Probing the Quark-Gluon Plasma with jets

Marco van Leeuwen, Nikhef & Utrecht University

Topical Lectures Kinetic theory, Hydrodynamics and AdS/CFT to model heavy-ion collisions Nikhef, 15-17 June 2015

Heavy ion collisions

Two basic approaches to learn about the QGP

- 1) Bulk observables
- 2) Hard probes

Hard processes in QCD

- Hard process: scale Q >> Λ_{QCD}
- Hard scattering High- p_T parton(photon) Q ~ p_T
- Heavy flavour production m >> Λ_{QCD}

Factorization

Cross section calculation can be split into

- Hard part: perturbative matrix element
- Soft part: parton density (PDF), fragmentation (FF)

$$\frac{d\sigma_{pp}^{h}}{dyd^{2}p_{T}} = K \sum_{abcd} \int dx_{a} dx_{b} f_{a}(x_{a},Q^{2}) f_{b}(x_{b},Q^{2}) \frac{d\sigma}{d\hat{t}} (ab \rightarrow cd) \frac{D_{h/c}^{0}}{\pi z_{c}}$$
parton density matrix element FF

QM interference between hard and soft suppressed (by Q^2/Λ^2 'Higher Twist') Soft parts, PDF, FF are *universal*: independent of hard process This is likely to break down in a QGP, but still a good starting point

RHIC and LHC

RHIC, Brookhaven Au+Au $\sqrt{s_{NN}}$ = 200 GeV

LHC, Geneva Pb+Pb √s_{NN}= 2760 GeV

First run: 2000

STAR, PHENIX, PHOBOS, BRAHMS

First run: 2009/2010

Maintenance/upgrade in 2014 Currently restarting with higher energy: pp $\sqrt{s} = 13$ TeV, PbPb $\sqrt{s_{NN}} = 5.02$ TeV

> ALICE, ATLAS, CMS, (LHCb)

Geometry of a nuclear collision: N_{part}, N_{coll}

Two limiting possibilities:

- Each nucleon only **interacts once**, 'wounded nucleons' $N_{part} = n_A + n_B$ (ex: 4 + 5 = 9 + ...)

Relevant for soft production; long timescales: $\sigma \propto N_{\text{part}}$

Nucleons interact with all nucleons they encounter
 N_{coll} = n_A x n_B (ex: 4 x 5 = 20 + ...)

Relevant for hard processes; short timescales: $\sigma \propto N_{\text{coll}}$

$\pi^0 R_{AA} - high-p_T$ suppression

Hard partons lose energy in the hot matter

Hadrons: energy loss

Nuclear modification factor R_{AA}

Sketch: transverse momentum spectrum

Measured nuclear modification factor R_{AA} is a ratio of yields at a given p_T . The physical mechanism is energy loss; shift of yield to lower p_T

Nuclear modification factor at RHIC

Ball-park numbers: $\Delta E/E \approx 0.2$, or $\Delta E \approx 3$ GeV for central collisions at RHIC

From RHIC to LHC

 R_{AA} depends on *n*, steeper spectra, smaller R_{AA}

From RHIC to LHC

RHIC

RHIC: n ~ 8.2 LHC: n ~ 6.4 $(1-0.23)^{6.2} = 0.20$ $(1-0.23)^{4.4} = 0.32$

> Energy loss at LHC is larger than at RHIC R_{AA} is similar due to flatter p_T dependence

Towards a more complete picture

- Geometry: couple energy loss model to model of evolution of the density (hydrodynamics)
- Energy loss not single-valued, but a distribution
- Energy loss is partonic, not hadronic
 - Full modeling: medium modified shower
 - Simple ansatz for leading hadrons: energy loss followed by fragmentation
 - Quark/gluon differences

Medium-induced radiation

Depends on density ρ through mean free path λ

Fitting the model to the data

Factor ~2 larger at LHC than RHIC

Comparing several models

 \hat{q} values from different models agree \hat{q}/T^3 larger at RHIC than LHC

So, are we done?

Not quite: discussed only one (type of) measurement so far; does not *constrain* the theory/models

Jets

Want to verify our understanding:

- Color charge dependence of energy loss
 - e.g. heavy flavour
- Path length dependence of energy loss
 - Expect L^2 for weak coupling, interference
 - Different at strong coupling
- Distribution of radiation/energy loss
 - Radiative vs elastic loss
 - Interference effects
 - Dead cone effect

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the lost energy

Qualitatively two scenarios:

- 1) In-cone radiation: $R_{AA} = 1$, change of fragmentation
- 2) Out-of-cone radiation: $R_{AA} < 1$

As usual: reality is somewhere in-between

Jets at LHC

And a lot of uncorrelated 'soft' background

PbPb jet background

Background contributes up to ~180 GeV per unit area Subtract background: $p_{T,jet}^{sub} = p_{T,jet}^{raw} - \rho A$

Statistical fluctuations remain after subtraction

Jet energy asymmetry

Suggests large energy loss: many GeV

~ compatible with expectations from RHIC+theory

However:

- Only measures reconstructed di-jets (don't see lost jets)
- Not corrected for fluctuations from detector+background
- Both jets are interacting No simple observable

PbPb jet background

Jet spectra are corrected for background fluctuations by unfolding Size of fluctuations depends on p_T cut, cone radius PbPb results mostly R=0.3, 0.4 so far

Nuclear modification factor for jets

ALICE: Charged jet R_{CP}

 R_{AA} < 1: not all produced jets are seen; out-of-cone radiation and/or 'absorption' For jet energies up to ~400 GeV; energy loss is a very large effect

Increasing R to recover the energy

Jet fragmentation/shape I: transverse

Medium effects small for R < 0.2; modest enhancement at R > 0.2

Jet fragmentation/shapes II: longitudinal

Enhancement at low p_T , *z*: expected 'softening' Suppression at intermediate *z*, no/small effects at larger *z*

Changes in fragmentation

Is this expected/understood?

So where does the lost energy go?

I) Jet R_{AA} is not close to 1

- $R_{AA} \sim 0.4 0.6$ for R < 0.5
- 5-10 GeV energy transported outside of cone Large energy loss \Rightarrow Out-of cone radiation

II) Particle distributions in jets show only modest change

- · ~ 10 % at large momentum, small R
- larger effects at small p_T , large R

Small/modification of in-cone energy flow

Seems somewhat unnatural?

What's up with the large angle radiation?

Redistribution of energy should be continuous Would expect O(100%) effect at r > 0.15 or so and O(30%) effects at r = 0

Summary/conclusion

- High-p_T particles and jets can be used to probe the quarkgluon plasma
 - Large energy loss observed: $\Delta E \approx 5-10 \text{ GeV}$
 - Good agreement of qualitative features with calculations: density larger at LHC
 - Recoil yields indicate (expected) L^2 dependence
- Jet measurements
 - · Large suppression \Rightarrow out-of-cone radiation
 - In-cone modifications modest/small

Ongoing developments:

Getting more grip on the relevant processes/theory LHC run 2: larger statistics, explore large angle radiation!

Extra slides

Comparing hadrons and jets

parton

Suppression of hadron (leading fragment) and jet yield similar Is this 'natural'? No (visible) effect of in-cone radiation?

Testing our intuition

Use two MC event generators to generate 'reasonable expectations' for relations between R_{AA} and intra-jet distributions

- JEWEL Zapp, Wiedemann, Krauss
 - Interaction model: elastic scatterings+radiation
 - Includes momentum exchange with medium
 - Radiation model is MC-implementation of LPM interference/formation time effects
 - · Shown to match multiple soft scattering analytical calculations in the appropriate limits
 - Geometry: Glauber density profile + longitudinal expansion
- **q-PYTHIA** Cunqueiro, Armesto, Salgado, Apollinario
 - Medium-modified splittings, BDMPS-inspired
 - $\cdot\,$ No momentum exchange with medium
 - Geometry: Glauber density profile (AliFastGlauber)

Calibrating the models: RAA

JEWEL

q-PYTHIA

ɑPvthia h⁺

CMS_{h[±]}

ALICE h[±] (0-5%)

qPythia jets R=0.2

Release version, standard settings

Glauber geometry, k=1.76 10⁶

Qualitative differences:

- 1) JEWEL reproduces increase of particle R_{AA} with p_T
- 2) JEWEL: significant difference between jet and particle *R*_{AA}, q-PYTHIA: similar

Longitudinal fragment distributions

JEWEL

Increased quark fraction?

q-PYTHIA

suppression at intermediate-large p_{T}

Trends in JEWEL, q-PYTHIA very different; JEWEL closer to data

Longitudinal fragmentation modification

Fragmentation function ratios

Ratios: emphasize high p_T , z:

Jewel large enhancement q-Pythia shows suppression

Radial distributions, ratio

Also in radial profiles: JEWEL and q-PYTHIA show opposite behaviour Relation large $r \Leftrightarrow \text{low } p_T$, small $r \Leftrightarrow \text{high } p_T$ preserved

Closer look at radial distributions (JEWEL)

Ratio PbPb/pp

Cumulative profiles

'hidden' in large bin?

much larger than effect data

(anti-) Angular ordering in the medium

Vacuum radiation: angular ordering: subsequent radiations are at smaller angles In-medium: opposite effect: radiation outside cone preferred Two resolution scales: medium scale vs opening angle

Ongoing development Full implications not yet worked out

Summary/conclusion

- High-p_T particles and jets can be used to probe the quark-gluon plasma
 - Large energy loss observed: $\Delta E \approx 5-10 \text{ GeV}$
 - Good agreement of qualitative features with calculations: density larger at LHC
 - Recoil yields indicate (expected) L^2 dependence

Jet measurements

- Large suppression \Rightarrow out-of-cone radiation
- In-cone modifications modest/small
- Qualitative agreement between JEWEL and data; q-PYTHIA opposite trends:
 - \Rightarrow Importance of momentum exchange with medium?
- Tension with energy loss models?
- New theory development: anti-angular ordering might explain this

Ongoing developments:

Getting more grip on the relevant processes/theory LHC run 2: larger statistics, explore large angle radiation!

The extremes of QCD

QCD Lagrangian $\mathcal{L}_{QCD} = \bar{\psi}(i\partial \!\!\!/ - gA \cdot t - m)\psi + \frac{1}{4} \mathrm{Tr}G_{\mu\nu}G^{\mu\nu}$

This is the basic theory, but what is the phenomenology?

Bulk QCD matter

Quark Gluon Plasma

Calculable with Lattice QCD

High density Quarks and gluons are quasi-free

Hard scattering

Calculable with pQCD

Small coupling Quarks and gluons are quasi-free

Two basic regimes in which QCD theory gives quantitative results: Hard scattering and bulk matter

The Quark Gluon Plasma

Deconfinement transition: sharp rise of energy density at T_c Increase in degrees of freedom: hadrons (3 pions) -> quarks+gluons (37)

Probing the Quark-Gluon Plasma

Small size (~10 fm)

Use self-generated probe: quarks, gluons from hard scattering large transverse momentum

Transport coefficient and viscosity

Relation transport coefficient and viscosity

Scaled transport coefficient slightly smaller at LHC

Increase of η /s and decrease of q/T^3 with collision energy are probably due to a common origin, e.g. running α_S Results agree reasonably well with expectation: $\frac{\eta}{s} \approx 1.25 \frac{T^3}{\hat{a}}$

Geometry: unfortunately not a brick

Energy loss formalisms derived for constant density, L

- Correct treatment of expanding medium unknown (Interference!)
- Most tractable in parton transport/MC models (JEWEL, BAMPS)

R_{AA} vs ϕ and elastic eloss

However, also very sensitive to medium density profile and evolution

Azimuthal modulation of jet yield

JEWEL: MC sampling of Bjorken-expanding Glauber profile Reproduces observed azimuthal modulation of jet yield

RAA vs R

Related to radial profile, but different observable

JEWEL

q-PYTHIA

JEWEL: very weak *R*-dependence (10-20% on the yield)

q-PYTHIA: significant *R*-dependence

Clear relation with radial profiles: strong *r* dependence in profiles gives strong *R*-dependence of *R*_{AA} Some follow-up to be done: compare to ATLAS data,

check radial profiles for R=0.5 (also in data?)

R_{AA} vs R

JEWEL: *R_{AA}* ratios ATLAS: *R_{CP}* ratios $R^{R}_{\rm CP}/R^{0.2}_{\rm CP}$ $R^{R}_{AA}/R^{R=0.2}_{AA}$ Pb+Pb $\sqrt{s_{NN}}$ = 2.76 TeV 0 - 10 % **JEWEL** recoil on $\int L dt = 7 \,\mu b^{-1}$ ATLAS jets R=0.3 1.8 jets R=0.4 • *R* = 0.3 jets R=0.5 **R** = 0.4 1.6 1.6 ***** *R* = 0.5 1.4 1.4 1.2 1.2 0.8L 0 0.8 ¹²⁰ ¹⁴⁰ p_{T,Jet} (GeV/c) 100 20 40 60 80 40 60 50 70 100 200 $p_{_{\rm T}}$ [GeV]

JEWEL: R-dependence too weak?

R_{AA} vs R

JEWEL: R-dependence too weak? q-PYTHIA: R-dependence too strong?

Are we done with qhat? Not at all!

There are significant conceptual problems with the baseline models

Main open questions for R_{AA} -type observables:

• Large angle radiation, $k_T \sim k$

- Not treated in any of the 'analytical' calculations
- Important for phenomenology
- Path to solution: include NLO/recoil

• Large x, $\Delta E \sim E$

- Some large *x* results/estimates exist; still eikonal?
- Probably not important for medium-high p_T

Path averaging

- Not much work done; not simple due to interference
- Possible solution: brute force; integrate path integral over scattering centers (Zakharov)

Multiple gluon emission

- Most calculations use independent emission
- May suffice for leading hadrons, but jet observables need a more complete treatment

The impact of these on qualitative picture may be limited, but quantitative conclusions require a closer look

Testing volume (N_{coll}) scaling in Au+Au

Direct y spectra

PHENIX, PRL 94, 232301

Direct γ in A+A scales with N_{coll}

A+A initial state is incoherent superposition of p+p for hard probes

Non-interacting probes at LHC

 N_{coll} scaling also confirmed at LHC with γ and even Z (W)

Size: 16 x 26 meters **Weight**: 10,000 tons

Optimised for low momentum, high-multiplicity tracking and Particle Identification