

Neutrino mass ordering

- ORCA has a certain sensitivity, ${\mathcal S}$
- Model ORCA sensitivity, S:
- Asimov method
 Other methods
- Sensitivity *curve*: need constraints on θ_{23}
- What do we actually want? θ_{23} , Δm_{31}^2 and +/- on Δm_{31}^2

How?

- θ_{23} and Δm^2_{31} are visible in oscillations
- What do we measure? (photon counts/arrival times)
 - Tracks: (anti)muon-neutrino-CC
 - Showers: everything else (nu/nb, e/mu/tau, NC/CC)
- 12 channels would be ideal
- Can't: flavor information is lost (most of it anyway)

What?

- Sensitivity S: Reject other hypothesis (OH)
- Count tracks and showers
- Asimov method:
 - Generate expectation value distribution under H0
 - Fit to H1
 - Approximate sensitivity
- Competitive: PINGU
- Increase sensitivity

Sensitivity S

- Runtime
- Resolution
- E/L, etc.

- Two channels two histograms (E_{reco} , $\cos \theta_{reco}$)
- How to improve *S*?
 - Add Y_{Bjorken}
 - More than two channels

Binning in PID variable Q

• Histogram:

$$(E_{reco}, \cos \theta_{reco})$$

 $(E_{reco}, \cos \theta_{reco}, PID)$

- Issue: statistics or signal?
 - 1. S always increases w/ bins
 - 2. Due to detector response matrix

3.
$$\langle \Delta \chi^2 \rangle = \Delta \chi_{\infty}^2 + \frac{K}{N}$$

Forward!

• Concrete:

- Finish PID study
- ParamNMH parametrization
- Improve MONA internals (kernels for interpolating)

• Abstract:

- ORCA data (4 lines)
- Constraining θ_{23} and Δm^2_{31}

- What I want to work on:
 - ✓ Statistical modelling
 - ✓ Function fitting
 - LLR studies (Asimov...)
 - Software