# The measurement of $h \rightarrow \tau^+ \tau^-$ with tau reconstruction using impact parameters

#### Kees Ligtenberg (Host: Daniel Jeans) KEK student program @ KEK ILC group 28 February 2019







#### Introduction

- New physics at the TeV scale can imply deviations in the Higgs couplings of the order of a few percent
- In the 250 GeV stage of the ILC, ILD will make a measurement of the branching fraction of Higgs to taus
- Existing projections<sup>1</sup> use traditional tau reconstructions methods, but the measurement precision might be improved using reconstruction with impact parameters<sup>2</sup>
- A comparison is made for the  $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$  channel, because its reconstruction is effective

<sup>1</sup> S. Kawada et al., A study of the measurement precision of the Higgs boson decaying into tau pairs at the ILC, arXiv:1509.01885 <sup>2</sup> D. Jeans, Tau lepton reconstruction at collider experiments using impact parameters, arXiv:1507.01700v3

# Signal process topology

- At 250 GeV Zh production is dominant
- The Z and Higgs boson will be produced with low momentum
- The two tau jets will be highly boosted
- The taus will travel up to a few mm before decaying into a neutrino, one or more charged particles, and possibly neutral particles
- There will be small opening angle between the decay products
- The recoiling Z will decay to a pair of muons



### Tau decay modes

Distinguish the tau decays by their visible decay products:

- Leptonic (e and mu)
- One charged hadron (mostly pions)
- p-like is one charged pion and one neutral pion
- One prong (other) is one charged hadron and neutrals
- All others are considered multiprong



#### Tau decays from MC sample (truth level)

### Reconstruction of tau momentum

Taus decay to at least one neutrino which is not measured. How can the momentum be reconstructed? (3 unknowns per tau)

#### The collinear approximation

- The tau is highly boosted so the neutrino momentum is assumed to be in the same direction as the visible decay products (2 constraints per tau)
- The magnitude can be found by requiring e.g. the missing momentum of the event to be balanced (2 constraints in total)
  - Or using the tau mass (1 constraint per tau)



### Reconstruction of tau momentum

#### **Reconstruction using impact parameters**

In multiprong decays:

- The direction of tau momentum is along the line from the interaction point to the tau vertex (2 constraints per tau)
- The magnitude is found by imposing the tau mass constraint (1 constraint per tau)

In one prong decays the tau vertex cannot be fully reconstructed (-1 constraint per tau), so the missing transverse momentum is minimized (+2 constraint in total)

For multiprong decays: error of tau vertex in the longitudinal direction is large so also use one prong method

Fall back on collinear method if no solution is found ( $\sim$ 15%)



#### Collinear mass and impact parameter mass



- The visible mass is unprecise has its maximum below the actual value
- In the collinear approximation the mass peaks at the correct value
- Using impact parameters the mass is more precise (more peaked)
  - But the tail is slightly longer

#### Reconstructed tau pair mass per decay mode



Requiring both taus to have the same decay mode:

- The most narrow peak is the  $\tau \rightarrow \pi \nu_{\tau}$  process
- The ρ-like decay and other one prongs and multiprong decay can also be reconstructed well
- Although the impact parameter method is not applicable to the leptonic decay mode because of extra neutrinos, it still work OK

#### Events samples and reconstruction

- Look at Daniels ILD samples (ILCSoft v01-19-04) in the  $e^+e^- \rightarrow \mu^+\mu^-\tau^+t^-$  channel
- Use P(e<sup>-</sup>,e<sup>+</sup>)=(-80%,30%) data from the updated H20 run scenario at 250 GeV
  - Effectively use weights LL:LR:RL:RR 0.315:0.585:0.035:0.065
- To start, only the irreducible (Higgsless) background is taken into account, because the other backgrounds are almost completely be eliminated using cuts
- The reconstruction and cuts from a previous analysis by Kawada will be followed

#### **Event reconstruction**

- 1. Muons are selected (using IsolatedLeptonFinder)
  - 1. Leptons have  $|d_0 / \sigma_{do}| < 3$  and  $|z_0 / \sigma_{zo}| < 3$
  - 2. Identify muons by  $E_{ECal} < E_{HCal}$  and  $(E_{ECal} + E_{HCal})/P_{Track} < 0.6$ 
    - Photons within  $\cos(\theta) > 0.999$  are added to the lepton mass
  - 3. The muon pair with its mass closest to the Z mass is selected
- 2. Select taus
  - 1. Repeat until there are no more charged particles:
    - 1. Select the highest momentum charged particle
    - 2. particles are added in a cone with 1 rad. half angle, while the candidate mass is smaller than the expected tau mass
      - If there are exactly 2 photons, the momentum is scaled such that it equals the pion mass
  - 2. The highest energy tau candidate of each charge is selected

#### **Basic event selection**

- Use some basic pre-selection cuts:
  - Number of charged PFOs < 7
  - Selected pair of leptons of opposite charge
  - Pair of tau candidates of opposite charge

|                                  | LR sample | RL sample |
|----------------------------------|-----------|-----------|
| Total number of generated events | 47570     | 45594     |
| Pair of isolated leptons         | 44653     | 42785     |
| number of charged PFOs < 7       | 40392     | 38665     |
| Pair of tau candidates           | 37950     | 36228     |

#### Number of signal events

# Comparison with cut flow from Kawada

| Number of events for 250 fb <sup>-1</sup>      | My cut flow |                | Selected form Kawada's thesis |             | thesis |      |
|------------------------------------------------|-------------|----------------|-------------------------------|-------------|--------|------|
| Cut                                            | Signal      | Irreducible 4f | Signal                        | Other higgs | 4f     | S    |
| Preselected events                             | 129         | 1024           | 133                           | 56          | 6382   | JCe  |
| Missing E > 5 GeV   E <sub>vis</sub> > 245 GeV | 125         | 981            | 132                           | 55          | 3960   | erer |
| Missing p <sub>T</sub> > 5 GeV                 | 120         | 938            | 126                           | 54          | 2673   | iffe |
| Missing $\cos(\theta)$   <0.97                 | 119         | 895            | 124                           | 53          | 2480   | n d  |
| 65 GeV < m <sub>uu</sub> < 105 GeV             | 113         | 799            | 122                           | 52          | 756    | nai  |
| $E_{uu} < 115 \text{ GeV}$                     | 112         | 154            | 121                           | 50          | 559    | thr  |
| Visible E <sub>rr</sub> > 15 GeV               | 110         | 150            | 119                           | 50          | 270    | Ň    |
| Visible $M_{\tau\tau} > 10 \text{ GeV}$        | 108         | 146            | 117                           | 44          | 192    | รนเ  |
| $\cos(\theta_{\tau\tau}) < -0.52$              | 104         | 82             | 116                           | 6           | 117    | t un |
| 123 < M <sub>recoil</sub> < 138 GeV            | 90          | 32             | 99                            | 5           | 41     | ပိ   |

- Backgrounds with < 1 events are not shown from Kawada's thesis
- It seems some reducible 4f and Higgs events are still missing in this analysis
- Kawada's main BDT analysis has 102 signal and 31 background events

#### Cut flow in diagrams



#### Comparison after example cut flow

- Kawada does not cut on  $m_{\tau\tau}$  (collinear)
- Reconstruction method does not affect background by a lot
- Here a cut on the collinear mass is more effective

|                                      | Signal | Irreducible | $S/\sqrt{S+B}$ |
|--------------------------------------|--------|-------------|----------------|
| After cutflow                        | 90     | 32          | 8.14           |
| $M_{\tau\tau}$ > 100 GeV (collinear) | 85     | 17          | 8.40           |
| M <sub>ττ</sub> > 100 GeV            | 79     | 15          | 8.15           |
| (impact parameters)                  |        |             |                |

• Difference should be investigated



Signal peak is slightly narrower, but also longer tail

### Possible cause of difference?



For the collinear method, the effect requiring the coefficients of the neutrino momentum to be >=0, i.e. neutrino must travel in the same direction as the visible decay products



Events in which the collinear method did better generally had one low momentum tau. For these events the impact parameter is expected to be less effective

#### **Conclusions**

- A small part of the Higgs branching ratio to taus was repeated for the  $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$  channel
- The impact parameter method was applied, and does in some cases gives a better reconstruction performance (narrower peak)
- However an additional cut on the tau pair mass reconstructed using impact parameters does not outperform the tau pair mass using the collinear approximation
- The cause of differences should be investigated
- All backgrounds should be included, to re-optimize cut flows

#### Decay modes in tail

• No specific differences between decay modes







#### Collinear approximation using tau mass

- Visible mass
- Collinear approximation using missing transverse momentum
- Collinear approximation using tua mass

