Last week activities

- Topical Lectures Cosmology
- Jan Willem van Holten
- Jan Pieter Van der Schaar
- Samaya Nissanke
- Henk Hoekstra
- Prepare the exam

- NWO course: Taking Charge of your PhD
- "De Wereld Draait Door" [20-03-2019]

Binned likelihood

Pointsource searches

- Path of mc files:
- /sps/km3net/repo/mc/atm_neutrino/KM3NeT_-00000001_20171212/v5.1/reco
- MC chain of analysed files:
- mcv5.1.genhen_numuCC.km3_AAv1.jte.jchain.aashower
- Detector file:
- /pbs/throng/km3net/detectors/KM3NeT_-00000001_20171212.detx
- Further specifications:
- Muons
- Nu \& aNu
- Upgoing \Leftrightarrow Up \& Downgoing
- Flux ~ $\mathrm{E}^{\wedge}-2$

1) Distribution per declination

Distribution per declination

$\sin (\mathrm{decl})$

Right Ascension [Oh - 24h]

Distribution per declination (rates per year)

Going (a)nu's

Atm NU (s) Evt distribution per declination

Distribution per declination (rates per year)

UP \& DOWN
Going (a)nu's

LOI 2016

Factor ~ 2 difference?

	reconstruction level	after preselection cuts	after final cuts
$\mu_{\text {atm }}$	2.4×10^{7}	5.5×10^{4}	6
$\nu_{\text {atm }}^{\mu}$	1.0×10^{5}	49	20
$\nu_{\text {atm }}^{e}$	7.1×10^{3}	23	19
$\nu_{\text {cosm }}^{\mu}$	352	34	11
$\nu_{\text {cosm }}^{e}$	304	49	41
$\nu_{\text {cosm }}^{\tau}$	250	34	26

Table 3: Expected number of events for the $\mathrm{KM} 3 \mathrm{NeT} / \mathrm{ARCA}$ detector (2 building blocks) for the different event samples in 5 years of observation time. The cosmic events correspond to the source flux of Eq. 3 .

Create 100 random background events according to distribution per declination

 graph$$
\begin{gathered}
\text { UP } \\
\text { Going (a)nu's }
\end{gathered}
$$

Atm NU (s) Evt distribution per declination

2) Angular Resolution

Up- \& Downgoing

Upgoing only

Angular resolution, flux E-2

Angular resolution, flux E-2

LOI 2016

	reconstruction level	after preselection cuts	after final cuts	
μ_{atm}	2.4×10^{7}	5.5×10^{4}	6	
ν_{atm}^{μ}	1.0×10^{5}	49	20	
ν_{atm}^{e}	7.1×10^{3}	23	19	
	$\nu_{\text {cosm }}^{\mu}$	352	34	11
Factor ~ 2 difference?	$\nu_{\text {cosm }}^{e}$	304	49	41
	$\nu_{\text {cosm }}^{\tau}$	250	34	26

Table 3: Expected number of events for the KM3NeT/ARCA detector (2 building blocks) for the different event samples in 5 years of observation time. The cosmic events correspond to the source flux of Eq. 3 .

Up- \& Downgoing

Upgoing only

Angular resolution vs rate

Angular resolution vs rate

Up- \& Downgoing

Upgoing only

Angular resolution vs rate

Angular resolution vs rate

Up- \& Downgoing

Upgoing only

Angular resolution vs rate

Angular resolution vs rate

Backup

Archimedes' Hat-Box Theorem

" Enclose a sphere in a cylinder and cut out a spherical segment by slicing twice perpendicularly to the cylinder's axis.

Then the lateral surface area of the spherical segment S_1 is equal to the lateral surface area cut out of the cylinder S_2 by the same slicing planes"

Thus:
Same surface area's on shpere, for same h
 $\sin (\mathrm{decl})$ same binsize $=\mathrm{h}$ same size

2) Angular Resolution

For only 1 file:
mcv5.1.genhen_anumuCC.km3_AAv1.jte.jchain.aashower.103.root

Up- \& Downgoing

Upgoing only

Angular resolution, flux E-2

Angular resolution, flux E-2

Up- \& Downgoing

Upgoing only

Projection hist_Ares

ProjectionX hist_Ares

|>>> hist_Ares_proj.Integral() 146.17705988274827

Up- \& Downgoing

Upgoing only

Projection hist_Ares

ProjectionX hist_Ares

