}^1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			08qd	c_{Qd}^8	$C_{qd}^{8(33ii)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			01qd	c_{Qd}^1	$C_{qd}^{1(33ii)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OtG	c_{tG}	$\operatorname{Re}\{C_{uG}^{(33)}\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			OtW	c_{tW}	$\text{Re}\{C_{uW}^{(33)}\}$
$QQ + V, G, arphi$ Off $c_{arphi tb}$ Re $\{C_{arphi ud}^{(33)}\}$ $C_{arphi q}^{3(33)}$ $C_{arphi u}^{3(33)}$			ОъМ	c_{bW}	C avv 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0tZ	c_{tZ}	$\operatorname{Re}\{-s_W C_{uB}^{(33)} + c_W C_{uW}^{(33)}\}\$
$egin{array}{cccccccccccccccccccccccccccccccccccc$		$QQ+V,G,\varphi$	Off	$c_{\varphi tb}$	
+ V/h Opt $c_{\varphi t}$ $C_{\varphi u}^{(33)}$	2 1	00017	Ofq3	$c_{\varphi Q}^3$	
5 (2(33))		•	0pQM	$c_{\varphi Q}^{-}$	
Otp $c_{t\varphi}$ $\operatorname{Re}\{C_{u\varphi}^{(33)}\}$	+ \	//h	Opt	$c_{\varphi t}$	' , .
			Otp	c_{tarphi}	$\operatorname{Re}\{C_{u\varphi}^{(33)}\}$


Notation		Sensitivity at $\mathcal{O}(\Lambda^{-2})$ $(\mathcal{O}(\Lambda^{-4}))$							
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
OQQ1								✓	✓
0QQ8								✓	✓
OQt1								✓	✓
0Qt8								✓	✓
0Qb1								(√)	✓
0Qъ8								(√)	✓
Ott1								✓	✓
Otb1								(√)	✓
Otb8								✓	✓
OQtQb1									
OQtQb8									
081qq	✓				✓	✓	✓	✓	√
011qq	✓				(√)	(√)	(√)	✓	✓
083qq	✓	✓		(√)	✓	✓	✓	✓	✓
013qq	✓	✓		✓	(√)	(√)	(√)	✓	✓
08qt	✓				✓	✓	✓	✓	✓
01qt	✓				(√)	(√)	(√)	✓	✓
08ut	✓					✓	✓	✓	✓
01ut	✓					(√)	(√)	✓	✓
08qu	✓					✓	✓	✓	✓
01qu	✓					(√)	(√)	✓	✓
08dt	✓					✓	✓	✓	✓
01dt	✓					(√)	(√)	✓	✓
08qd	✓					✓	✓	✓	✓
01qd	✓					(✓)	(✓)	✓	✓
OtG	✓				✓	✓	✓	✓	✓
OtW		✓	✓	✓					
ОъМ		(√)	(√)						
OtZ				✓		✓			
Off		(√)	(√)	(√)					
0fq3		✓	✓	✓		✓			
OpQM				✓		✓			
Opt				✓		✓	✓		
Otp							✓		

$$\sigma_i^{\text{th}}\left(\left\{c_n\right\}\right) = \sigma_{\text{SM},i} + \sum_{n=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,n} \frac{c_n}{\Lambda^2} + \sum_{n,m=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,nm} \frac{c_n c_m}{\Lambda^4}$$


Notation		S	ensitiv	ity at	$\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}))$	⁻⁴))		
	$t ar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
0QQ1								✓	/
0QQ8								✓	✓
OQt1								✓	✓
0Qt8								✓	✓
0Qb1								(√)	✓
0Qъ8								(√)	✓
Ott1								✓	✓
Otb1								(√)	✓
Otb8								✓	✓
OQtQb1									
OQtQb8									
081qq	✓				✓	✓	✓	✓	/
011qq	✓				(√)	(√)	(√)	✓	✓
083qq	✓	✓		(√)	✓	✓	✓	✓	✓
013qq	✓	✓		✓	(√)	(√)	(√)	✓	✓
08qt	✓				✓	✓	✓	✓	✓
01qt	✓				(√)	(√)	(√)	✓	✓
08ut	✓					✓	✓	✓	✓
01ut	✓					(√)	(√)	✓	✓
08qu	✓					✓	✓	✓	✓
01qu	✓					(✓)	(√)	✓	✓
08dt	✓					✓	✓	✓	✓
01dt	✓					(✓)	(√)	✓	✓
08qd	\checkmark					✓	✓	✓	✓
01qd	✓					(✓)	(✓)	✓	✓
OtG	√				√	√	√	√	 ✓
OtW		✓	✓	✓					
ОъМ		(√)	(√)						
OtZ				✓		✓			
Off		(√)	(√)	(√)					
Ofq3		✓	✓	✓		✓			
0pQM				✓		✓			
Opt				✓		✓	✓		
Otp							✓		

$$\sigma_i^{\text{th}}\left(\left\{c_n\right\}\right) = \sigma_{\text{SM},i} + \sum_{n=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,n} \frac{c_n}{\Lambda^2} + \sum_{n,m=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,nm} \frac{c_n c_m}{\Lambda^4}$$


Notation		S	ensitiv	ity at ($\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^{-}))$	⁻⁴))		
	$t \bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t \bar{t} b \bar{b}$
0QQ1								✓	✓
0QQ8								✓	✓
OQt1								✓	✓
OQt8								✓	✓
0Qb1								(√)	✓
0Qъ8								(√)	✓
Ott1								✓	✓
Otb1								(√)	✓
Otb8								✓	✓
OQtQb1									
OQtQb8									
081qq	✓				✓	✓	✓	✓	✓
011qq	✓				(√)	(√)	(√)	✓	✓
083qq	✓	✓		(√)	✓	✓	✓	✓	✓
013qq	✓	✓		✓	(√)	(√)	(√)	✓	✓
08qt	✓				✓	✓	✓	✓	✓
01qt	✓				(√)	(√)	(√)	✓	✓
08ut	✓					✓	✓	✓	✓
01ut	✓					(√)	(√)	✓	✓
08qu	✓					✓	✓	✓	✓
01qu	✓					(√)	(√)	✓	✓
08dt	✓					✓	✓	✓	✓
01dt	✓					(√)	(√)	✓	✓
D8qd	✓					✓	✓	✓	✓
01qd	✓					(√)	(✓)	✓	✓
OtG	✓				✓	/	_	√	
OtW		✓	✓	✓					
ОъW		(√)	(√)						
OtZ				✓		✓			
Off		(√)	(√)	(√)					
Ofq3		✓	✓	✓		✓			
OpQM				✓		✓			
Opt				✓		✓	✓		
Otp							✓		

$$\sigma_i^{\text{th}}\left(\left\{c_n\right\}\right) = \sigma_{\text{SM},i} + \sum_{n=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,n} \frac{c_n}{\Lambda^2} + \sum_{n,m=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,nm} \frac{c_n c_m}{\Lambda^4}$$

Notation		S	ensitiv	ity at	$\mathcal{O}(\Lambda^{-2})$	$(\mathcal{O}(\Lambda^2))$	$^{-4}))$		
	$t\bar{t}$	single-top	tW	tZ	$t\bar{t}W$	$t\bar{t}Z$	$t\bar{t}H$	$t\bar{t}t\bar{t}$	$t\bar{t}b\bar{b}$
0QQ1								√	✓
0QQ8								✓	✓
OQt1								✓	✓
0Qt8								✓	✓
0Qъ1								(√)	✓
0Qъ8								(√)	✓
Ott1								✓	✓
Otb1								(√)	✓
Otb8								✓	✓
OQtQb1									
OQtQb8									
081qq	✓				✓	/	√	√	√
011qq	✓				(√)	(√)	(√)	✓	✓
083qq	✓	✓		(√)	✓	✓	✓	✓	✓
013qq	✓	✓		✓	(√)	(√)	(√)	✓	✓
08qt	✓				✓	✓	✓	✓	✓
01qt	✓				(√)	(√)	(√)	✓	✓
08ut	✓					✓	✓	✓	✓
01ut	✓					(√)	(√)	✓	✓
08qu	✓					✓	✓	✓	✓
01qu	✓					(√)	(√)	✓	✓
08dt	✓					✓	✓	✓	✓
01dt	✓					(√)	(√)	✓	✓
08qd	✓					✓	✓	✓	✓
01qd	✓					(√)	(√)	✓	✓
OtG	√				√	√	√	√	√
OtW		✓	✓	✓					
ОъМ		(✓)	(√)						
OtZ				✓		✓			
Off		(✓)	(√)	(√)					
Ofq3		✓	✓	✓		✓			
OpQM				✓		✓			
Opt				✓		✓	✓		
Otp							✓		

$$\sigma_i^{\text{th}}\left(\left\{c_n\right\}\right) = \sigma_{\text{SM},i} + \sum_{n=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,n} \frac{c_n}{\Lambda^2} + \sum_{n,m=1}^{N_{\text{op}}} \widetilde{\sigma}_{i,nm} \frac{c_n c_m}{\Lambda^4}$$

Input dataset (I)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{ m dat}$	Ref
$tar{t}$	ATLAS_tt_8TeV_ljets	8 TeV	lepton+jets	$\begin{vmatrix} d\sigma/d y_t , d\sigma/dp_t^T, \\ d\sigma/dm_{t\bar{t}}, d\sigma/d y_{t\bar{t}} \end{vmatrix}$	5, 8, 7, 5	[77]
$tar{t}$	CMS_tt_8TeV_ljets	8 TeV	lepton+jets		10, 8, 7, 10	[78]
$tar{t}$	CMS_tt2D_8TeV_dilep	8 TeV	dileptons	$d^{2}\sigma/dy_{t}dp_{t}^{T},$ $d^{2}\sigma/dy_{t}dm_{t\bar{t}},$ $d^{2}\sigma/dp_{t\bar{t}}^{T}dm_{t\bar{t}},$ $d^{2}\sigma/dy_{t\bar{t}}dm_{t\bar{t}},$ $d^{2}\sigma/dy_{t\bar{t}}dm_{t\bar{t}}$	16, 16, 16, 16	[79]
$tar{t}$	CMS_tt_13TeV_ljets	13 TeV	lepton+jets		7, 9, 8, 6	[83]
$tar{t}$	CMS_tt_13TeV_ljets2	13 TeV	lepton+jets		11, 12, 10, 10	[85]
$tar{t}$	CMS_tt_13TeV_dilep	13 TeV	dileptons		8, 6, 6, 8	[86]
t ar t	ATLASCMS_AcMtt_8TeV	8 TeV	Asymm comb	$A_C(m_{t\bar{t}})$, Eq. (3.1)	6	[80]
$t ar{t}$	ATLAS_WhelF_8TeV	8 TeV	W helicity fract	F_0, F_L, F_R	3	[81]
$tar{t}$	CMS_WhelF_8TeV	8 TeV	W helicity fract	F_0, F_L, F_R	3	[82]

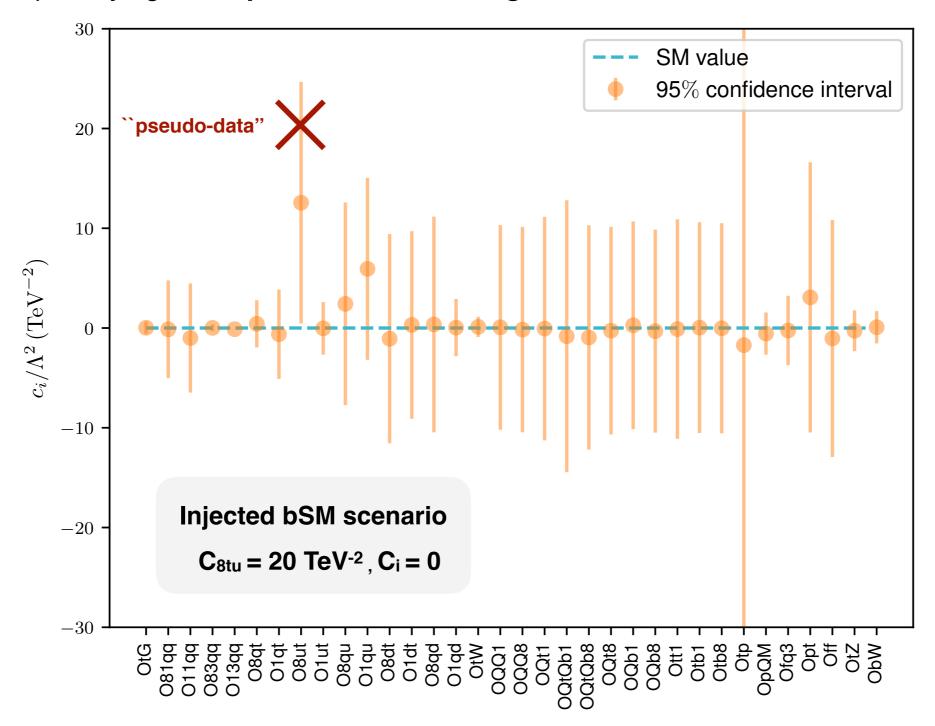
Input dataset (II)

Process	Dataset	\sqrt{s}	Info	Observables	$N_{ m dat}$	Ref
Single t	CMS_t_tch_8TeV_inc	8 TeV	t-channel	$\sigma_{\mathrm{tot}}(t), \sigma_{\mathrm{tot}}(\bar{t}) \ (R_t)$	2 (1)	[95]
Single t	CMS_t_sch_8TeV	8 TeV	s-channel	$\sigma_{\mathrm{tot}}(t+ar{t})$	1	[96]
Single t	ATLAS_t_sch_8TeV	8 TeV	s-channel	$\sigma_{ m tot}(t+ar{t})$	1	[97]
Single t	ATLAS_t_tch_8TeV	8 TeV	t-channel		5, 4	[98]
Single t	ATLAS_t_tch_13TeV	$13 { m TeV}$	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t}) \ (R_t)$	2 (1)	[99]
Single t	CMS_t_tch_13TeV_inc	13 TeV	t-channel	$\sigma_{\mathrm{tot}}(t+\bar{t}) \ (R_t)$	1 (1)	[100]
Single t	CMS_t_tch_8TeV_dif	8 TeV	$t ext{-channel}$		6	[101]
Single t	CMS_t_tch_13TeV_dif	13 TeV	t-channel		4 4	[102]
tW	ATLAS_tW_inc_8TeV	8 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[103]
tW	CMS_tW_inc_8TeV	8 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[104]
tW	ATLAS_tW_inc_13TeV	13 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[105]
tW	CMS_tW_inc_13TeV	13 TeV	inclusive	$\sigma_{ m tot}(tW)$	1	[106]
tZ	CMS_tZ_inc_13TeV	13 TeV	inclusive	$\sigma_{\rm fid}(Wbl^+l^-q)$	1	[107]
tZ	ATLAS_tZ_inc_13TeV	13 TeV	inclusive	$\sigma_{ m tot}(tZq)$	1	[108]

Input dataset (III)

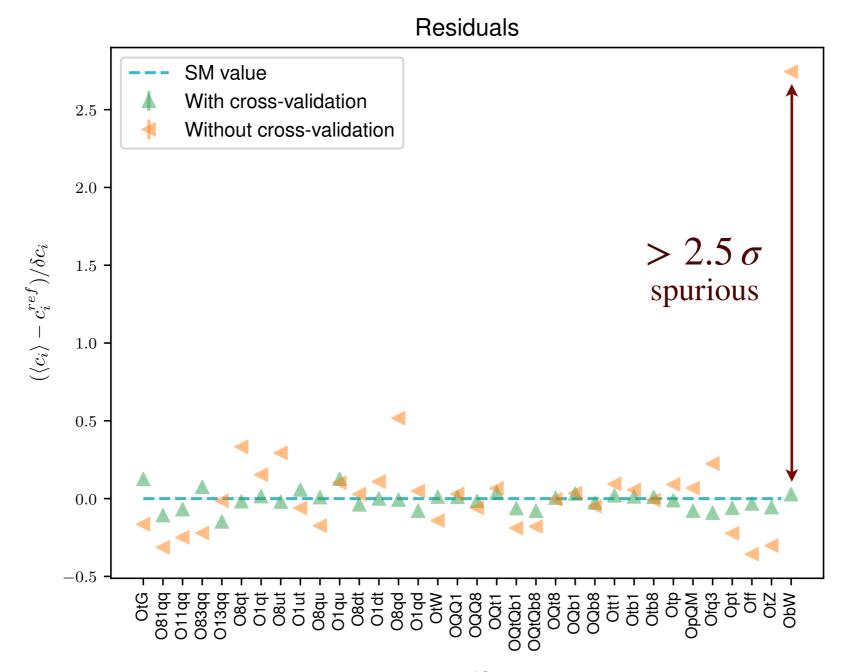
Process	Dataset	\sqrt{s}	Info	Observables	$N_{ m dat}$	Ref
$tar{t}bar{b}$	CMS_ttbb_13TeV	13 TeV	total xsec	$\sigma_{ m tot}(tar t bar b)$	1	[87]
$tar{t}tar{t}$	CMS_tttt_13TeV	13 TeV	total xsec	$\sigma_{ m tot}(tar t tar t)$	1	[88]
$tar{t}Z$	CMS_ttZ_8_13TeV	8+13 TeV	total xsec	$\sigma_{ m tot}(tar t Z)$	2	[89, 90]
$tar{t}Z$	ATLAS_ttZ_8_13TeV	8+13 TeV	total xsec	$\sigma_{ m tot}(tar t Z)$	2	[91, 92]
$t ar{t} W$	CMS_ttW_8_13TeV	8+13 TeV	total xsec	$\sigma_{ m tot}(tar tW)$	2	[89, 90]
$t ar{t} W$	ATLAS_ttW_8_13TeV	8+13 TeV	total xsec	$\sigma_{ m tot}(tar tW)$	2	[91, 92]
$t ar{t} H$	CMS_tth_13TeV	13 TeV	signal strength	$ig \mu_{tar{t}H}$	1	[93]
$tar{t}H$	ATLAS_tth_13TeV	13 TeV	total xsec	$\sigma_{ m tot}(tar t H)$	1	[94]

The fit includes more than **100 cross-section measurement**s at 8 and 13 TeV from **10 different top-quark production processes**


Theory calculations

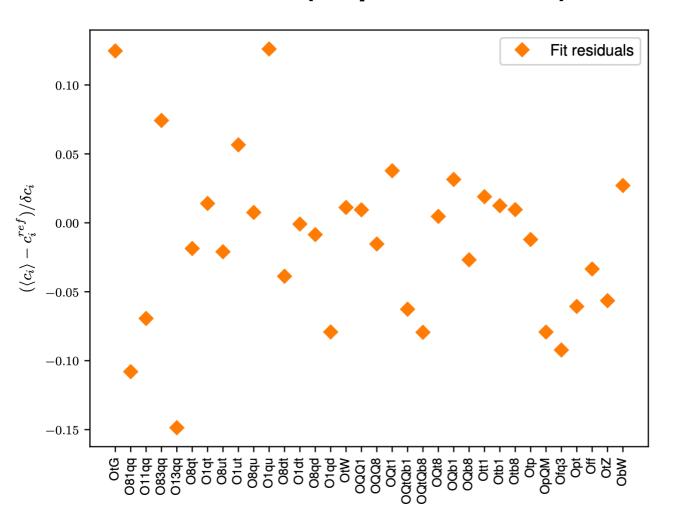
Process	SM	Code	SMEFT	Code
$tar{t}$	NNLO QCD	MCFM/SHERPA NLO + NNLO K-factors	NLO QCD	MG5_aMC
single- t (t -ch)	NNLO QCD		NLO QCD	MG5_aMC
single- t (s -ch)	NLO QCD	MCFM	NLO QCD	MG5_aMC
tW	NLO QCD	MG5_aMC	NLO QCD	MG5_aMC
tZ	NLO QCD	MG5_aMC		MG5_aMC
$tar{t}W(Z)$	NLO QCD	MG5_aMC		MG5_aMC
$t ar{t} h$	NLO QCD	MG5_aMC		MG5_aMC
$tar{t}tar{t}$	NLO QCD	MG5_aMC		MG5_aMC
$tar{t}bar{b}$	NLO QCD	MG5_aMC		MG5_aMC

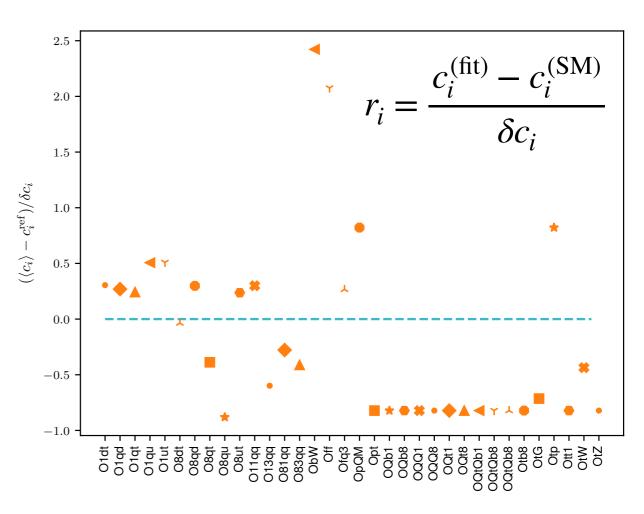
PDF set: NNPDF3.1 NNLO no-top


Closure Tests

- Generate **pseudo-data based** on a given scenario (SM or BSM) and check that the correct (known) results are reproduced after the fit
- Allows quantifying the expected statistical significance for BSM deviations

Cross-validation


- Since N_{par} is not too different from N_{dat}, overfitting will take place for an efficient optimiser
- Artificial tensions with the SM are likely to be generated by overfitting!
- Fit residuals consistent with true result (SM) only with cross-validation

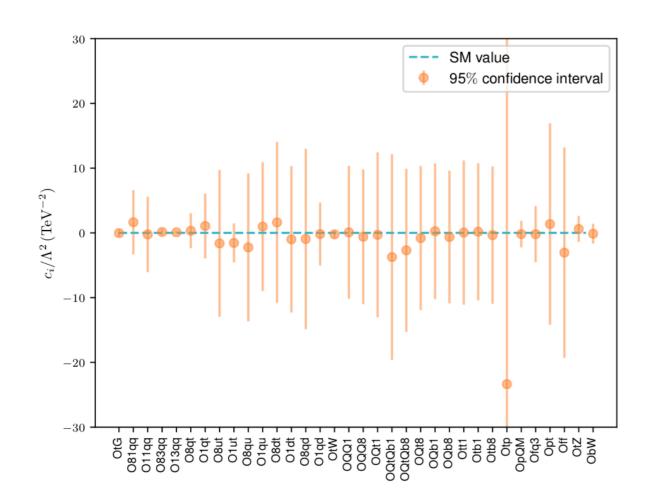


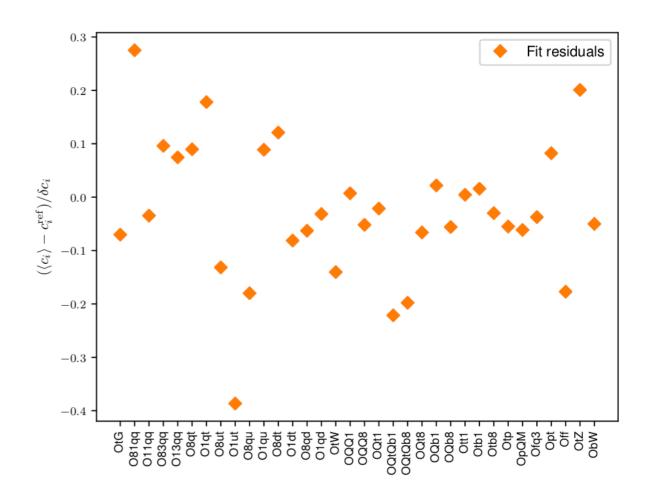
Global vs individual fits

Global fits (all params fitted)

Individual fits (one param at a time)

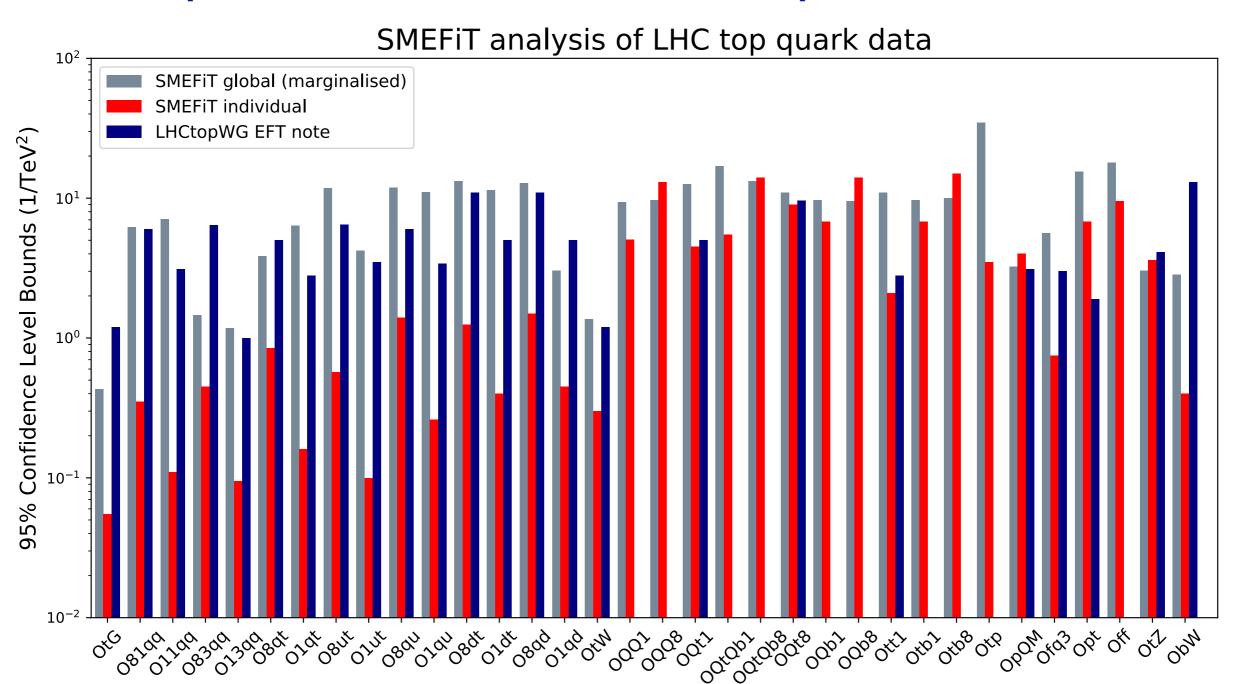
- If each operator was a truly **independent random variable**, we would expect that at least **2 operators** have residuals **Irl > 1** (bounds are 95% CL)
- Fig. This is far from being the case when all operators are fitted simultaneously
- Explained by correlations between operators + degeneracies in parameter space: much larger fluctuations if we fit one operator at a time

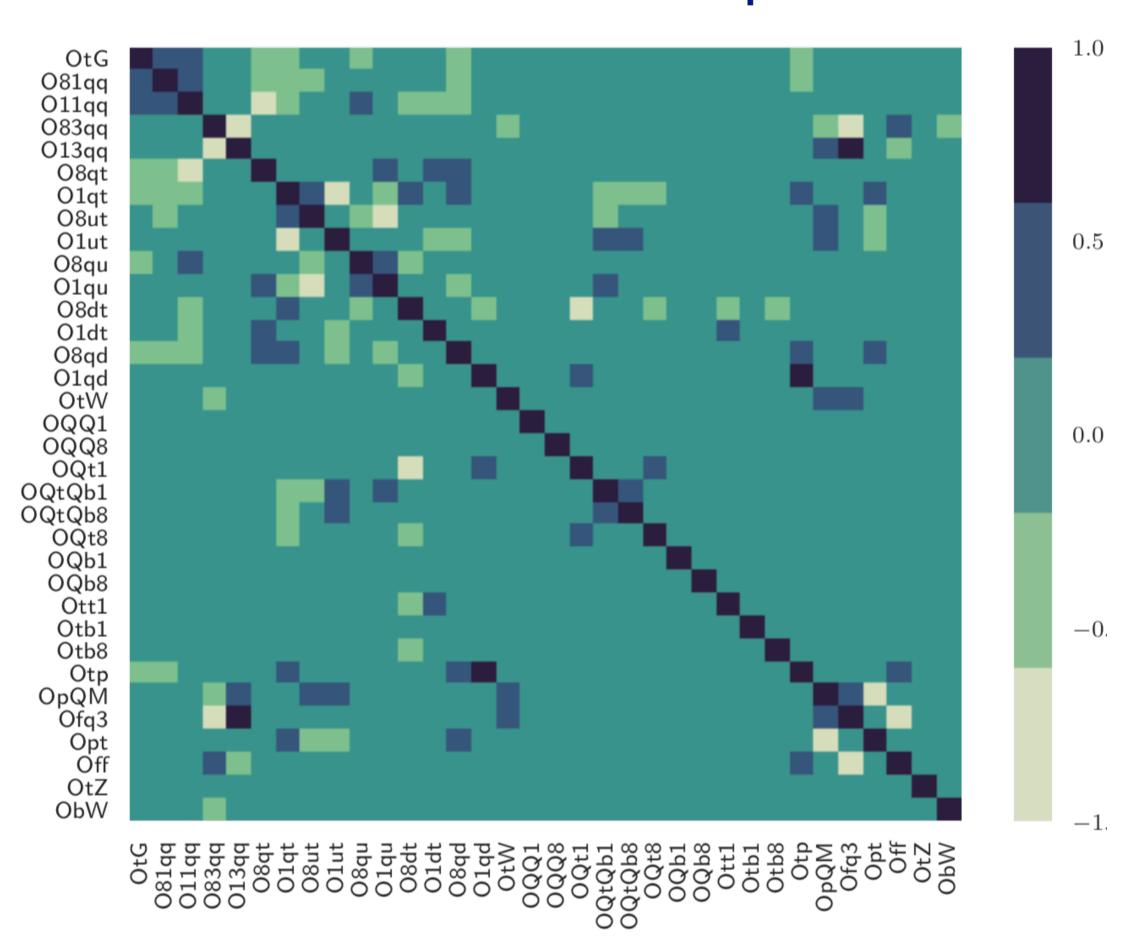

Fit quality


Good agreement between theory (SM and SMEFT) and data for most datasets

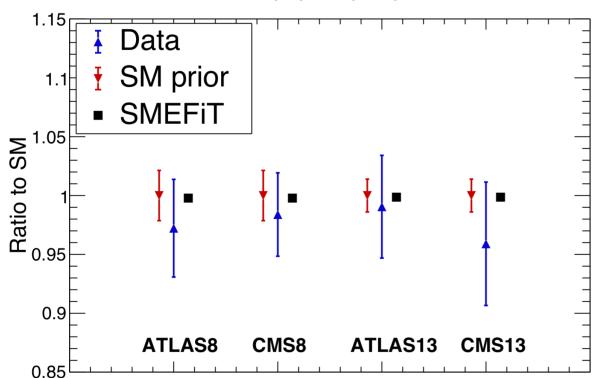
For the **103 fitted cross-sections**, we find χ^2/n_{dat} of **1.11 (1.06)** before (after) fit

Dataset	$\chi^2/n_{\rm dat}$ (prior)	$\chi^2/n_{\rm dat}$ (fit)	$\mid n_{ m dat} \mid$
<code>ATLAS_tt_8TeV_ljets</code> [$m_{tar{t}}$]	1.51	1.25	7
<code>CMS_tt_8TeV_ljets</code> [$y_{tar{t}}$]	1.17	1.17	10
<code>CMS_tt2D_8TeV_dilep</code> $[\;(m_{tar{t}},y_t)\;]$	1.38	1.38	16
<code>CMS_tt_13TeV_ljets2</code> $[~m_{tar{t}}~]$	1.09	1.28	8
<code>CMS_tt_13TeV_dilep</code> $[~m_{tar{t}}~]$	1.34	1.42	6
<code>CMS_tt_13TeV_ljets_2016</code> [$m_{tar{t}}$]	1.87	1.87	10
ATLAS_WhelF_8TeV	1.98	0.27	3
CMS_WhelF_8TeV	0.31	1.18	3
CMS_ttbb_13TeV	5.00	1.29	1
CMS_tttt_13TeV	0.05	0.02	1
ATLAS_tth_13TeV	1.61	0.55	1
CMS_tth_13TeV	0.34	0.01	1
ATLAS_ttZ_8TeV	1.32	5.29	1
ATLAS_ttZ_13TeV	0.01	1.06	1
CMS_ttZ_8TeV	0.04	0.06	1
CMS_ttZ_13TeV	0.90	0.67	1
ATLAS_ttW_8TeV	1.34	0.27	1
ATLAS_ttW_13TeV	0.82	0.65	1
CMS_ttW_8TeV	1.54	0.54	1
CMS_ttW_13TeV	0.03	0.09	1
CMS_t_tch_8TeV_dif	0.11	0.32	6
<code>ATLAS_t_tch_8TeV</code> $[\ y_t\]$	0.91	0.43	4
<code>ATLAS_t_tch_8TeV</code> [$y_{ar{t}}$]	0.39	0.45	4
ATLAS_t_sch_8TeV	0.08	1.92	1
ATLAS_t_tch_13TeV	0.02	0.09	2
${\tt CMS_t_tch_13TeV_dif} \; [\; y_t \;]$	0.46	0.49	4
CMS_t_sch_8TeV	1.26	0.76	1
ATLAS_tW_inc_8TeV	0.02	0.06	1
CMS_tW_inc_8TeV	0.00	0.07	1
ATLAS_tW_inc_13TeV	0.52	0.82	1
CMS_tW_inc_13TeV	4.29	1.68	1
ATLAS_tZ_inc_13TeV	0.00	0.00	1
CMS_tZ_inc_13TeV	0.66	0.34	1
Total	1.11	1.06	103

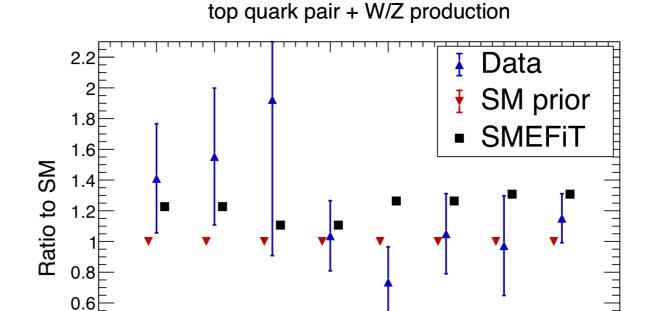

SMEFiT results


- Agreement with the SM expectation within uncertainties
- Bounds on individual operators are in general largely correlated among them
- Large differences between the bounds obtained from each operator

Comparison with 1D fits and previous bounds


- Improvement found (more stringent bounds) in most fitted degrees of freedom
- For some specific operators our bounds are the first ones to be reported
- Individual bounds can dramatically **overestimate** the actual (marginalised) bounds

Correlation map



Comparison with data

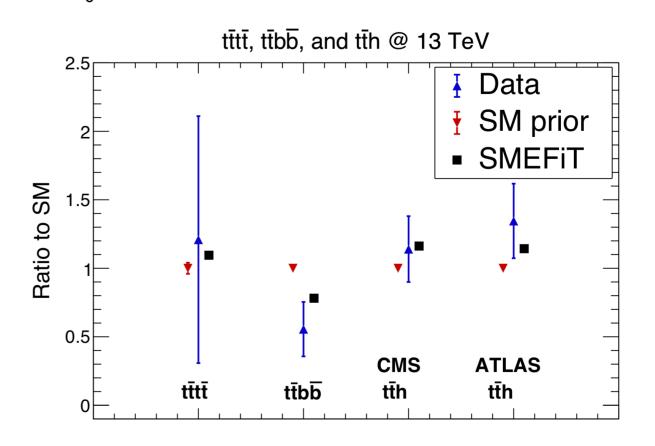
- The **best-fit SMEFT-induced shift** wrt the SM calculation depends on the process
- For inclusive top quark pair and single top, the SMEFT shifts are < 2%
- For *tttt, ttbbb*, and *tth* the SMEFT shifts can be as large as 20% (reflecting the larger experimental errors)

AW13

CW8

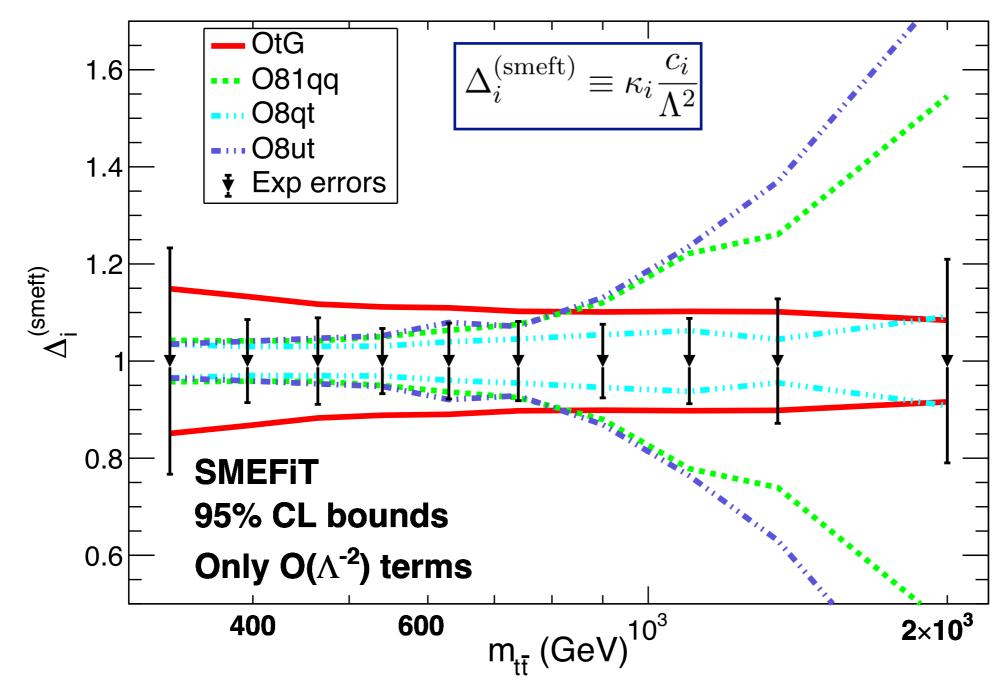
AZ8

CW13


AZ13

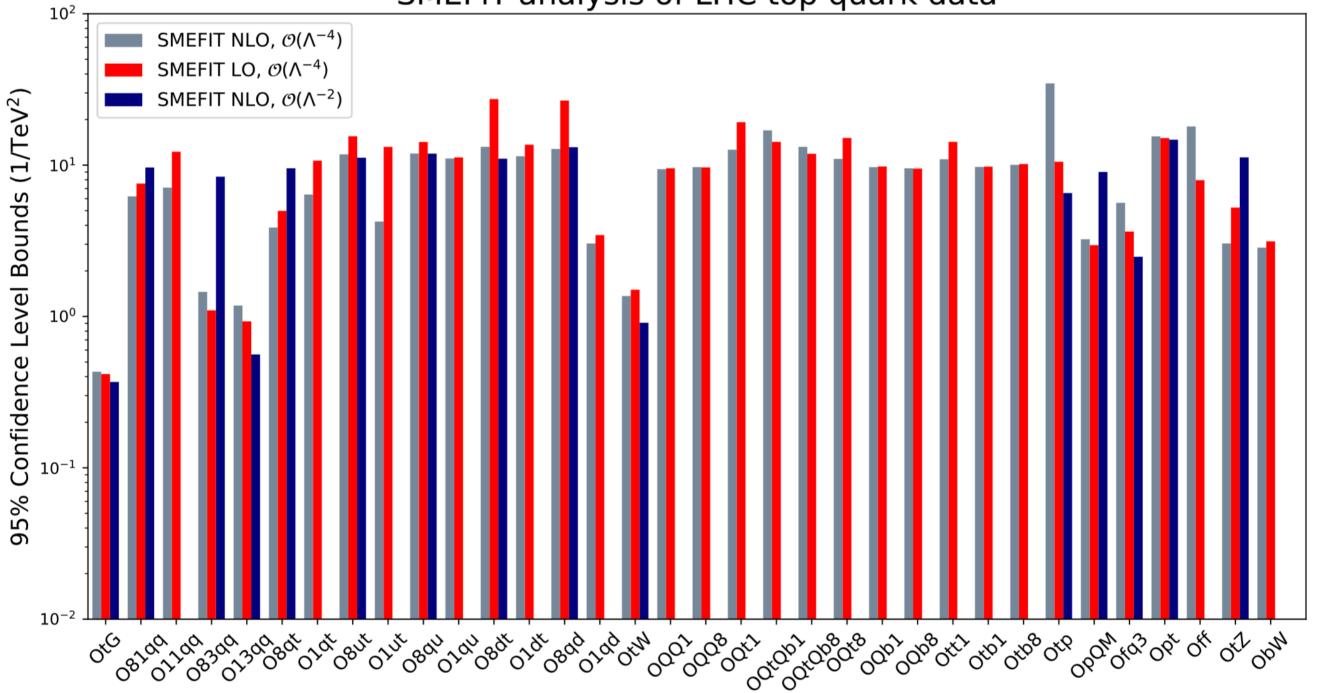
CZ13

CZ8


8WA

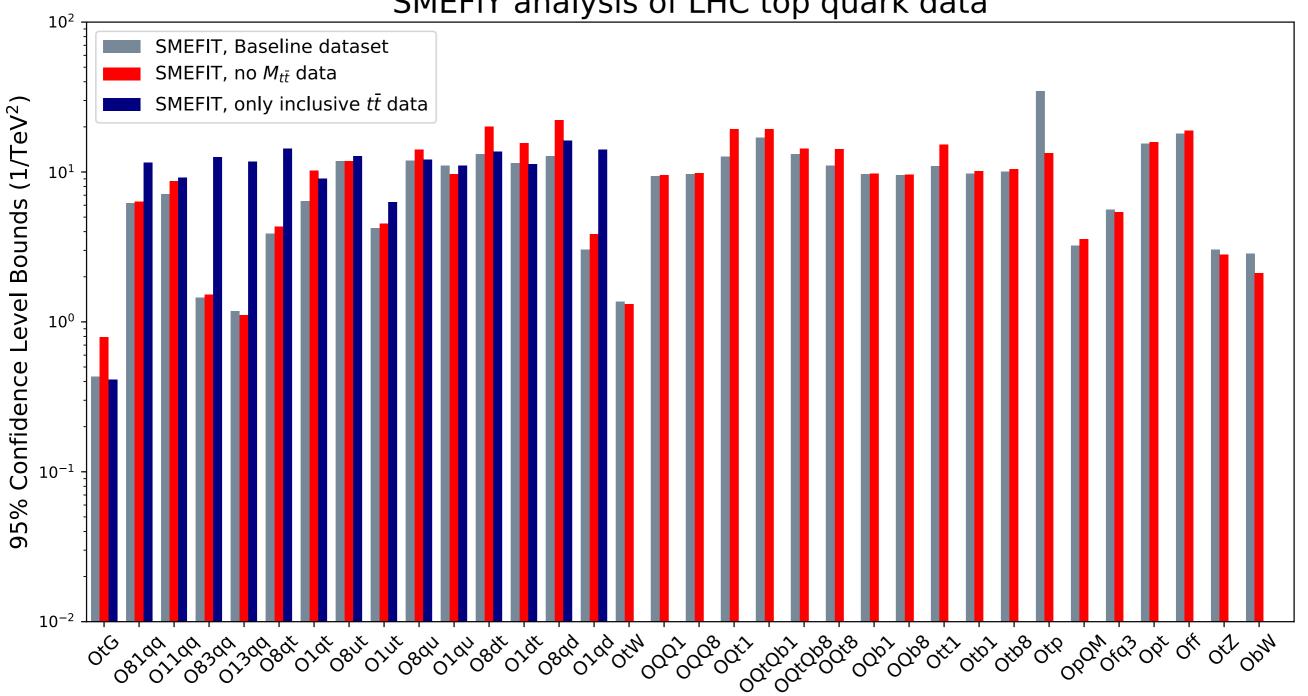
0.2

High-energy behaviour


tt production @ 13 TeV, CMS lepton+jets L=36 fb⁻¹

Energy-growing effects enhance sensitivity to SMEFT effects with **TeV-scale cross-sections** but need to be careful to ensure **validity of EFT description**

Dependence on theory settings



Accounting for the quadratic $O(\Lambda^{-4})$ terms strengthens bounds for several operators

Dependence on dataset

SMEFiY analysis of LHC top quark data

Reasonable stability of the fit results with respect to the **choice of dataset**

Summary and outlook

- Presented a novel framework, **SMEFIT**, suitable for global analyses of the SMEFT, which exploit expertise inherited from global PDF fits
- As a proof-of-concept, applied this framework to the exploration of the constraints in the SMEFT parameter space provided by **LHC top quark data**
- Improved constraints compared to previous studies (first-even bounds in some cases)
- Demonstrated Bayesian reweighting for the a posteriori inclusion of the constraints from new measurements on SMEFiT without need of redoing fit
- Next steps: enlarge the operator fitting basis and include additional LHC cross-sections (Higgs, electroweak, jets) as well as flavour and low-energy observables, and explore implications for specific UV-complete models