Last week activities

- Topical Lectures Cosmology
 - Jan Willem van Holten
 - Jan Pieter Van der Schaar
 - Samaya Nissanke
 - Henk Hoekstra
- Prepare the exam

4 Hoog-energetische neutrino's detecteren (2 punten)

Beantwoord de vraag op een nieuw antwoordblad a.u.b.! Lep op: bij deze vraag zijn de meeste punten te verdienen bij vraag d).

In een eerdere opgave in dit examen hebben we bekeken hoe neutrino's gevormd worden in het verval van geladen pionen. Deze kennis is niet alleen nodig om deze processen bij deeltjesversnellers op aarde te begrijpen. Ook in het heelal zijn objecten die extreem hoog energetische neutrino's produceren via pion verval. Om meer te leren over deze objecten proberen onderzoekers op aarde deze neutrino's op aarde te detecteren; bijvoorbeeld met behulp van de KM3NeT detector op de bodem van de Middellandse zee.

Detectie-principe:

Neutrino's vliegen door de aarde heen en zullen héél soms op een atoom in het zeewater botsen. In dit proces wordt een muon-neutrino omgezet in een muon dat op zijn beurt licht zal goan uitstralen, de bezongde Chernberg straling

NWO course: Taking Charge of your PhD

• "De Wereld Draait Door" [20-03-2019]

Binned likelihood

Pointsource searches

- Path of mc files:
 - /sps/km3net/repo/mc/atm_neutrino/KM3NeT_-00000001_20171212/v5.1/reco
- MC chain of analysed files:
 - o mcv5.1.genhen_numuCC.km3_AAv1.jte.jchain.aashower
- Detector file:
 - /pbs/throng/km3net/detectors/KM3NeT_-00000001_20171212.detx

- Further specifications:
 - Muons
 - Nu & aNu
 - Upgoing ⇔ Up & Downgoing
 - Flux ~ E^ -2

1) Distribution per declination

Distribution per declination

Right Ascension [0h - 24h]

Distribution per declination (rates per year)

UP Going (a)nu's

Atm NU (s) Evt distribution per declination

Distribution per declination (rates per year)

UP & DOWN Going (a)nu's

LOI 2016

Factor ~ 2 difference?

	reconstruction level	after preselection cuts	after final cuts
μ_{atm}	2.4×10^{7}	5.5×10^4	6
$ u^{\mu}_{atm}$	1.0×10^{5}	49	20
$ u_{atm}^e$	7.1×10^{3}	23	19
$ u^{\mu}_{cosm}$	352	34	11
$ u_{cosm}^e$	304	49	41
$ u_{cosm}^{ au}$	250	34	26

Table 3: Expected number of events for the KM3NeT/ARCA detector (2 building blocks) for the different event samples in 5 years of observation time. The cosmic events correspond to the source flux of Eq. 3.

Create 100 random background events according to distribution per declination

graph

UP Going (a)nu's

2) Angular Resolution

Upgoing only

Angular resolution, flux E-2

Angular resolution, flux E-2

LOI 2016

	reconstruction level	after preselection cuts	after final cuts
μ_{atm}	2.4×10^{7}	5.5×10^{4}	6
$ u^{\mu}_{atm}$	1.0×10^{5}	49	20
$ u_{atm}^e$	7.1×10^{3}	23	19
$ u^{\mu}_{cosm}$	352	34	11
$ u_{cosm}^e$	304	49	41
$ u_{cosm}^{ au}$	250	34	26

Factor ~ 2 difference?

Table 3: Expected number of events for the KM3NeT/ARCA detector (2 building blocks) for the different event samples in 5 years of observation time. The cosmic events correspond to the source flux of Eq. 3.

Upgoing only

Angular resolution vs rate

Angular resolution vs rate

Upgoing only

Angular resolution vs rate

Angular resolution vs rate

Upgoing only

Angular resolution vs rate

Angular resolution vs rate

Backup

Archimedes' Hat-Box Theorem

"Enclose a sphere in a cylinder and cut out a spherical segment by slicing twice perpendicularly to the cylinder's axis.

Then the lateral surface area of the spherical segment S_1 is equal to the lateral surface area cut out of the cylinder S_2 by the same slicing planes "

<u>Thus:</u>

Same surface area's on shpere, for same h sin(decl) same binsize = h same size

2) Angular Resolution

For only 1 file:

mcv5.1.genhen_anumuCC.km3_AAv1.jte.jchain.aashower.103.root

Upgoing only

Angular resolution, flux E-2

Angular resolution, flux E-2

Upgoing only

Projection hist_Ares

ProjectionX hist_Ares

Upgoing only

Projection hist_Ares

ProjectionX hist_Ares

