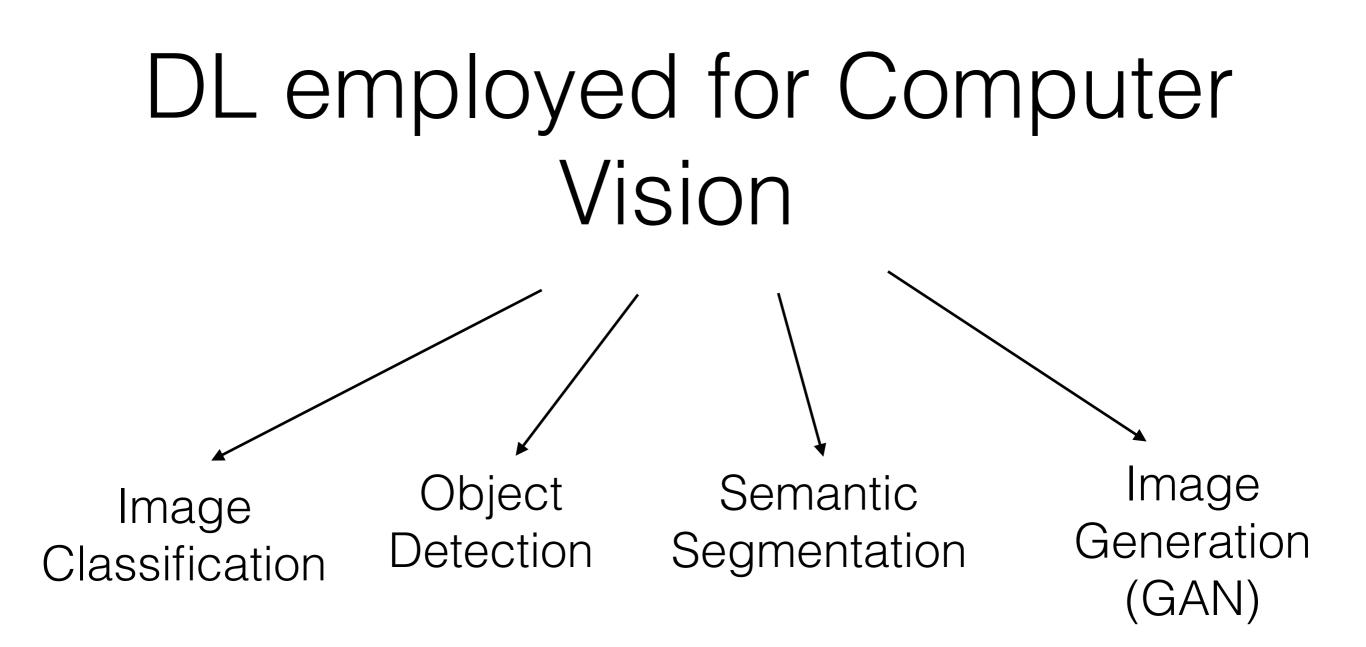

#### Deep Learning and Data Monitoring KM3NeT Outing, 24.05.2019 Fatih Bay

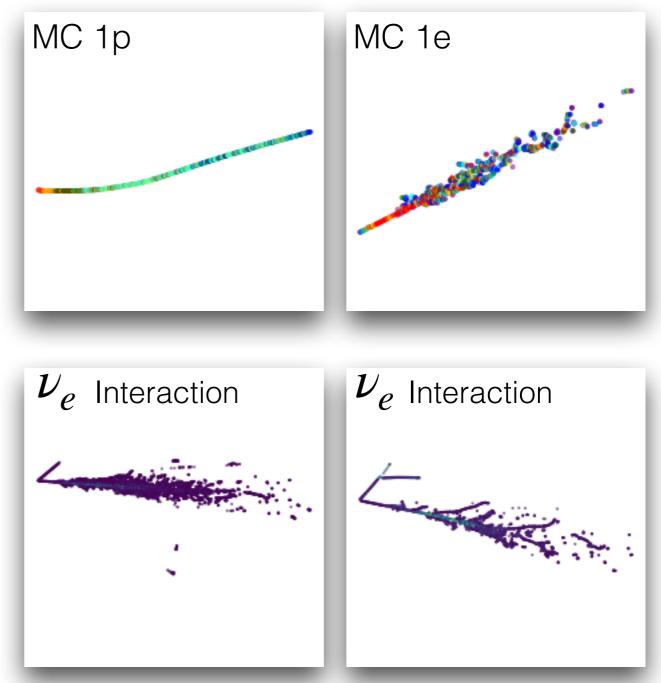
## Outline


- Deep Learning methods used for Computer Vision
- Studies done and further steps
- DAQ Issues for DUNE
- Road Map

# Deep Learning (DL)

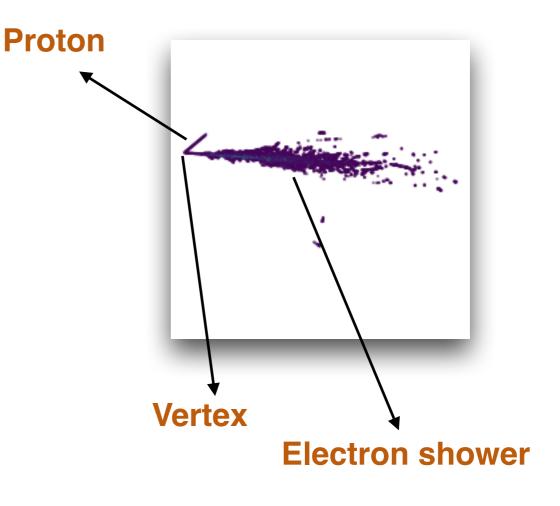
- DL is a subfield of Machine Learning.
- The algorithms are inspired by the structure and function of the brain.
- The structure is called artificial neural network.




By Antonella Massini - MIT

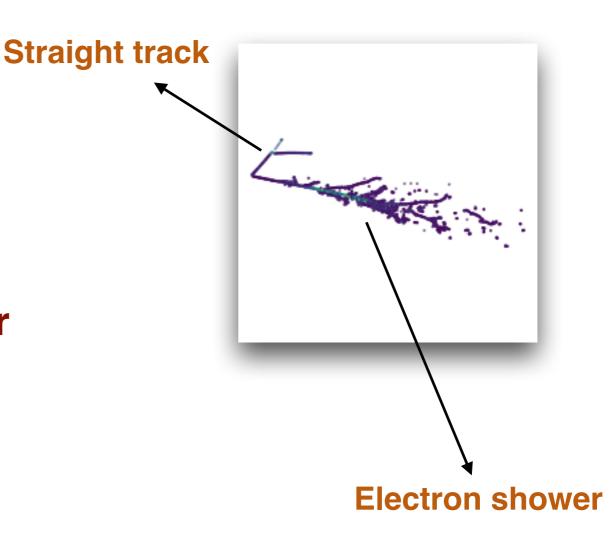


For state-of-the-art studies, models, papers, etc: <u>https://paperswithcode.com/sota</u>


# Image Classification

- Liquid Argon Time Projection Chamber (LAr-TPC) is an imaging calorimeter (mm resolution)
- Single Images can be represented as a matrix of pixel values (Input)
- Particle Identification and Neutrino Event Classification can be realised by using DL Image Classification Method




## Object Detection

- Liquid Argon Time Projection Chamber (LAr-TPC) is an imaging calorimeter (mm resolution)
- Objects in an Image can be localised and classified
- Background rejection, Vertex finding, Online Event Display can be realised by using DL Object detection Method



## Semantic Segmentation

- Liquid Argon Time Projection Chamber (LAr-TPC) is an imaging calorimeter (mm resolution)
- Pixel level classification
- Pixels belongings to shower and tracks can be classified (clustering)



### Generative Adversarial Network (GAN)

- Liquid Argon Time Projection Chamber (LAr-TPC) is an imaging calorimeter (mm resolution)
- Generative method instead of discriminative
- Recovering events (fill dead channels) and Particle simulation can be realised by using GAN

Input PConv



Image recovered by GAN (NVIDIA)

https://arxiv.org/pdf/1804.07723.pdf

## Studies Done

- Image Classification method through a Deep Learning algorithm (ResNet50) has been applied to particle identification using DUNE MC events
- Image Optimisation has been completed
- 0.74 test accuracy has been obtained with 7K images (5 particles classification)
  - NOvA: 0.69 with 4.7M images
  - MicroBooNE: 0.80 with 140K images
- The dataset will be increased and the study will be finalised
- I have started writing the studies done through overleaf as a technical note

## Further Steps for Deep Learning

- Do Event Interaction classification by using Image Classification Method
- Make a research plan for the application of the other CNN methods
- Topical Lectures at Nikhef "Machine Learning" (4-6 April 2018) <u>https://</u> indico.nikhef.nl/event/1122/
- Search for collaboration opportunity with a close lab for the development of a CNN like (GAN) for Neutrino Field

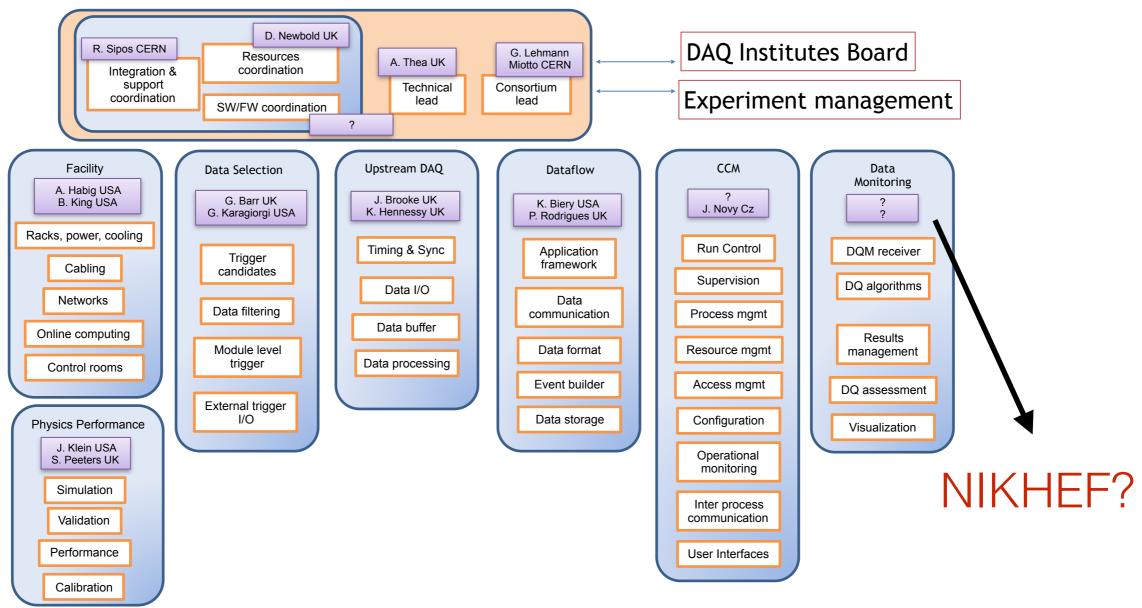











Max Welling

Joris Mooij Zeynep Akata

Herke van Hoof

#### DAQ Issues

### DAQ Consortium Organization



#### **Giovanna's Talk - CERN**

DQ: Data Quality DQM: Data Quality Monitor

#### DUNE CDR Review -ProtoDUNE-SP Lessons Learned

- Monet (OM webviever) was too slow for LArTPC datasets. (Not enough for DUNE scales)
- OM needs to be more than "data viewing" it should know about slow control and run control states, and beam info
- Some users found the OM based on LarSoft very tricky to maintain and inefficient - some fresh ideas are needed here.
- Best effort doesn't work. It needs official status and groups responsible.

#### Karol's talk - Liverpool

## What can Nikhef do?

- Take the responsibility of Data Monitoring WG.
- First step is to study lessons learned by ProtoDUNE, MicroBooNE, etc by making a survey? and/or by discussing with related people face to face, email exchange, etc.
- Take comments of the experts from the Collaborations (DUNE, MicroBooNE, ProtoDUNE).
- Specify what we need as a Data Monitoring and make a research plan including motivation, objectives, work packages, milestones, team, etc. Take the feedback for the final draft.
- Find one or two highly skilled software engineers dedicated to this study and coordinate the work (50 Institutes in the DUNE collaboration).
- Find the most modern way to monitor DUNE data by the end users.
- Hold weekly meetings.
- Complete work packages on time. Do permanence checks. Prepare easily understandable manuals at the end for the safety or DAQ shifters, etc.

## Road Map

- Complete Particle Classification and its technical note
- Present it in the collaboration soon
- Start neutrino interaction classification
- Search for other CNN methods and any collaboration opportunity to develop our own CNN model
- Continue DAQ studies on behalf of Nikhef

### BACKUP

### DL Studies in Neutrino Field

| Experiment              | Aim                                                                                             | CNN Method                                                                          | DL Model (s)                                                                 | Dataset                                                                                                     | DL Software<br>Framework                                             | Results                                                                    |
|-------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|
| NOvA [2]                | Neutrino Event<br>Classification                                                                | Image<br>Classification                                                             | Convolutional<br>Visual Network<br>(CVN) inspired<br>by GoogLeNet            | 2D Images: 4.7<br>events (80% Train<br>and 20% Test)                                                        | -Caffe for training<br>- Training on<br>NVIDIA Tesla K40s            | Test accuracy:<br>~0.69                                                    |
| MicroBooNE [3]          | Single particle<br>and neutrino<br>event<br>classification                                      | Image<br>Classification<br>and Object<br>Detection                                  | AlexNet,<br>GoogLeNet,<br>Faster-RCNN,<br>Inception-<br>ResNet-v2,<br>ResNet | 2D Images:<br>22,000 (train) and<br>3,800 (test)<br>events per<br>particle                                  | Caffe for CNN<br>training and<br>Analysis                            | Test accuracy:<br>~0.8                                                     |
| MicroBooNE [4]          | track/shower<br>separation at the<br>pixel level                                                | Image<br>classification<br>and semantic<br>segmentation<br>via Transfer<br>Learning | U-ResNet, a<br>hybrid of U-Net<br>and ResNet                                 | 2D and 3D<br>images: 140,000<br>events in total<br>(100,000 train,<br>20,000 test and<br>20,000 validation) | -Caffe<br>-NVIDIA TitanX                                             | Incorrectly<br>Classified<br>Particle Fraction<br>(ICPF) = 1.9%<br>avarage |
| Our analysis in<br>DUNE | π <sup>0</sup> separation<br>through Single<br>particle and<br>neutrino event<br>classification | Image<br>Classification<br>via Transfer<br>Learning                                 | Resnet50<br>NasNet<br>more??                                                 | 2D Images with<br>Dataset??                                                                                 | Google Colab for<br>training and<br>analysis (GPU<br>based training) | ???                                                                        |

[2] JINST 11 (2016) no.09, P09001 arXiv:1604.01444 [hep-ex] FERMILAB-PUB-16-082-ND

[3] JINST 12 (2017) no.03, P03011 FERMILAB-PUB-16-538-ND DOI:10.1088/1748-0221/12/03/P03011 e-Print: arXiv:1611.05531

[4] FERMILAB-PUB-18-231-ND e-Print: arXiv:1808.07269