AdS/CFT and Heavy Ion Physics

Umut Gürsoy

Utrecht

NIKHEF - June 16, 2015
References

- Based on the papers

- Reviews on Heavy Ion Collisions and AdS/CFT
 arXiv:1101.0618 — Exhaustive, emphasis on AdS/CFT
 arXiv:0902.3663—Hydrodynamics for HIC
 arXiv:1102.3010—RHIC/LHC results and elliptic flow
 arXiv:1006.546—Non-conformal holographic QCD approach
Outline

- Lecture I:
 - AdS/CFT for QCD
 - Deformations of AdS/CFT
 - Bottom-up approach to AdS/CFT
 - Improved Holographic QCD
Outline

- **Lecture I:**
 - AdS/CFT for QCD
 - Deformations of AdS/CFT
 - Bottom-up approach to AdS/CFT
 - Improved Holographic QCD

- **Lecture II:**
 - Glueball Spectrum
 - Thermodynamics
 - Transport
 - Jet quenching
 - Langevin diffusion
 - Thermalization
 - Outlook
Heavy ion collisions

- RHIC: Au + Au at $\sqrt{s} = 200$ GeV per nucleon; about $T = 200 - 300$ MeV.
- LHC: Pb + Pb at $\sqrt{s} = 2.76$ TeV/n about $T = 300 - 400$ MeV.
Heavy ion collisions

- **RHIC**: Au + Au at $\sqrt{s} = 200$ GeV per nucleon; about $T = 200 - 300$ MeV.
- **LHC**: Pb + Pb at $\sqrt{s} = 2.76$ TeV/n about $T = 300 - 400$ MeV.
- The quark-gluon plasma forms at ~ 1 fm and exists for $5 - 10$ fm.
- Cools down as it expands \Rightarrow and hadronizes around $T = 170$ MeV.
What can we learn from Holography

- Phase diagram of QCD at finite μ, T and B
- Transport coefficients: Viscous relativistic hydrodynamics account for the observed v_2, v_3, etc quite well
 ⇒ Calculate the viscosities η/s and $\zeta/s +$ higher order coefficients, other transport coefficients.

- Energy loss in hard probes
 Basic mechanisms: Gluon brehmstrahlung and Langevin diffusion
 ⇒ Calculate the jet-quenching parameter \hat{q} and momentum diffusion parameters κ.

- Anomalous transport: Chial Magnetic Effect, Chiral Magnetic Wave, etc. ⇒ Calculate chiral conductivities

- Thermalization
 Non-equilibrium physics, formation of QGP ⇒ black-hole formation by collapsing matter
Large-N approximation?
Large-N approximation?

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography.
Large-N approximation?

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography. Take the large N_c 't Hooft limit:

$$N_c \rightarrow \infty, \quad g^2 \rightarrow 0, \quad \lambda = g^2 N = \text{fixed}$$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c
Large-N approximation?

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography. Take the large N_c 't Hooft limit:

$$N_c \to \infty, \quad g^2 \to 0, \quad \lambda = g^2 N = \text{fixed}$$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f / N_c

\Rightarrow Large N_c pure glue theory with gauge-group $SU(N_c)$
Large-N approximation?

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography. Take the large N_c ’t Hooft limit:

$$N_c \to \infty, \quad g^2 \to 0, \quad \lambda = g^2 N = \text{fixed}$$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c

\Rightarrow Large N_c pure glue theory with gauge-group $SU(N_c)$

Extrapolation on the lattice: Both at zero T (glueball spectra) and finite T (thermodynamic functions) VERY close to $SU(3)$.
Large-N approximation?

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography.
Take the large N_c 't Hooft limit:

$$N_c \to \infty, \quad g^2 \to 0, \quad \lambda = g^2 N = \text{fixed}$$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c

\Rightarrow Large N_c pure glue theory with gauge-group $SU(N_c)$

Extrapolation on the lattice: Both at zero T (glueball spectra) and finite T (thermodynamic functions) VERY close to $SU(3)$.

This is what we will assume in the rest of the lectures...
N-dependence of thermodynamic quantities

Panero ’09

- About 10 % deviation in the hadron spectra
- Thermodynamic observables very close to each other
Holographic dual of QCD?

Top-bottom approach: holography from two different descriptions of D-branes.
Holographic dual of QCD?

Top-bottom approach: holography from two different descriptions of D-branes. They couple to:

1. **Open strings** \(\Rightarrow\) **Gauge theory in** \(d\) **dimensions**
2. **Closed strings** \(\Rightarrow\) **GR in** \(d + 1\) **dimensions**

At low energy 1. and 2. decouple and become equivalent!
Holographic dual of QCD?

Top-bottom approach: holography from two different descriptions of D-branes. They couple to:

1. Open strings ⇒ Gauge theory in d dimensions
2. Closed strings ⇒ GR in $d + 1$ dimensions

At low energy 1. and 2. decouple and become equivalent!

Very hard to deal with in practice...
Phenomenological approach

Da Rold, Pomarol; Erlich et al ’05
Phenomenological approach

Da Rold, Pomarol; Erlich et al ’05

- Construct a consistent GR set-up in the most economic fashion:
 - Dimensions of QFT + 1 (energy scale)
 - Symmetries of QFT in the bulk
 - One bulk field for each relevant + marginal operator
 - Realization of dynamical phenomena (e.g. spontaneous symmetry breaking)
Phenomenological approach

Da Rold, Pomarol; Erlich et al ’05

- Construct a consistent GR set-up in the most economic fashion:
 - Dimensions of QFT + 1 (energy scale)
 - Symmetries of QFT in the bulk
 - One bulk field for each relevant + marginal operator
 - Realization of dynamical phenomena (e.g. spontaneous symmetry breaking)
- Declare that this GR theory secretly describes the strong coupling region of the QFT
- Check this by calculations
Phenomenological approach

Da Rold, Pomarol; Erlich et al ’05

- Construct a consistent GR set-up in the most economic fashion:
 - Dimensions of QFT + 1 (energy scale)
 - Symmetries of QFT in the bulk
 - One bulk field for each relevant + marginal operator
 - Realization of dynamical phenomena (e.g. spontaneous symmetry breaking)
- Declare that this GR theory secretly describes the strong coupling region of the QFT
- Check this by calculations
- For generic GR set-ups ⇒ universal lessons
Some details of the duality
Some details of the duality

Domain-wall type geometries with boundary

Minimal metric:
\[ds^2 = b(r)^2 (dr^2 + dx_d^2) \]
Some details of the duality

Domain-wall type geometries with boundary

Minimal metric:

\[ds^2 = b(r)^2 (dr^2 + dx_d^2) \]

Rules to compute: Witten; Gubser, Klebanov, Polyakov ’98
Some details of the duality

Domain-wall type geometries with boundary

Minimal metric:
\[ds^2 = b(r)^2 \left(dr^2 + dx_d^2 \right) \]

Rules to compute: Witten; Gubser, Klebanov, Polyakov ’98

1. A bulk fluctuation \(\phi(x, r) \leftrightarrow \mathcal{O}(x) \) on the boundary.
Some details of the duality

Domain-wall type geometries with boundary

Minimal metric:
\[ds^2 = b(r)^2 (dr^2 + dx_d^2) \]

Rules to compute: Witten; Gubser, Klebanov, Polyakov ’98

1. A bulk fluctuation \(\phi(x, r) \leftrightarrow \mathcal{O}(x) \) on the boundary.

Fundamental relation:
\[\exp(-S_G[\phi(x, r) \rightarrow \phi_0(x)]) = \langle \exp(\int \mathcal{O}\phi_0) \rangle \]

Computes n-point functions \(\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle \) of QFT.
Some details of the duality

Domain-wall type geometries with boundary

Minimal metric:
\[ds^2 = b(r)^2 \left(dr^2 + dx_d^2 \right) \]

Rules to compute: Witten; Gubser, Klebanov, Polyakov ’98

1. A bulk fluctuation \(\phi(x, r) \leftrightarrow \mathcal{O}(x) \) on the boundary.

 Fundamental relation:
 \[
 \exp\left(-S_G[\phi(x, r) \rightarrow \phi_0(x)] \right) = \langle \exp(\int \mathcal{O}\phi_0) \rangle
 \]
 Computes n-point functions \(\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle \) of QFT.

2. Finite temperature in the QFT \(\leftrightarrow \) black-hole in the geometry.
The minimal holographic dual at zero T
The minimal holographic dual at zero T

- Consider pure $SU(N)$ at large N, at strong coupling ⇒
 classical Einstein’s GR
The minimal holographic dual at zero T

- Consider pure $SU(N)$ at large N, at strong coupling \Rightarrow classical Einstein’s GR

- Most economic set-up:
 1. $Mink^4 +$ energy scale $\Rightarrow 5$ dimensions
The minimal holographic dual at zero T

- Consider pure $SU(N)$ at large N, at strong coupling ⇒ classical Einstein’s GR

- Most economic set-up:
 1. $Mink^4$ + energy scale ⇒ 5 dimensions
 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate $\text{Tr} F^2$

 ⇒ Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\phi \Leftrightarrow \text{Tr} F^2$
The minimal holographic dual at zero T

- Consider pure $SU(N)$ at large N, at strong coupling \Rightarrow classical Einstein’s GR

- Most economic set-up:
 1. $Mink^4 +$ energy scale \Rightarrow 5 dimensions
 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate $\text{Tr} F^2$
 \Rightarrow Need metric $g_{\mu\nu} \leftrightarrow T_{\mu\nu}$ and dilaton $\phi \leftrightarrow \text{Tr} F^2$
 3. Running coupling extremely important for correct thermodynamics \Rightarrow non-conformally invariant background
 with $e^\phi \propto g^2 N$ a function of r: $\phi = \phi(\Lambda r)$ with $\Lambda \Rightarrow$
 dynamically generated QCD scale.
Improved HQCD U.G, Kiritsis; U.G. Kiritsis, Nitti ’07
Improved HQCD U.G. Kiritsis; U.G. Kiritsis, Nitti ’07

- Gravitational dual in 2∂ effective GR theory:

$$S = M_p^3 N_c^2 \int d^5 x \sqrt{g} \left\{ R - \frac{4}{3} (\partial \phi)^2 - V(\phi) \right\}$$

- Look for domain-wall type solutions of the Einstein-dilaton eqs:

$$ds^2 = b^2(r) (dr^2 - dt^2 + dx_3^2), \quad \lambda = \lambda(r) \equiv \exp(\phi(r))$$
Improved HQCD U.G, Kiritsis; U.G. Kiritsis, Nitti ’07

- Gravitational dual in 2∂ effective GR theory:

$$S = M_p^3 N_c^2 \int d^5x \sqrt{g} \left\{ R - \frac{4}{3}(\partial \phi)^2 - V(\phi) \right\}$$

- Look for domain-wall type solutions of the Einstein-dilaton eqs:

$$ds^2 = b^2(r) (dr^2 - dt^2 + dx_3^2), \quad \lambda = \lambda(r) \equiv \exp(\phi(r))$$

Dictionary: Geometry vs. QFT:

- Scale factor $b_0(r)$ is the energy scale in the field theory E,
- Dilaton $\lambda(r) \propto \lambda_t(E)$ running ’t Hooft coupling,
- Dilaton potential $V(\phi) \Leftrightarrow \beta(\lambda_t)$ the beta-function of the QFT.
Quark potential and confinement

Linear quark potential from flux tube:

\[V_{q\bar{q}}(L) = \sigma_s L + \cdots \]
Quark potential and confinement

Linear quark potential from flux tube:

\[V_{q\bar{q}}(L) = \sigma_s L + \cdots \]

K.G. Wilson ’74 \[\langle W[C] \rangle = \langle \text{Tr} P e^{- \oint_C A_\mu dx^\mu} \rangle = e^{-V_{q\bar{q}}(L)T} \]
Quark potential and confinement

Linear quark potential from flux tube:

\[V_{q\bar{q}}(L) = \sigma_s L + \cdots \]

K.G. Wilson ’74

\[\langle W[C] \rangle = \langle \text{Tr} P e^{-\oint_C A_{\mu} dx^{\mu}} \rangle = e^{-V_{q\bar{q}}(L)T} \]
Quark potential and confinement

Linear quark potential from flux tube:

\[V_{q\bar{q}}(L) = \sigma_s L + \cdots \]

K.G. Wilson ’74

\[\langle W[C] \rangle = \langle \text{Tr} P e^{-\oint_C A_\mu dx^\mu} \rangle = e^{-V_{q\bar{q}}(L)T} \]

Gauge-gravity duality:

\[W[C] \Leftrightarrow \text{string world-sheet ending on } C \]

\[\langle W[C] \rangle = e^{-S[\text{string}; C]} \]

J. Maldacena ’98; S. Rey, J. Yee ’98
Linear quark potential $\iff \exists$ minimum of b_s
This constrains large λ asymptotics of the dilaton potential $V(\lambda)$.
• Requirement of a marginal deformation $\text{Tr} F^2$ fixes the UV asymptotics as
 \[V(\lambda) = v_0 + v_1 \lambda + \cdots, \quad \lambda \to 0 \]

• Requirement of linear color confinement fixes the IR asymptotics as
 \[V(\lambda) \propto \lambda^{\frac{4}{3}} \log^{\frac{1}{2}} \lambda + \cdots, \quad \lambda \to \infty \]

• Then 1) mass gap 2) first order T_c is automatic

• Spectrum of glueballs can be computed with no IR ambiguity
IR asymptotics
IR asymptotics

In terms of the potential:

\[V(\phi) \rightarrow e^{\frac{4}{3} \phi} \phi^{\frac{\alpha - 1}{\alpha}} + \cdots \]

(we will eventually set \(\alpha = 2 \))
IR asymptotics

In terms of the potential:

\[V(\phi) \rightarrow e^{\frac{4}{3} \phi} \phi^{\frac{\alpha-1}{\alpha}} + \cdots \]

(we will eventually set \(\alpha = 2 \))

IR asymptotics of the background:

\[b(r) \sim e^{-\left(\frac{r}{L}\right)^\alpha}, \quad \lambda(r) \sim e^{3/2(\frac{r}{L})^\alpha} \left(\frac{r}{L}\right)^{\frac{3}{4}(\alpha-1)} \quad \text{as} \quad r \rightarrow \infty \]
Parameters of the theory
Parameters of the theory

- The dilaton potential:

\[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{1/2} \right\} \]

- Parameters in the action: \(V_0, V_2 \) fixed by scheme independent \(\beta \)-function coefficients \((b_0 \text{ and } b_1) \), \(V_1, V_3 \) fixed by the latent heat \(L_h \) and \(S(2T_c) \) (lattice)
Parameters of the theory

- The dilaton potential:
 \[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{1/2} \right\} \]

- Parameters in the action: \(V_0, V_2 \) fixed by scheme independent \(\beta \)-function coefficients (\(b_0 \) and \(b_1 \)), \(V_1, V_3 \) fixed by the latent heat \(L_h \) and \(S(2T_c) \) (lattice)

- The Planck scale \(M_p \) also by thermodynamics. matching high T asymptotics of QCD free energy: \[M_p = \left(45\pi^2 \right)^{-\frac{1}{3}} \ell^{-1} \]
Parameters of the theory

- The dilaton potential:

\[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\} \]

- Parameters in the action: \(V_0, V_2 \) fixed by scheme independent \(\beta \)-function coefficients (\(b_0 \) and \(b_1 \)), \(V_1, V_3 \) fixed by the latent heat \(L_h \) and \(S(2T_c) \) (lattice)

- The Planck scale \(M_p \) also by thermodynamics. matching high T asymptotics of QCD free energy: \(M_p = \left(45\pi^2 \right)^{-\frac{1}{3}} \ell^{-1} \)

- \(\Lambda_{QCD} \ell_{AdS} \) the only parameter of the zero T solutions, fixed by \(m_{0++} = 1475 \text{ MeV} \Rightarrow \Lambda_{QCD} = 292 \text{ MeV} \).
Parameters of the theory

- The dilaton potential:
 \[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{1/2} \right\} \]

- Parameters in the action: \(V_0, V_2 \) fixed by scheme independent \(\beta \)-function coefficients \((b_0 \text{ and } b_1)\), \(V_1, V_3 \) fixed by the latent heat \(L_h \) and \(S(2T_c) \) (lattice)

- The Planck scale \(M_p \) also by thermodynamics. matching high T asymptotics of QCD free energy: \(M_p = \left(45\pi^2 \right)^{-\frac{1}{3}} \ell^{-1} \)

- \(\Lambda_{QCD} \ell_{AdS} \) the only parameter of the zero T solutions, fixed by \(m_{0++} = 1475 \text{ MeV} \Rightarrow \Lambda_{QCD} = 292 \text{ MeV} \).

- The string length \(\ell_s \) by lattice string \(\sigma_s \): \(\frac{\ell_{AdS}}{\ell_s} \approx 6.5 \)
 This measures how good the two-derivative approximation is!
The spectra of the theory
The spectra of the theory

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.

- Spin 2: $h_{\mu \nu}^{TT}$; Spin 0: mixture of h_μ^μ and $\delta \Phi$;
The spectra of the theory

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.

- Spin 2: $h^{TT}_{\mu\nu}$; Spin 0: mixture of h^μ_μ and $\delta\Phi$;
- For a particle in 4D with wave-function $\psi(x)$ the corresponding bulk fluctuation is $\phi(x, r) = \psi(x)\zeta(r)$
The spectra of the theory

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.

- Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta\Phi$;
- For a particle in 4D with wave-function $\psi(x)$ the corresponding bulk fluctuation is $\phi(x, r) = \psi(x)\zeta(r)$. For $\zeta(r)$ square integrable on r, the fluctuation eq. is a Schrödinger equation: $\mathcal{H}\zeta \equiv -\ddot{\zeta} + V_s(r)\zeta = m^2\zeta$ where $V_s = V_s[b(r), \lambda(r)]$
The spectra of the theory

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.

- Spin 2: $h^{TT}_{\mu\nu}$; Spin 0: mixture of h^μ_μ and $\delta\Phi$;

- For a particle in 4D with wave-function $\psi(x)$ the corresponding bulk fluctuation is $\phi(x,r) = \psi(x)\zeta(r)$. For $\zeta(r)$ square integrable on r, the fluctuation eq. is a Schrödinger equation:
 $$\mathcal{H}\zeta \equiv -\ddot{\zeta} + V_s(r)\zeta = m^2\zeta$$
 where $V_s = V_s[b(r), \lambda(r)]$

- Both mass gap and discrete spectra m^2 follows if V_s has a well-shape ⇔ linear quark potential!
The spectra of the theory

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.

- Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_μ^{μ} and $\delta\Phi$;
- For a particle in 4D with wave-function $\psi(x)$ the corresponding bulk fluctuation is $\phi(x,r) = \psi(x)\zeta(r)$. For $\zeta(r)$ square integrable on r, the fluctuation eq. is a Schrödinger equation: $\mathcal{H}\zeta \equiv -\ddot{\zeta} + V_s(r)\zeta = m^2\zeta$ where $V_s = V_s[b(r), \lambda(r)]$
- Both mass gap and discrete spectra m^2 follows if V_s has a well-shape ⇔ linear quark potential!
Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.
Spin 2: $h^{TT}_{\mu\nu}$; Spin 0: mixture of h^μ_{μ} and $\delta \Phi$;
Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.
Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta\Phi$;

Quadratic action for fluctuations:

$$S \sim \frac{1}{2} \int d^4 x d r e^{2B(r)} \left[\ddot{\zeta}^2 + (\partial_\mu \zeta)^2 \right]$$

$$\ddot{\zeta} + 3\dot{B}\dot{\zeta} + m^2 \zeta = 0, \quad \partial_\mu \partial_\mu \zeta = -m^2 \zeta$$
Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable fluctuations of the bulk fields.

Spin 2: $h^{TT}_{\mu\nu}$; Spin 0: mixture of h^{μ}_{μ} and $\delta \Phi$;

Quadratic action for fluctuations:

$$S \sim \frac{1}{2} \int d^4x dr e^{2B(r)} \left[\dot{\zeta}^2 + (\partial_\mu \zeta)^2 \right]$$

$$\ddot{\zeta} + 3 \dot{B} \dot{\zeta} + m^2 \zeta = 0, \quad \partial^\mu \partial_\mu \zeta = -m^2 \zeta$$

- Scalar: $B(r) = 3/2 A(r) + \log(\dot{\Phi}/\dot{A})$
- Tensor: $B(r) = 3/2 A(r)$
Comparison with one lattice study Meyer, ’02

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>Lattice (MeV)</th>
<th>Our model (MeV)</th>
<th>Mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^{++}</td>
<td>1475 (4%)</td>
<td>1475</td>
<td>0</td>
</tr>
<tr>
<td>2^{++}</td>
<td>2150 (5%)</td>
<td>2055</td>
<td>4%</td>
</tr>
<tr>
<td>0^{+++}</td>
<td>2755 (4%)</td>
<td>2753</td>
<td>0</td>
</tr>
<tr>
<td>2^{+++}</td>
<td>2880 (5%)</td>
<td>2991</td>
<td>4%</td>
</tr>
<tr>
<td>0^{++++}</td>
<td>3370 (4%)</td>
<td>3561</td>
<td>5%</td>
</tr>
<tr>
<td>0^{+++++}</td>
<td>3990 (5%)</td>
<td>4253</td>
<td>6%</td>
</tr>
</tbody>
</table>

0^{++} : Tr F^2; 2^{++} : Tr $F_{\mu\rho}F^{\rho}_{\nu}$.
Thermodynamics: results

- Fix the dilaton potential:

\[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{1/2} \right\} \]
Thermodynamics: results

- Fix the dilaton potential:
 \[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\} \]

- Two sol’ns with AdS asymptotics \(ds^2 = e^{A(r)} \left(dt^2 f(r) + dx_3^2 + \frac{dr^2}{f(r)} \right) \):
 - Thermal Gas \(\Leftrightarrow \) thermal gas of glueballs.
 - Black-hole \(\Leftrightarrow \) quark-gluon plasma.
 - Hawking-Page transition \(\Leftrightarrow \) deconfinement transition at \(T_c \).
Thermodynamics: results

- Fix the dilaton potential:
 \[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{1/2} \right\} \]

- Two sol’ns with AdS asymptotics \(ds^2 = e^{A(r)} \left(dt^2 f(r) + dx_3^2 + \frac{dr^2}{f(r)} \right) \):
 - Thermal Gas \(\Leftrightarrow \) thermal gas of glueballs.
 - Black-hole \(\Leftrightarrow \) quark-gluon plasma.
 - Hawking-Page transition \(\Leftrightarrow \) deconfinement transition at \(T_c \).

- Free energy from \(S_{BH} - S_{TG} \).

- Parameter fixing: \(V_0, V_2 \) fixed by scheme independent \(\beta \)-function coefficients \((b_0 \text{ and } b_1) \), \(V_1, V_3 \) fixed by the latent heat \(L_h \) and \(S(2T_c) \) (lattice).
Thermodynamics: results

- Fix the dilaton potential:
 \[V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right)^{1/2} \right\} \]

- Two sol’ns with AdS asymptotics \(ds^2 = e^{A(r)} \left(dt^2 f(r) + dx_3^2 + \frac{dr^2}{f(r)} \right) \):
 - Thermal Gas \(\Leftrightarrow \) thermal gas of glueballs.
 - Black-hole \(\Leftrightarrow \) quark-gluon plasma.
 - Hawking-Page transition \(\Leftrightarrow \) deconfinement transition at \(T_c \).

- Free energy from \(S_{BH} - S_{TG} \).

- Parameter fixing: \(V_0, V_2 \) fixed by scheme independent \(\beta \)-function coefficients \((b_0 \text{ and } b_1) \), \(V_1, V_3 \) fixed by the latent heat \(L_h \) and \(S(2T_c) \) (lattice).

- Deconfinement transition at \(T_c = 247 \text{ MeV} \) (lattice: \(T_c = 260 \text{ MeV} \)). Comparison to Boyd et al. '96
The free energy:

\[\frac{F}{N_c^2 T_c^4 V_3} \]

\[\begin{array}{c}
\text{0.01} \\
\text{0} \\
\text{-0.01} \\
\text{-0.02} \\
\text{-0.03}
\end{array} \]

\[\frac{T}{T_c} \]

\[\begin{array}{c}
1 \\
1.1 \\
1.2
\end{array} \]
The free energy:

\[
\frac{F}{N_c^2 T_c^4 V_3}
\]

\[
\frac{T}{T_{\text{min}}}
\]

\[
\frac{T}{T_c}
\]

\[
\lambda_h
\]
iHQCD Thermodynamics continued

The free energy:

- Big and Small black-hole solutions, like $N = 4$ on R^3
- Existence of $T_{min} \Leftrightarrow$ phase transition at $T_c > T_{min}$
Survey of thermodynamical quantities I

Comparison to Panero ’09

Entrophy density

$\frac{s}{T^3}$, normalized to the SB limit

SU(3)
SU(4)
SU(5)
SU(6)
SU(8)

improved holographic QCD model

T/T_c
Comparison to Panero ’09
Survey of thermodynamical quantities III

Comparison to Panero ’09
Survey of thermodynamical quantities IV

Comparison to Panero ’09

Trace of the energy-momentum tensor

Δ / T^4, normalized to the SB limit of p / T^4

- SU(3)
- SU(4)
- SU(5)
- SU(6)
- SU(8)

improved holographic QCD model
Survey of thermodynamic quantities V

Comparison to Boyd et al. ’96 Thermodynamic functions and the speed of sound:

$$\frac{e}{T^4 N_c^2}, \frac{3s}{4 T^3 N_c^2}, \frac{3p}{T^4 N_c^2}$$
Dissipation in relativistic hydrodynamics
Dissipation in relativistic hydrodynamics

- \(T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu} \), what is \(\Pi^{\mu\nu} \) ?
Dissipation in relativistic hydrodynamics

- \(T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu} \), what is \(\Pi^{\mu\nu} \)?

- When no other conserved charge, particle flow is only due energy flow: \(u_\mu T^{\mu\nu} = \epsilon u^\mu \Rightarrow u_\mu \Pi^{\mu\nu} = 0 \)

Landau reference frame.
Dissipation in relativistic hydrodynamics

- $T^{\mu \nu} = T^{\mu \nu}_{(0)} + \Pi^{\mu \nu}$, what is $\Pi^{\mu \nu}$?

- When no other conserved charge, particle flow is only due energy flow: $u_\mu T^{\mu \nu} = \epsilon u^\mu \Rightarrow u_\mu \Pi^{\mu \nu} = 0$
 Landau reference frame.

- A straightforward exercise: From second law of thermodynamics $\partial_\mu s^\mu = 0$ (with $s^\mu = su^\mu$)
Dissipation in relativistic hydrodynamics

- $T^{\mu\nu} = T_{(0)}^{\mu\nu} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?

- When no other conserved charge, particle flow is only due energy flow: $u_\mu T^{\mu\nu} = \epsilon u^\mu \Rightarrow u_\mu \Pi^{\mu\nu} = 0$
 Landau reference frame.

- A straightforward exercise: From second law of thermodynamics $\partial_\mu s^\mu = 0$ (with $s^\mu = su^\mu$)

\[
T^{\mu\nu} = (\epsilon + p)u^\mu u^\nu + pg^{\mu\nu} \\
+ P^{\mu\alpha} P^{\nu\beta} \left[\eta \left(\partial_\alpha u_\beta + \partial_\beta u_\alpha - \frac{2}{3} g_{\alpha\beta} \partial \cdot u \right) + \zeta g_{\alpha\beta} \partial \cdot u \right] \\
+ O(\partial u)^2; \quad P^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu
\]

- η: “shear viscosity”; ζ: “bulk viscosity"
Dissipation in relativistic hydrodynamics

- $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?

- When no other conserved charge, particle flow is only due energy flow: $u_\mu T^{\mu\nu} = \epsilon u^\mu \Rightarrow u_\mu \Pi^{\mu\nu} = 0$

 Landau reference frame.

- A straightforward exercise: From second law of thermodynamics $\partial_\mu s^\mu = 0$ (with $s^\mu = su^\mu$)

 $$T^{\mu\nu} = (\epsilon + p)u^\mu u^\nu + pg^{\mu\nu}$$

 $$+ P^{\mu\alpha} P^{\nu\beta} \left[\eta \left(\partial_\alpha u_\beta + \partial_\beta u_\alpha - \frac{2}{3} g_{\alpha\beta} \partial \cdot u \right) + \zeta g_{\alpha\beta} \partial \cdot u \right]$$

 $$+ O(\partial u)^2; \quad P^{\mu\nu} = g^{\mu\nu} + u^\mu u^\nu$$

- η: “shear viscosity”; ζ: “bulk viscosity"

Another exercise: Navier-Stokes and continuity eqs. follow from $\partial_\mu T^{\mu\nu} = 0$.
Calculation of viscosities in QFT
Calculation of viscosities in QFT

- Kubo’s linear response theory:
 \[\mathcal{L} \rightarrow \mathcal{L} + \int \mathcal{O}^A \delta \phi_A, \]
 then \[\langle \mathcal{O}^B \rangle = G^{BA}_R \delta \phi_A \]
 where \[G_R(\omega, \vec{k}) = -i \int d^4x e^{-i\vec{k} \cdot \vec{x}} \theta(t) \langle [\mathcal{O}^A(t, \vec{x}), \mathcal{O}^B(0, \vec{0})] \rangle \]
Calculation of viscosities in QFT

- **Kubo’s linear response theory:**
 \[\mathcal{L} \rightarrow \mathcal{L} + \int \mathcal{O}^A \delta \phi_A, \]
 then \[\langle \mathcal{O}^B \rangle = G_{BA}^R \delta \phi_A \]
 where \[G_R(\omega, \vec{k}) = -i \int d^4 x e^{-i k \cdot x} \theta(t) \langle [\mathcal{O}^A(t, \vec{x}), \mathcal{O}^B(0, \vec{0})] \rangle \]
- **Viscosities:** response of \(T^{\mu \nu} \) to \(g_{\alpha \beta} \).
Calculation of viscosities in QFT

- **Kubo’s linear response theory:**
 \[\mathcal{L} \rightarrow \mathcal{L} + \int \mathcal{O}^A \delta \phi_A, \]
 then \[\langle \mathcal{O}^B \rangle = G_R^{BA} \delta \phi_A \]
 where \[G_R(\omega, \vec{k}) = -i \int d^4 x e^{-i \vec{k} \cdot \vec{x}} \theta(t) \langle [\mathcal{O}^A(t, \vec{x}), \mathcal{O}^B(0, \vec{0})] \rangle \]

- **Viscosities:** response of \(T^{\mu\nu} \) to \(g_{\alpha\beta} \).

 \[\eta \left(\delta^{il} \delta^{km} + \delta^{im} \delta^{kl} - \frac{2}{3} \delta^{ik} \delta^{lm} \right) + \zeta \delta^{ik} \delta^{lm} = \lim_{\omega \to 0} \frac{i}{\omega} G_R^{ik,lm}(\omega) \]
Calculation of viscosities in QFT

- **Kubo’s linear response theory:**
 \[\mathcal{L} \to \mathcal{L} + \int \mathcal{O}^A \delta \phi_A, \]
 then \(\langle \mathcal{O}^B \rangle = G^B_A \delta \phi_A \)
 where \(G_R(\omega, \vec{k}) = -i \int d^4xe^{-i\vec{k} \cdot \vec{x}} \theta(t) \langle [\mathcal{O}^A(t, \vec{x}), \mathcal{O}^B(0, \vec{0})] \rangle \)

- **Viscosities:** response of \(T^{\mu\nu} \) to \(g_{\alpha\beta} \).

- \(\eta \left(\delta^{il} \delta^{km} + \delta^{im} \delta^{kl} - \frac{2}{3} \delta^{ik} \delta^{lm} \right) + \zeta \delta^{ik} \delta^{lm} = \lim_{\omega \to 0} \frac{i}{\omega} G^{ik,lm}_R(\omega) \)

- Read off \(\eta \) from the \(xy \) component, and \(\zeta \) from the \(11 + 22 + 33 \) component.
Hydrodynamics at first order
Hydrodynamics at first order

- Relativistic fluid with 4-velocity u^μ, energy density ϵ and pressure p.

- Navier-Stokes & continuity equations from the energy-momentum tensor:

\[
T_{\mu\nu} = (\epsilon + p)u^\mu u^\nu + p g^{\mu\nu} \\
+ \ P^{\mu\alpha} P^{\nu\beta} \left[\eta \left(\partial_\alpha u_\beta + \partial_\beta u_\alpha - \frac{2}{3} g_{\alpha\beta} \partial \cdot u \right) + \zeta g_{\alpha\beta} \partial \cdot u \right] \\
+ \mathcal{O}(\partial u)^2
\]
Hydrodynamics at first order

- Relativistic fluid with 4-velocity u^μ, energy density ϵ and pressure p.
- Navier-Stokes & continuity equations from the energy-momentum tensor:

$$T_{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$

$$+ \quad P^{\mu\alpha}P^{\nu\beta} \left[\eta \left(\partial_\alpha u_\beta + \partial_\beta u_\alpha - \frac{2}{3} g_{\alpha\beta} \partial \cdot u \right) + \zeta g_{\alpha\beta} \partial \cdot u \right]$$

$$+ \quad \mathcal{O}(\partial u)^2$$

The characteristic parameters of the fluid at $\mathcal{O}(\partial u)$

- Shear viscosity η: For all 2∂ theories $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$

Buchel and Liu '03
Hydrodynamics at first order

- Relativistic fluid with 4-velocity u^μ, energy density ϵ and pressure p.
- Navier-Stokes & continuity equations from the energy-momentum tensor:

$$T_{\mu\nu} = (\epsilon + p)u^\mu u^\nu + pg^{\mu\nu}$$

$$\quad + P^{\mu\alpha}P^{\nu\beta} \left[\eta \left(\partial_\alpha u_\beta + \partial_\beta u_\alpha - \frac{2}{3} g_{\alpha\beta} \partial \cdot u \right) + \zeta g_{\alpha\beta} \partial \cdot u \right]$$

$$\quad + \mathcal{O}(\partial u)^2$$

The characteristic parameters of the fluid at $\mathcal{O}(\partial u)$

- **Shear viscosity η:** For all 2∂ theories $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$
 Buchel and Liu ’03

- **Bulk viscosity ζ:** What is already known from field theory and lattice?
Holographic computation

- Kubo’s linear response theory:
 \[\zeta = -\frac{1}{9} \lim_{\omega \to 0} \frac{1}{\omega} \text{Im} G_R(\omega, 0) \]

- More complicated than shear because \(h_{ii} \) mix with dilaton fluctuations \(\delta \phi \).

- Derive the fluctuation equations for \(h_{ii} \), pick up the gauge \(\delta \phi = 0 \),

- Fluctuations decouple in the smart gauge! Gubser et al ’08: Define \(X = \phi' / 3A' \)

- \(h''_{ii} + \left(3A' + \frac{2X'}{X} + \frac{f'}{f} \right) h'_{ii} + \left(\frac{\omega^2}{f^2} - \frac{f'X'}{fX} \right) h_{ii} = 0 \)

- Boundary conditions:
 - \(h_{ii}(\phi = -\infty) = 1 \) and,
 - In-falling wave at horizon \(h_{ii} \to c_b (r_h - r)^{-\frac{i\omega}{4\pi T}} \)

- Read off \(c_b(\omega, T) \)
Results I: Comparison to Meyer '08
Results I: Comparison to Meyer '08

- Near UV, vanishes as expected: ideal gluon gas at high T
- Near T_c Peak, much smaller than lattice expectations!
- Agreement with another holographic model Gubser et al. 08
Jet quenching

Back-to-back jet production is highly suppressed at RHIC:
Jet quenching

Back-to-back jet production is highly suppressed at RHIC:

The first direct signals of jet-quenching - November 2010!
Jet quenching

Back-to-back jet production is highly suppressed at RHIC:

The first direct signals of jet-quenching - November 2010!

A clear signal of strongly-coupled plasma.
Quantification of jet quenching Baier et al ’96

What is known: recoiling hadrons are suppr

Compare to d+Au: suppression is final-state

M. van Hees, JINR, JINR
High-pT at SPS, RHIC and LHC
Quantification of jet quenching

Baier et al ’96

What is known: recoiling hadrons are suppressed

\[\frac{1}{N_{\text{Trigger}}} \frac{dN}{d(\Delta \phi)} \]

\(\Delta \phi \) (radians)

Compare to d+Au: suppression is final-state

\(\text{QGP} \)

quenched
Quantification of jet quenching

Baier et al '96

What is known: recoiling hadrons are suppr

Compare to d+Au: suppression is final-state

Average transverse momentum lost into the media in a flight of distance D.

$$\hat{q} = \frac{\langle p_{\perp}^2 \rangle}{D}$$

Weak-coupling computation does not explain the data.
Energy loss of a heavy quark

- Highly energetic partons produced in head-on nuclei collisions are very important probes
Energy loss of a heavy quark

- Highly energetic partons produced in head-on nuclei collisions are very important probes

- In weakly coupled QGP: main source of energy loss is collisions with thermal gluons and quarks.

 D. Teaney ’03

- What happens in a strongly coupled plasma?
Energy loss of a heavy quark

- Highly energetic partons produced in head-on nuclei collisions are very important probes

- **In weakly coupled QGP**: main source of energy loss is collisions with thermal gluons and quarks.

 D. Teaney ’03

- What happens in a strongly coupled plasma?
 Combination of two distinct mechanisms:
Energy loss of a heavy quark

- Highly energetic partons produced in head-on nuclei collisions are very important probes.
- **In weakly coupled QGP**: main source of energy loss is collisions with thermal gluons and quarks.

 D. Teaney ’03

- What happens in a strongly coupled plasma? Combination of two distinct mechanisms:
 1. Energy loss by Langevin diffusion process
 2. Energy loss by gluon Brehmstahlung
Langevin diffusion process
Langevin diffusion process

- Hard probe moving in QGP: $S[X(t)] = S_0 + \int d\tau X_\mu(\tau) F^\mu(\tau)$

 S_0: free quark action, $F(\tau)$: drag force—summarizes the d.o.f of the plasma

- EOM of the hard probe:
Langevin diffusion process

- Hard probe moving in QGP: \(S[X(t)] = S_0 + \int d\tau X_\mu(\tau) F^\mu(\tau) \)
 \(S_0 \): free quark action, \(F(\tau) \): drag force—summarizes the d.o.f of the plasma

- EOM of the hard probe:
 \[
 \frac{\delta S_0}{\delta X_i(t)} = \int_{-\infty}^{+\infty} d\tau \theta(\tau) C^{ij}(\tau) X_j(t - \tau) + \xi^i(t), \quad i = 1, 2, 3
 \]
 with \(\langle \xi^i(t)\xi^j(t') \rangle = A^{ij}(t - t') \)
Langevin diffusion process

- Hard probe moving in QGP: $S[X(t)] = S_0 + \int d\tau X_\mu(\tau) F^\mu(\tau)$
 S_0: free quark action, $F(\tau)$: drag force—summarizes the d.o.f of the plasma

- EOM of the hard probe:
 \[
 \frac{\delta S_0}{\delta X_i(t)} = \int_{-\infty}^{+\infty} d\tau \theta(\tau) C^{ij}(\tau) X_j(t - \tau) + \xi^i(t), \quad i = 1, 2, 3
 \]
 with $\langle \xi^i(t)\xi^j(t') \rangle = A^{ij}(t - t')$

- The entire information is stored in:
 $C^{ij}(t) \equiv -i\langle [F^i(t), F^j(0)] \rangle$,
 $A^{ij}(t) \equiv -\frac{i}{2} \langle \{F^i(t), F^j(0)\} \rangle$.

AdS/CFT and Heavy Ion Physics – p.37
Local approximation
Local approximation

- Suppose correlations vanish for $t - t' \gg \tau_c$:
Local approximation

- Suppose correlations vanish for $t - t' \gg \tau_c$:

$$A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \quad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t)$$
Local approximation

- Suppose correlations vanish for $t - t' \gg \tau_c$:
 \[A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \quad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t) \]

- EOM for the hard probe becomes,

\[
\frac{\delta S_0}{\delta X_i(t)} + \eta^{ij} \dot{X}_j(t) = \xi^i(t), \quad \langle \xi^i(t)\xi^j(t') \rangle = \kappa^{ij} \delta(t - t')
\]

with

\[
\kappa^{ij} = \lim_{\omega \to 0} A^{ij}(\omega),
\quad \eta^{ij} = \int_0^\infty d\tau \gamma^{ij}(\tau) = -\lim_{\omega \to 0} \frac{\text{Im } C^{ij}(\omega)}{\omega}
\]
Local approximation

- Suppose correlations vanish for \(t - t' \gg \tau_c \):
 \[
 A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \quad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t)
 \]

- EOM for the hard probe becomes,
 \[
 \frac{\delta S_0}{\delta X_i(t)} + \eta^{ij} \dot{X}_j(t) = \xi^i(t), \quad \langle \xi^i(t)\xi^j(t') \rangle = \kappa^{ij}\delta(t-t')
 \]

 with

 \[
 \kappa^{ij} = \lim_{\omega \to 0} A^{ij}(\omega), \quad \eta^{ij} = \int_0^{\infty} d\tau \gamma^{ij}(\tau) = - \lim_{\omega \to 0} \frac{\text{Im} C^{ij}(\omega)}{\omega}
 \]

- For QGP at equilibrium at temperature \(T \):
 \[
 A^{ij}(\omega) = - \coth \left(\frac{\omega}{2T} \right) \text{Im} G^{ij}_R(\omega), \quad C^{ij}(\omega) = \text{Im} G^{ij}_R(\omega)
 \]
Local approximation

- Suppose correlations vanish for $t - t' \gg \tau_c$:
 \[A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \quad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t) \]

- EOM for the hard probe becomes,
 \[
 \frac{\delta S_0}{\delta X_i(t)} + \eta^{ij} \dot{X}_j(t) = \xi^i(t), \quad \langle \xi^i(t) \xi^j(t') \rangle = \kappa^{ij} \delta(t - t')
 \]
 with
 \[\kappa^{ij} = \lim_{\omega \to 0} A^{ij}(\omega), \]
 \[\eta^{ij} \equiv \int_0^\infty d\tau \gamma^{ij}(\tau) = -\lim_{\omega \to 0} \frac{\text{Im} C^{ij}(\omega)}{\omega} \]

- For QGP at equilibrium at temperature T:
 \[A^{ij}(\omega) = -\coth(\frac{\omega}{2T}) \text{Im} G^{ij}_R(\omega), \quad C^{ij}(\omega) = \text{Im} G^{ij}_R(\omega) \]

- Thus, it is sufficient to calculate
 \[G_R(\omega) = -i \int dt e^{-i\omega t} \theta(t) \langle [F^i(t), F^j(0)] \rangle \]
Momentum broadening
Momentum broadening

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe:

(in momentum space, around linear trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.
Momentum broadening

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.)

$$\frac{d\delta p^\perp}{dt} = -\eta^\perp \delta p^\perp + \xi^\perp$$
Momentum broadening

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.

$$\frac{d\delta p^\perp}{dt} = -\eta^\perp \delta p^\perp + \xi^\perp$$

Solution with initial conditions $\delta \vec{p}(t = 0) = 0$:

$$p^\perp(t) = \int_0^t dt' e^{\eta^\perp(t' - t)} \xi^\perp(t'),$$
Momentum broadening

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe:
(in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.

$$\frac{d\delta p^\perp}{dt} = -\eta^\perp \delta p^\perp + \xi^\perp$$

Solution with initial conditions $\delta \vec{p}(t = 0) = 0$:

$$p^\perp(t) = \int_0^t dt' e^{\eta^\perp (t'-t)} \xi^\perp (t'),$$

Compute the noise-average of fluctuations:

$$\langle (p^\perp)^2 \rangle = \int_0^t dt' \int_0^t dt'' e^{\eta^\perp (t'+t''-2t)} \langle \xi^\perp (t') \xi^\perp (t'') \rangle$$
Momentum broadening

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.

$$\frac{d\delta p}{dt} = -\eta \delta p + \xi$$

Solution with initial conditions $\delta \vec{p}(t = 0) = 0$:

$$p(t) = \int_0^t dt' e^{\eta(t-t')} \xi(t')$$

Compute the noise-average of fluctuations:

$$\langle (p^\perp)^2 \rangle = \int_0^t dt' \int_0^t dt'' e^{\eta(t+t''-2t)} \langle \xi(t') \xi(t'') \rangle$$

Use $\langle \xi(t') \xi(t'') \rangle = \kappa \delta(t' - t'')$, for $t\eta^\perp \ll 1$:

$$\langle (p^\perp)^2 \rangle = 2\kappa t$$
Momentum broadening

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around linear trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.)

$$\frac{d\delta p^\perp}{dt} = -\eta^\perp \delta p^\perp + \xi^\perp$$

Solution with initial conditions $\delta \vec{p}(t = 0) = 0$:

$$p^\perp(t) = \int_0^t dt' e^{\eta^\perp(t'-t)} \xi^\perp(t')$$

Compute the noise-average of fluctuations:

$$\langle (p^\perp)^2 \rangle = \int_0^t dt' \int_0^t dt'' e^{\eta^\perp(t'+t''-2t)} \langle \xi^\perp(t') \xi^\perp(t'') \rangle$$

Use $\langle \xi(t') \xi(t'') \rangle = \kappa \delta(t' - t'')$, for $t\eta^\perp \ll 1$:

$$\langle (p^\perp)^2 \rangle = 2\kappa^\perp t$$

thus jet-quenching parameter:

$$\hat{q}^\perp = \frac{\langle (p^\perp)^2 \rangle}{vt} = 2\frac{\kappa^\perp}{v}.$$
How to calculate in the bulk dual?

Recall \(S[X(t)] = S_0 + \int d\tau X_\mu(\tau) F^\mu(\tau) \)

To calculate \(\langle \{ F^\perp(t), F^\perp(0) \} \rangle = O(0) + \langle \{ \xi^\perp(t), \xi^\perp(0) \} \rangle \)

We need to calculate the fluctuations \(\delta X^\perp(t) \).
Dual picture

Herzog et al; Gubser ’06

Holography: Represent the (infinitely) heavy quark with a trailing string moving with constant v:

![Diagram showing holography](image-url)
Holography: Represent the (infinitely) heavy quark with a trailing string moving with constant v:

Drag force on a heavy quark in a hot wind:

$$ F = \frac{dp}{dt} = \frac{1}{v} \frac{dE}{dt} = -\mu p + \zeta(t) $$

Ignore stochastic force $\zeta(t)$ in this talk \Leftrightarrow fluctuations of the trailing string \Rightarrow diffusion constant.
Standard calculation:

- Pick up the static gauge: $\sigma^0 = t, \sigma^1 = r$.
- String ansatz $x^1 = vt + \delta(r)$
- Minimize the area (in the string frame!)
- Compute the WS momentum flowing into the BH horizon
Standard calculation:

- Pick up the static gauge: $\sigma^0 = t, \sigma^1 = r$.
- String ansatz $x^1 = vt + \delta(r)$
- Minimize the area (in the string frame!)
- Compute the WS momentum flowing into the BH horizon

$$ F = \frac{1}{v} \frac{dE}{dt} = -\frac{1}{2\pi \ell_s^2} v e^{2A(r_s)} \lambda(r_s)^{\frac{4}{3}}, \quad r_s \text{ defined by } f(r_s) = v^2. $$
Standard calculation:
- Pick up the static gauge: $\sigma^0 = t, \sigma^1 = r$.
- String ansatz $x^1 = vt + \delta(r)$
- Minimize the area (in the string frame!)
- Compute the WS momentum flowing into the BH horizon

$$F = \frac{1}{v} \frac{dE}{dt} = -\frac{1}{2\pi \ell_s^2} v e^{2A(r_s)} \lambda(r_s) \frac{4}{3}, r_s \text{ defined by } f(r_s) = v^2.$$

Relativistic limit, $v \to 1$: $F = -\frac{\ell^2}{\ell_s^2} \sqrt{\frac{45}{4N_c^2} \frac{T_s(T)}{s(T)}} \frac{v}{\sqrt{1-v^2}} \left(-\frac{\beta_0}{4} \log[1-v^2] \right)^4 + \cdots$

Non-relativistic limit $v \to 0$: $F = -\frac{\ell^2}{\ell_s^2} \left(\frac{45\pi}{N_c^2} s(T) \right)^{\frac{2}{3}} \frac{\lambda(r_h)}{2\pi} \frac{4}{3} \frac{4}{3} v + \cdots$
Comparison to conformal case

The AdS result:
\[F_{\text{conf}} = \frac{\pi}{2} \sqrt{\lambda T^2} \frac{v}{\sqrt{1-v^2}} \]

Fix \(\ell_s \) in our model by the lattice string tension
Fix \(\lambda = 5.5 \) in \(\mathcal{N} = 4 \) SYM:
Comparison to conformal case

The AdS result: $F_{con.f} = \frac{\pi}{2} \sqrt{\lambda T^2} \frac{v}{\sqrt{1-v^2}}$

Fix ℓ_s in our model by the lattice string tension
Fix $\lambda = 5.5$ in $N = 4$ SYM:

We clearly see the effects of asymptotic freedom!
Comparison schemes
Comparison schemes

- An important detail: How to compare to QCD?
- Direct scheme: $T_{QGP} = T_{our}$
Comparison schemes

- **An important detail:** How to compare to QCD?
- **Direct scheme:** $T_{QGP} = T_{our}$

In the range $1.5T_c < T < 3T_c$ $E_{QGP} \propto E_{GP} \propto T^4$

- **Alternative schemes:** $E_{QGP} = E_{our}$ or $s_{QGP} = s_{our}$
- We try all possible schemes.
Predictions for experiments
Predictions for experiments

Equilibration times for **charm** and **bottom**:

Solid: direct, **dashed**: energy, **dot-dashed** entropy schemes.
Equilibration times for charm and bottom:

Solid: direct, dashed: energy, dot-dashed entropy schemes.

Some experimental studies + models PHENIX col. ’06, van Hees et al ’05:
For \(p = 10 \) GeV, \(\tau_e \approx 4.5 \) fm (charm)

We have \(3 < \tau_e < 5.5 \) fm
Diffusion constants
Diffusion constants

- In Fourier space
 \[\kappa = \lim_{\omega \to 0} G_{sym}(\omega) = \lim_{\omega \to 0} \coth\left(\frac{\omega}{4T_s}\right) \text{Im} G_R(\omega) \]
 where \(T_s \) is the world-sheet temperature.

- \(G_R \) extracted from fluctuations on the trailing string solution:
 \[X^1 = vt + \zeta(r) + \delta X^1, \quad X^T = \delta X^T. \]
Diffusion constants

- In Fourier space
 \(\kappa = \lim_{\omega \to 0} G_{\text{sym}}(\omega) = \lim_{\omega \to 0} \coth\left(\frac{\omega}{4T_s}\right) \text{Im} G_R(\omega) \)
 where \(T_s \) is the world-sheet temperature.

- \(G_R \) extracted from fluctuations on the trailing string solution:
 \(X^1 = vt + \zeta(r) + \delta X^1, \quad X^T = \delta X^T. \)

- There is a "horizon" on the world-sheet:
 \[
 ds^2 = b^2 \left[-(f(r) - v^2)d\tau^2 + \frac{dr^2}{f-v^2b^4(r_s)/b^4(r)} \right]
 \]
 WS horizon at \(f(r_s) = v^2 \).

- \(\kappa_\perp = \frac{2}{\pi \ell_s^2} b^2(r_s) T_s, \quad \kappa_\parallel = \frac{32\pi}{\ell_s^2} \frac{b^2(r_s)}{f'(r_s)^2} T_s^3 \)
Physical picture

rs: WS horizon
rh: BH horizon
Physical picture

- A black-hole horizon on the WS at r_s:
 Fluctuations on the string fall into the horizon \Rightarrow energy loss
Physical picture

- A black-hole horizon on the WS at r_s:
 Fluctuations on the string fall into the horizon \Rightarrow energy loss

- However, there is Hawking radiation at r_s towards the boundary
 \Rightarrow momentum broadening.
Numerical results for jet quenching
Numerical results for jet quenching

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_\perp \sim 5 - 15 \text{ GeV}^2/fm$.
Numerical results for jet quenching

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_\perp \sim 5 - 15 \text{ GeV}^2/fm$.

- If Langevin dynamics satisfied: $\hat{q}_\perp = \frac{2\kappa_\perp}{v}$.
Numerical results for jet quenching

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_\perp \sim 5 - 15 \text{GeV}^2/fm$.

- If Langevin dynamics satisfied: $\hat{q}_\perp = \frac{2\kappa_\perp}{\nu}$.

- In the extreme relativistic limit $\nu \approx 1$, one derives:

$$\kappa_\perp \approx \frac{(45\pi^2)^{3/4}}{\sqrt{2\pi^2}} \frac{\ell_2^2}{\ell_s^2} \frac{(sT)^{3/4}}{(1-\nu^2)^{1/4}} \left(-\frac{b_0}{4} \log(1 - \nu^2)\right)^{-\frac{4}{3}}$$
Numerical results for jet quenching

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_\perp \sim 5 - 15 \text{ GeV}^2/fm$.

- If Langevin dynamics satisfied: $\hat{q}_\perp = \frac{2\kappa_\perp}{v}$.

- In the extreme relativistic limit $v \approx 1$, one derives:
 \[\kappa_\perp \approx \frac{(45\pi^2)^{\frac{3}{4}}}{\sqrt{2\pi^2}} \frac{\ell^2}{\ell_s^2} \frac{(sT)^{\frac{3}{4}}}{(1-v^2)^{\frac{1}{4}}} \left(-\frac{b_0}{4} \log(1 - v^2)\right)^{-\frac{4}{3}} \]

- $\hat{q}_\perp = 5.2$ (direct), 12 (energy), 13.13 (entropy) GeV^2/fm,

for a charm quark traveling at $p = 10\text{GeV}$ at $T = 250 \text{ MeV}$.
Jet quenching, non-perturbative

Non-perturbative def. of \hat{q}:

$\langle W(C) \rangle \approx \exp \left[-\frac{1}{8\sqrt{2}} \hat{q} L - L^2 \right]$.

Wiedemann '00
Jet quenching, non-perturbative

Non-perturbative def. of \hat{q}:

$$\langle W(C) \rangle \approx \exp \left[-\frac{1}{8\sqrt{2}} \hat{q}L^2 \right].$$

Holographic computation Liu, Rajagopal, Wiedemann '06: $$\langle W(C) \rangle = e^{iS}$$

Pick up gauge: $x^- \equiv x_1 - t = \tau, x_2 = \sigma$, Compute minimal area:

$$\hat{q} = \frac{\sqrt{2}}{\pi \ell_s^2} \int_0^{r_h} \frac{dr}{e^{2A_s} \sqrt{f(1-f)}}$$
Results

<table>
<thead>
<tr>
<th>T_{QGP}, MeV</th>
<th>\hat{q} (GeV^2/fm) (direct)</th>
<th>\hat{q} (GeV^2/fm) (energy)</th>
<th>\hat{q} (GeV^2/fm) (entropy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>-</td>
<td>0.89</td>
<td>1.01</td>
</tr>
<tr>
<td>250</td>
<td>0.53</td>
<td>1.21</td>
<td>1.32</td>
</tr>
<tr>
<td>280</td>
<td>0.79</td>
<td>1.64</td>
<td>1.73</td>
</tr>
<tr>
<td>310</td>
<td>1.07</td>
<td>2.14</td>
<td>2.21</td>
</tr>
<tr>
<td>340</td>
<td>1.39</td>
<td>2.73</td>
<td>2.77</td>
</tr>
<tr>
<td>370</td>
<td>1.76</td>
<td>3.37</td>
<td>3.42</td>
</tr>
<tr>
<td>400</td>
<td>2.18</td>
<td>4.20</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>T_{QGP}, MeV</th>
<th>\hat{q} (GeV2/fm) (direct)</th>
<th>\hat{q} (GeV2/fm) (energy)</th>
<th>\hat{q} (GeV2/fm) (entropy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>-</td>
<td>0.89</td>
<td>1.01</td>
</tr>
<tr>
<td>250</td>
<td>0.53</td>
<td>1.21</td>
<td>1.32</td>
</tr>
<tr>
<td>280</td>
<td>0.79</td>
<td>1.64</td>
<td>1.73</td>
</tr>
<tr>
<td>310</td>
<td>1.07</td>
<td>2.14</td>
<td>2.21</td>
</tr>
<tr>
<td>340</td>
<td>1.39</td>
<td>2.73</td>
<td>2.77</td>
</tr>
<tr>
<td>370</td>
<td>1.76</td>
<td>3.37</td>
<td>3.42</td>
</tr>
<tr>
<td>400</td>
<td>2.18</td>
<td>4.20</td>
<td>4.15</td>
</tr>
</tbody>
</table>

Close to AdS somewhat smaller than pQCD + fit to data \(\text{Eskola et al '05}\)

$\hat{q}_{\text{expect}} \sim 5 - 12 \text{ GeV}^2/\text{fm}$
Discussion
Discussion

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.
Discussion

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.

- Higher order hydrodynamic coefficients

- Fluctuations of the trailing string \Rightarrow momentum broadening and diffusion constants.

- Spectral density associated with ζ.

- Expanding plasma (non-static configurations)
Discussion

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.

- Higher order hydrodynamic coefficients

- Fluctuations of the trailing string \Rightarrow momentum broadening and diffusion constants.

- Spectral density associated with ζ.

- Expanding plasma (non-static configurations)

- Meson sector. Melting of heavy mesons, etc.

- Finite chemical potential and phase diagram in $\mu_c - T$.

- Heavy Ion Physics under finite B

- Anomalous transport
Discussion

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.
- Higher order hydrodynamic coefficients
- Fluctuations of the trailing string \Rightarrow momentum broadening and diffusion constants.
- Spectral density associated with ζ.
- Expanding plasma (non-static configurations)
- Meson sector. Melting of heavy mesons, etc.
- Finite chemical potential and phase diagram in $\mu_c - T$.
- Heavy Ion Physics under finite B
- Anomalous transport