

May 2019, Schoorl Group outing

Pointsource Searches with ARCA

Rasa Muller

PhD Nikhef, Amsterdam

Contributions

Aart Heijboer

May 2019, Schoorl Group outing

Pointsource Searches with ARCA

May 2019, Schoorl Group outing

Pointsource Searches with ARCA

- Astroparticle physics
- Understanding high-energy objects in Universe
- Multi messenger

mcv5.1.genhen: 1 block, 1 year

Questions to answer:

- 1. What is the effective area?
- 2. How does the number of measured background events depend on declination?
- 3. What is the expected angular resolution of KM3NeT ARCA?
- 4. Given the duration of measurement: which fluxes of pointsources can be discovered? / Given the flux of a source: how long do we have to measure to detect it?
- 5. What is the 'sensitivity' of KM3NeT ARCA for a specific signal?

Some definitions

- Equatorial coordinate system
 - Declination (decl / δ)
 - Right Assension (ra / α) \Leftrightarrow time

Some definitions

- Solid angle
 - How much field of view is covered by an object?
 - Unit sphere
 - Expressed in steradian [sr]
 - 1 sr = $\left(\frac{180}{\pi}\right)^2$ square deg
- Same principle as radians in unitcircle

Analysed MC files

- mcv5.1.genhen_anumuCC.km3_AAv1.jte.jchain.aashower.<nr>.root
 numuCC
 anumuNC
 numuNC
- Atmospheric (background) \Leftrightarrow Honda flux in w[2]
- Cosmic (signal) ⇔ apply flux * w[1]
 - Diffuse / pointsource

Questions to answer:

1. What is the effective area?

- 2. How does the number of measured background events depend on declination?
- 3. What is the expected angular resolution of KM3NeT ARCA?
- 4. Given the flux of a source: how long do we have to measure to detect it?
- 5. Given the duration of measurement: which fluxes of pointsources can be discovered?
- 6. What is the 'sensitivity' of KM3NeT ARCA for a specific signal?

Effective Area = ratio between the rate of detected events and the total flux of neutrinos

R.S. Muller

'Pointsource searches with ARCA'

III. Main analysis & Future plans

Effective Area = ratio between the rate of detected events and the total flux of neutrinos

KM3NeT ARCA effective area numuCC

KM3NeT ARCA effective area numuNC

May 2019

Effective Area = ratio between the rate of detected events and the total flux of neutrinos

KM3NeT ARCA effective area anumuCC

KM3NeT ARCA effective area anumuNC

Effective Area = ratio between the rate of detected events and the total flux of neutrinos

KM3NeT ARCA effective area numuCC

 1^{st} bin: sin(dec) = -1.05

Effective Area = ratio between the rate of detected events and the total flux of neutrinos

KM3NeT ARCA effective area numuCC

 2^{nd} bin sin(dec) = -0.95

Effective Area = ratio between the rate of detected events and the total flux of neutrinos

KM3NeT ARCA effective area numuCC

 3^{rd} bin sin(decl) = -0.77

Questions to answer:

1. What is the effective area?

- 2. How does the number of measured background events depend on declination?
- 3. What is the expected angular resolution of KM3NeT ARCA?
- 4. Given the flux of a source: how long do we have to measure to detect it?
- 5. Given the duration of measurement: which fluxes of pointsources can be discovered?
- 6. What is the 'sensitivity' of KM3NeT ARCA for a specific signal?

Background events per declination

(Upgoing, Atm, numu, CC&NC, nu&anu, 1yr, 1ARCA block)

Best reconstructed neutrinos per declination

- Atmospheric background neutrinos (Honda Flux)
- "With the ARCA telescope 87% of the sky will be mapped including most of the Galaxy and the Galactic Center" (km3net.org)

Background events, total

Atmospheric neutrinos		MC output * (1block 1yr)	2 blocks & 5yrs	NC & CC together	LOI 2016
All directions	numuCC	62586	076510		
All directions	anumuCC	20066	020310	9.6755	1 606
All directions	numuNC	3281	40004	0.0765	1.000
All directions	anumuNC	729	40094		
Upgoing	numuCC	36663	494760	5.08e5	
Upgoing	anumuCC	11813	484760		
Upgoing	numuNC	1932			
Upgoing	anumuNC	431	23020		

* Of all available 200 MC files

R.S. Muller

I. Context/Theory		II. Preparat	II. Preparation analysis		"What was changed from the LoI to	
Backgro	ound e	the new MC is affect the low size that gives effective area	s the trigger that mainly energy part and the can s up to 20% more s at high energy." [] "fo			
					atmospheric r energy is the	neutrino the effect at low predominant." (Rosa)
Atmospher	ic neutrinos	MC output * (1block 1yr)	2 blocks & 5yrs		NC & CC together	LOI 2016
All directions	numuCC	62586	826518 40094			
All directions	anumuCC	20066			0 6765	1 6 0 6
All directions	numuNC	3281			0.0783	1.000
All directions	anumuNC	729				
Upgoing	numuCC	36663	484760 23628			
Upgoing	anumuCC	11813			5 0005	
Upgoing	numuNC	1932			0.0060	
Upgoing	anumuNC	431				

* Of all available 200 MC files

Questions to answer:

- 1. What is the effective area?
- 2. How does the number of measured background events depend on declination?
- 3. What is the expected angular resolution of KM3NeT ARCA?
- 4. Given the flux of a source: how long do we have to measure to detect it?
- 5. Given the duration of measurement: which fluxes of pointsources can be discovered?
- 6. What is the 'sensitivity' of KM3NeT ARCA for a specific signal?

Angular resolution of ARCA

 Angle between best reconstructed track, and the primary neutrino

Angular resulution, no flux

Angular resolution of ARCA

- Angle between best reconstructed track, and the primary neutrino
- Cosmic neutrinos
 -> choose flux

$$\Phi(E_{\nu}) = 1.2 \times 10^{-8} \cdot \left(\frac{E_{\nu}}{\text{GeV}}\right)^{-2} \cdot \exp\left(-\frac{E_{\nu}}{3 \text{ PeV}}\right) \quad \text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

May 2019

Angular resolution of ARCA

- Angle between best reconstructed track, and the primary neutrino
- Cosmic neutrinos
 -> choose flux
- ~ 80% better than 1 degree

$$\Phi(E_{\nu}) = 1.2 \times 10^{-8} \cdot \left(\frac{E_{\nu}}{\text{GeV}}\right)^{-2} \cdot \exp\left(-\frac{E_{\nu}}{3 \text{PeV}}\right) \quad \text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

ate_per_year [#]

Angular resolution of ARCA, total

$\Phi(E_{\nu}) = 1.2 \times 10^{-8} \cdot$	$\left(\frac{E_{\nu}}{\text{GeV}}\right)$	-2 · exp	$\left(-\frac{E_{\nu}}{3 \text{PeV}}\right)$	$GeV^{-1} cm^{-2} s^{-1} sr^{-1}$
--	---	-------------	---	-----------------------------------

Cosmic neutrinos		MC output * (1block 1yr)	2 blocks & 5yrs	NC & CC together	LOI 2016
All directions	numuCC	98	1751		
All directions	anumuCC	77	1751	1 8503	1.003
All directions	numuNC	6	102	1.0565	1.963
All directions	anumuNC	4			
Upgoing	numuCC	48	950	9.1e2	
Upgoing	anumuCC	37	859 E1		
Upgoing	numuNC	3			
Upgoing	anumuNC	2	ΟI		

* Of all available 200 MC files

Angular resolution of ARCA, total

$\Phi(E_{\nu}) = 1.2 \times 10^{-8} \cdot$	$\left(\frac{E_{\nu}}{\text{GeV}}\right)^{-2}$	$\cdot \exp\left(-\frac{1}{2} \right)$	$-\frac{E_{\nu}}{3 \text{PeV}}$	${ m GeV^{-1}cm^{-2}s^{-1}sr^{-1}}$
--	--	---	----------------------------------	-------------------------------------

Cosmic	neutrinos	MC output * (1block 1yr)	2 blocks & 5yrs	NC & CC together	LOI 2016
All directions	numuCC	98	1751		
All directions	anumuCC	77	1671	1.95.02	1.002
All directions	numuNC	6	100	1.8963	1.963
All directions	anumuNC	4	102		
Upgoing	numuCC	48	050		<i>"I think that for the</i>
Upgoing	anumuCC	37	809	0.1.02	source spectrum, that have a different slope
Upgoing	numuNC	3	E 4	9.162	compared to
Upgoing	anumuNC	2		Quantify/	atmospheric neutrinos, the two effects are
		* Of all availab	ble 200 MC files	Check!	compensated" (Rosa)

* Of all available 200 MC files

R.S. Muller

May 2019

Questions to answer:

- 1. What is the effective area?
- 2. How does the number of measured background events depend on declination?
- 3. What is the expected angular resolution of KM3NeT ARCA?
- 4. Given the duration of measurement: which fluxes of pointsources can be discovered? / Given the flux of a source: how long do we have to measure to detect it?
- 5. What is the expected performance of the detector aka what is the 'sensitivity' of KM3NeT ARCA for a specific signal?

Pick searchcone (dec, α) & spectral index (γ)

bkg v's in search cone in nyears block⁻¹

(Upgoing, Atm, numu, CC&NC, nu&anu, 1yr, 1ARCA block)

Best reconstructed neutrinos per declination

 Discovery potential = signal strength which leads to 3σ/5σ discovery

Poisson for 1.1 exp Nbkg

- 3σ ⇔ 2.7 e -3
- 5σ ⇔ 5.7 e -7

 Discovery potential = signal strength which leads to 3σ/5σ discovery

Poisson for 1.1 exp Nbkg

- 3σ ⇔ 2.7 e -3
- 5σ ⇔ 5.7 e -7

• **Discovery potential** = signal strength which leads to $3\sigma/5\sigma$ discovery

Poisson for 1.1 exp Nbkg

- 3σ ⇔ 2.7 e -3
- 5σ ⇔ 5.7 e -7

May 2019

 Discovery potential = signal strength which leads to 3σ/5σ discovery

Poisson for 1.1 exp Nbkg

- 3σ ⇔ 2.7 e -3 ⇔ 2.89
- 5σ ⇔ 5.7 e -7 ⇔ 6.89
- $N_{s+b} N_b = N_s$

May 2019

cosmic v's yr⁻¹ block⁻¹

Angular Resolution for 1*E-2 flux

R.S. Muller

Fluxes of pointsources to discover

Example searchcone:						
dec	=	$\frac{\pi}{6}$	[rad]			
α	=	0.58	[deg]			

# woowa	$\langle Nbkg \rangle$ in sc	$\langle Nsig \rangle$ 3 σ	3σ Flux	(Noia) 50	5σ Flux
# years			prefactor	$\langle N sig \rangle$ 30	prefactor
1	1.106	2.894	1.247e-06	6.894	2.970e-06
2	2.212	4.894	1.054e-06	10.894	2.347e-06
3	3.318	6.894	9.901e-07	12.894	1.852e-06
4	4.424	8.894	9.580e-07	15.894	1.712e-06
5	5.530	10.894	9.387 e-07	17.894	1.542e-06
6	6.636	12.894	9.259e-07	19.894	1.429e-06
7	7.742	13.894	8.552e-07	22.894	1.409e-06
8	8.848	15.894	8.560e-07	24.894	1.341e-06
9	9.954	17.894	8.566e-07	26.894	1.287e-06
10	11.060	18.894	8.140e-07	28.894	1.245e-06

Fluxes of pointsources to discover

Exam	ple s	searcho	cone:
dec	=	$\frac{\pi}{6}$	[rad]
α	=	0.58	[deg]

discovery potential for $\Phi \propto E^{-2}$

Future plans: check check double check

- Quantify & explain contribution of NC to muon signal
- Quantify Rosa's statements over number of evts compared to LOI
- What if opening angle is bigger than binsize sin(decl)
- Float \Leftrightarrow Integer number of events
- Work with median instead of mode of poisson
- Also include declination dependency of cosmic sources
- Fluxes with changing spectral index over E
- Flux vs time for X years => also within 1 year => first discoveries?
- How to compute sensitivity curve! => literature?

Future plans: more interesting

- How do these answers depend on size of source/searchcone \rightarrow Optimise searchcone
- How do our results/the KM3NeT sensitivity compare to other experiments?
- Make predictions for existing sources: Catalogsearches
- Not only u_{μ} but also u_e and $u_{ au}$
- Other possible background sources
- Unbinned
- Full sky search
- Include results from reconstruction etc.
- Prepare first 'real data' analysis

• Any other suggestions are always welcome

Thank you