

QUAD testbox

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting April 15, 2019

Resistivity measurements with metal electrode and soap water

- Earlier measurements with Hg probe gave too high resistivities
- TimePix3 chip with 4 μm thick SixNy layer (run 2018)
- 8 mm diam SS disk
- Measured *through* layer
- => units in Ω .cm²
- Very high values at low fields < 20V => 5 kV/mm
 - **R** >> 5.10^{10} Ω.cm²
- Above 40 V => 10 kV/mm quite constant

R $\approx 3.10^{10} \Omega.cm^2$

Resistivty through protection layer Only surface above pads considered

Same curve zoomed in

Gain vs grid current density (J)

Calculated gain reduction vs current density

гтец пащея

- Gain reduced to 30% at 1 nA/cm2
 - TPX3 chip has ≈ 2 cm2 active surface
- Only 5% of the surface (pads) is conductive
- 2018 testbeam $=> \approx 0.5$ nA/cm2

Parallel laser beam

Studies with parallel laser beam

- Range 280 360 V in 11 V runs
 Almost no hits below 280 V
- QUAD 13 examined
- DAQ by single SPIDR boardProvisional setup
- Laser beam attenuated $= > \sim 0.3 \mu J$, 1 ns
- Width $\approx 300 \ \mu m$
- Per chip few hundred hits per laser shot
- Trigger output from fast diode
- Averaged induced grid current in pA range
 - \blacksquare => potential across SixNy layer < 10 V

Measurements by Naomi? on April 3

Data taking protocol

- Laser frequency 2.5 Hz
- Gas: T2K, 300 ppM O2, 2500 ppM H2O
- Drift field: 180 V/cm
- Drift distance Z ~ 1 cm
- Measured at
 - X = 10 mm for 200 shots (chip 2 and 3)
 - X = 20 mm for 200 shots (chip 0 and 1)

Hit plot for chip 0 at 330 V

Fred Hartjes

Analysis by LabVIEW

- Time stamp laser trigger close to t0
 - **Subtract 155 ns** from laser trigger time stamp to approach t0
- Apply hit window around laser trigger
 - -40 to 400 ns
- Apply for drift time spectrum a lower limit of 200 ns
- Apply ToT correction on measured drift times by subtracting ToT_{cor}/ToT
 - To T_{cor} between 3k and 30k, depending on the gas gain (To T_{cor} and To T in ns)

Chip 2 at 330 V

Vgrid = 280 - 300 V

Hits/track

Time spectrum

Nikhef/Bonn LepCol meeting. Nikhef. April 15, 2019

ToT (ns)

Vgrid = 310 - 330 V

Nikhef/Bonn LepCol meeting. Nikhef. April 15, 2019

Vgrid = 340 - 360 V

Nikhef/Bonn LepCol meeting. Nikhef. April 15, 2019

Hits from 200 laser shots

Hit map

Fred Hartjes

Hits from 200 laser shots

Hit map

Hits/track and ToT vs Vgrid

2D Graph 1

 Vgrid vs hits/track-2
 Vgrid vs ToT mean-2 average ToT (ns) hits/track 90 80 Vgrid (V)

No plateau

Event 70, 290 V

Event 70, 320 V

Nikhef/Bonn LepCol meeting. Nil

18

Event 70, 350 V

Observed until now

- Until Vgrid = 330 V everything looks normal
 - Nice, clean tracks
- At 350 V many spurious hits
- At 360 V very messy, not decent track visible, only a multitude of spurious hits
- After a short while at 360 V a hard and permanent HV short occurred
- Number of hits/track keeps increasing with Vgrid
 - No plateau visible
- **But above 330 V the additional hits deteriorate the result**
 - Time spectrum gets broader (after-pulsing?)
- => there is an optimal working point
- Optimal grid voltage at 320 330 V
 - But probably depending on grid current
- Hits per track is limited at ~ 530
 - DAQ effect => other hits at 409 µs further?
 - There are random hits (~ 5%) at Td around zero
 - ToT spectrum agrees with the hits from the laser track
 - Also at the neighbouring chip
 - => probably due to spurious laser light hitting the edge of the holes

We have to redo the measurements with