

QUAD testbox

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting March 25, 2019

Charging up studies

- At substantial grid current a voltage drop will occur across the 4 um SixNy layer
 - => reduction amplification field
 - => reduction of gas gain
- Measurement with Hg probe
- Gain drop calculated from voltage vs gain measurement for T2K gas
- Very strong effect
 - At 3 nA/cm2 gain less than < 1%</p>

Same curve zoomed in

Reality is not that bad: laser ionization

- In testbox induced current by UV laser
 - 2.5 Hz
 - Vgrid = 330 V, T2K gas
 - Drift distance ~ 8 mm
 - Active surface covered ~ 1 cm2
- Effect is there, but much smaller than expected
- Steady current of **3 nA/cm2**

Laser induced current when moving to 3 different positions

- Pads lay in well ~ 3 um under surrounding material
- Pads diam 14 um + \sim 3 um edge => cover \sim 8% of the surface
- Time constants of charging up vary
 - Above pad surface: ~ 120 pF capacity
 - $\sim 1 \text{ min for } \Delta V = 10 20 \text{ V} \text{ (low rate)}$
 - = 15 s for $\Delta V = 50 V$
 - 4 s for $\Delta V = 100 V$ (very high rate)
 - Outside pad surface: ~ 800 pF capacity
 - \mathbf{I} 5 20 min, for less high rates much longer

Short term and long term charging up

IV curve grid current with source

IV curve with source

Induced grid current vs grid voltage

Last year's testbeam

- At Vgrid = -300 V beam current ~ 1 nA
- At Vgrid = -330 V beam current 3 nA
 - Active surface covered ~ 2.5 cm²
- Note that log period is 1 min vs 1.7 s at laser measurements
 - rapid decrease of beam current will not be not noticed
 - Long term effect not visible

Spark testbeam 2016 at SPS

Beam current vs grid voltage

Conclusions

- Charging up is very complicated process with a convolution of a multitude of different time constants
 - Sufficient for a full PHD study
- Resistivity of the layer cannot be described by a single parameter
- Main dependencies
 - Resistivity curve of protection layer vs field
 - Grid current (combination of ionization rate and gain)
 - Chip geometry (pad size)
- Two main processes
 - Charging up **above** the pad ($\tau < 1 \text{ min}$)
 - Charging up **outside** the pad ($\tau = 5 20$ min and higher)
- Charging up effects will always occur, even at very low rate
- Initial gain (no charging up) almost impossible to determine
- Until ~ 1 nA/cm2 not much decay of gain, in the 0 30% range
- Current limit for TPX3: ~ 8 nA/cm2
 - We should stay far away from this limit