Measuring the angular acceptance of the Digital Optical Module

Outing
Thursday May 23
Thijs van Eeden

Importance of Angular Acceptance

- Important factor in estimating the detection rate

Acceptance with Antares

- Simulations determined acceptance
- While measuring they found a lower atmospheric muon detection rate

Detector acceptance was actually higher than simulated for photons from above!

KM3NeT: What do we know?

Calculate detected photons from flux using effective area

$$
N_{d e t}\left[s^{-1}\right]=A_{e f f}\left[m^{2}\right] * F\left[m^{-2} s^{-1}\right]
$$

Effective area has a (theta) dependency

$$
A_{e f f}=\epsilon_{C} A_{P M T} q e(\lambda) \epsilon(\theta) e^{-t_{\text {glass }} / l_{\text {ghass }}} e^{-t_{\text {ged }} / l_{\text {gel }}}
$$

This has been simulated!

KM3NeT: What do we know?

Simulations in JSirene (M. de Jong)
$A_{\text {eff }}=A_{\text {cathode }} *$ Acceptance (θ)
Contains geometry PMT and reflector ring Useful but fails to explain true behaviour PMT, example:

- Photons that hit PMT off optical axis go through different thickness gel/glass

KM3NeT: What do we know?

OMGSim (C. James)

- Fully simulate PMT, glass, gel, qe to get acceptance
- High computational power
- Tabulate the results so we can use them

How can we experimentally check
 these results?

Research question

What is the angular acceptance of a PMT in an assembled DOM in water?

Sub Questions:

- What is the influence of the position of where a photon hits the PMT on the DOM's signal?
- What is the influence of the angle of incidence on the DOM's signal?
- Angle of incidence = angle between optical axis PMT and incident light

Quantifying the signal

Excite the DOM with a picosecond pulsed laser in single photon regime DOM registers:

- Time of a hit (t)
- Time-over-threshold (Tot)

How can we find our signal?

Finding the Signal

Picosecond pulsed laser triggered by the nanobeacon of a CLB

CLB and DOM connected to White Rabbit Switch (WRS) for time synchronization

Now we know when to expect our pulse!

Finding the signal

Send x laser pulses in a timeslice and count the number of hits in a ~20 ns time window

Efficiency $=\frac{\text { Counted hits }}{\text { Pulses sent }}$

Adjust laser intensity to single photon regime ~ 0.1 spe per pulse

Experimental setup

- Dom submerged in water in an aquarium
- DOM can be rotated over 2 angles (Θ, φ)
- X-Z stage for collimator laser

Vary the angle of incidence and
 position of laser spot on the DOM

Laser setup

Laser collimator mounted to a X-Z rails
Manually put the laser in various positions
Laser properties:

- Frequency $=25 \mathrm{KHz} \rightarrow \sim 0.1$ spe/pulse
- Spot size $=\sim 3 \mathrm{~mm}$

Experimental Setup

Preliminary Results

Series of grid scans of PMT under several angles of incidence (θ) :

- 4 diagonals of PMT scanned
- Step size $\sim 2-5 \mathrm{~mm} \rightarrow$
~ 100 measurements per angle
- Obtain relative efficiency of PMT for different angles

Gridscan ($\theta=0$)

- Laser parallel with optical axis PMT
- For each measurement obtain efficiency:

Efficiency
Counted hits

Pulses sent

- In single photon regime!

Gridscan ($\theta=0$)

Gridscan ($\theta=30$)

Efficiency

Gridscan $(\theta=60)$

Gridscan $(\theta=90)$

PMT 22 Theta $=90$

Angular Acceptance

Next:

- Integrate efficiency for every DOM orientation
- Normalize and plot vs $\cos \theta$
- Compare with simulations (JSirene)

Angular Acceptance

Next:

- Integrate efficiency for every DOM orientation
- Normalize and plot vs $\cos \theta$
- Compare with simulations (JSirene)

Angular Acceptance

Compare simulation with data

- Normalized JSirene plot
- Relative acceptance of a PMT

Deviates at $\theta=60$
More measurements needed Especially for $\theta>90$

JSirene

Gridscan - ToT $(\theta=0)$

- ToT peak shift
- Small ToT peak around 5 ns
- Integrate area $0<T o T<10$ and divide by total

Gridscan - ToT Peak ($\theta=0$)

- Compare ToT peak position

Peak of the ToT distribution

Gridscan - $0<\mathrm{ToT}<10$

- Integrate area $0<T o T<10$ and divide by total

Gridscan - $0<\mathrm{ToT}<10$

Compare two spots!

- One in the middle
- And one on the edges with relatively more hits with $0<T o T<10$

Looks like peak around 5 ns stays the same, but total integral is lower!

Next steps

- Compare acceptance with OMGSim results
- Measure $\cos \theta>0$ (and more angles)
- Locate errors and perform error analysis
- Analyze Transit times
- Prepulses and afterpulses
- Analyze ToT
- Peak at 5 ns

Write thesis!

Thank you for listening!

Questions?

Backup

Gridscan - Arrival Times $(\theta=0)$

Gridscan - Arrival Times $(\theta=30)$

PMT 22 Theta $=30$

Gridscan - ToT ($\theta=30$)

