Tutorial sheet 10

Discussion topic: What are the fundamental equations governing the dynamics of non-relativistic Newtonian fluids?

29. One-dimensional relativistic flow

In the lecture on the 9th of June, the equations describing the "boost-invariant" one-dimensional expansion of a perfect relativistic fluid were presented. Here, we investigate another one-dimensional solution of the equations of relativistic fluid dynamics, originally due to L. Landau [Izv. Akad. Nauk. USSR 17 (1953) 51], again for a medium without conserved quantum number.

Throughout the exercise, we set $c=1$ and drop the x variable for the sake of brevity. Remember that the metric tensor has signature $(-,+,+,+)$.
i. Considering a one-dimensional expansion along the z-axis, write down the non-trivial equations of motion expressing energy-momentum conservation in Minkowski coordinates.
From now on, the equation of state of the expanding perfect fluid is assumed to be $\epsilon=3 \mathcal{P}$.
ii. The so-called light-cone coordinates are defined as $x^{+} \equiv \frac{t+z}{\sqrt{2}}, x^{-} \equiv \frac{t-z}{\sqrt{2}}$, where the factor $1 / \sqrt{2}$
is not universal, yet convenient.
a) Although this is irrelevant for the rest of the exercise, write down the metric tensor in light-cone coordinates. Of which type are the basis vectors in the x^{+}and x^{-}directions?
b) Check the identities $\frac{\partial}{\partial t}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x^{+}}+\frac{\partial}{\partial x^{-}}\right)$and $\frac{\partial}{\partial z}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x^{+}}-\frac{\partial}{\partial x^{-}}\right)$.
c) Show that they allow you to transform the equations of motion of question i. into

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial x^{+}}+2 \frac{\partial\left(\epsilon \mathrm{e}^{-2 y_{\mathrm{f}}}\right)}{\partial x^{-}}=0 \quad, \quad 2 \frac{\partial\left(\epsilon \mathrm{e}^{2 y_{\mathrm{f}}}\right)}{\partial x^{+}}+\frac{\partial \epsilon}{\partial x^{-}}=0 \tag{1}
\end{equation*}
$$

with $y_{\mathrm{f}}(\mathrm{x})$ the position-dependent "flow rapidity", such that $u^{t}=\cosh y_{\mathrm{f}}, u^{z}=\sinh y_{\mathrm{f}}$.
iii. Let $y_{ \pm} \equiv \log \frac{x^{ \pm}}{\Delta}$, with Δ some length scale.
a) Show that the expansion with energy density and flow rapidity

$$
\begin{equation*}
\epsilon\left(y_{+}, y_{-}\right)=\epsilon_{0} \exp \left[-\frac{4}{3}\left(y_{+}+y_{-}-\sqrt{y_{+} y_{-}}\right)\right] \quad, \quad y_{\mathrm{f}}\left(y_{+}, y_{-}\right)=\frac{y_{+}-y_{-}}{2} \tag{2}
\end{equation*}
$$

is solution to the equations of motion (1), with ϵ_{0} a constant.
Hint: The identity $\mathrm{e}^{2 y_{\mathrm{f}}\left(y_{+}, y_{-}\right)}=x^{+} / x^{-}$may be helpful.
b) Transforming the previous solution (2) back to Minkowski variables, sketch the energy density (in units of ϵ_{0}) and the flow rapidity as a function of z at successive instants $t=\Delta, 2 \Delta, 4 \Delta, 8 \Delta$ for $|z|<t$. Can you guess what physical problem Landau was trying to model?

30. Heat diffusion

In the lecture (June 11), we derived the equation

$$
\frac{\partial e(t, \vec{r})}{\partial t}=\vec{\nabla} \cdot[\kappa(t, \vec{r}) \vec{\nabla} T(t, \vec{r})]
$$

valid in a dissipative fluid at rest, with κ the heat capacity.

Assuming that $C \equiv \partial e / \partial T$ and κ are constant coefficients and introducing $\chi \equiv \kappa / C$, determine the temperature profile $T(t, \vec{r})$ for $z<0$ with the boundary condition of a uniform temperature in the plane $z=0$, which evolves in time as $T(t, z=0)=T_{0} \cos (\omega t)$. At which depth is the amplitude of the temperature oscillations 10% of that in the plane $z=0$?

31. Taylor-Couette flow. Measurement of shear viscosity

A Couette viscometer consists of an annular gap, filled with fluid, between two concentric cylinders with height L. The outer cylinder (radius R_{2}) rotates around the common axis with angular velocity Ω_{2}, while the inner cylinder (radius R_{1}) remains motionless. The motion of the fluid is assumed to be two-dimensional, incompressible and steady.
i. Check that the continuity equation leads to $\mathrm{v}^{r}=0$, with v^{r} the radial component (in a system of cylinder coordinates) of the flow velocity.
ii. Prove that the Navier-Stokes equation lead to the equations

$$
\begin{gather*}
\frac{\mathrm{v}^{\varphi}(r)^{2}}{r}=\frac{1}{\rho} \frac{\partial \mathcal{P}(r)}{\partial r} \tag{3}\\
\frac{\partial^{2} \mathbf{v}^{\varphi}(r)}{\partial r^{2}}+\frac{1}{r} \frac{\partial \mathbf{v}^{\varphi}(r)}{\partial r}-\frac{\mathrm{v}^{\varphi}(r)}{r^{2}}=0 \tag{4}
\end{gather*}
$$

What is the meaning of Eq. (3)? Solve Eq. 4. with the ansatz $\mathrm{v}^{\varphi}(r)=a r+\frac{b}{r}$.
iii. One can show (can you?) that the $r \varphi$-component of the stress tensor is given by

$$
\sigma^{r \varphi}=\eta\left(\frac{1}{r} \frac{\partial \mathrm{v}^{r}}{\partial \varphi}+\frac{\partial \mathrm{v}^{\varphi}}{\partial r}-\frac{\mathrm{v}^{\varphi}}{r}\right)
$$

Show that $\sigma^{r \varphi}=-\frac{2 b \eta}{r^{2}}$, where b is the same coefficient as above.
iv. A torque \mathcal{M}_{z} is measured at the surface of the inner cylinder. How can the shear viscosity η of the fluid be deduced from this measurement?
Numerical example: $R_{1}=10 \mathrm{~cm}, R_{2}=11 \mathrm{~cm}, L=10 \mathrm{~cm}, \Omega_{2}=10 \mathrm{rad} \cdot \mathrm{s}^{-1}$ and $\mathcal{M}_{z}=7,246 \cdot 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$.

