AdS/CFT and Heavy Ion Physics

Umut Gürsoy

Utrecht

NIKHEF - June 16, 2015

AdS/CFT and Heavy Ion Physics – p.1

References

• Based on the papers

U.G., E. Kiritsis, L. Mazzanti, F. Nitti arXiv:1006.3261 U.G., E. Kiritsis, F. Nitti, G. Michalogiorgakis arXiv:0906.1890 U.G., E. Kiritsis, F. Nitti, L. Mazzanti arXiv:0903.2859 U.G., E. Kiritsis, F.Nitti arXiv:0707.1349 U.G., E. Kiritsis arXiv:0707.1324

 Reviews on Heavy Ion Collisions and AdS/CFT arXiv:1101.0618 — Exhaustive, emphasis on AdS/CFT arXiv:0902.3663—Hydrodynamics for HIC arXiv:1102.3010—RHIC/LHC results and elliptic flow arXiv:1006.546—Non-conformal holographic QCD approach

Outline

- Lecture I:
 - AdS/CFT for QCD
 - Deformations of AdS/CFT
 - Bottom-up approach to AdS/CFT
 - Improved Holographic QCD

Outline

- Lecture I:
 - AdS/CFT for QCD
 - Deformations of AdS/CFT
 - Bottom-up approach to AdS/CFT
 - Improved Holographic QCD
- Lecture II:
 - Glueball Spectrum
 - Thermodynamics
 - Transport
 - Jet quenching
 - Langevin diffusion
 - Thermalization
 - Outlook

Heavy ion collisions

- RHIC: Au + Au at $\sqrt{s} = 200$ GeV per nucleon; about T = 200 300 MeV.
- LHC: Pb + Pb at $\sqrt{s} = 2.76$ TeV/n about T = 300 - 400 MeV.

Heavy ion collisions

- RHIC: Au + Au at $\sqrt{s} = 200$ GeV per nucleon; about T = 200 300 MeV.
- LHC: Pb + Pb at $\sqrt{s} = 2.76$ TeV/n about T = 300 - 400 MeV.
- The quark-gluon plasma forms at \sim 1fm and exists for 5 10 fm
- Cools down as it expands \Rightarrow and hadronizes around T = 170 MeV.

What can we learn from Holography

- Phase diagram of QCD at finite μ , T and B
- Transport coefficients: Viscous relativistic hydrodynamics account for the observed v₂, v₃, etc quite well
 ⇒ Calculate the viscosities η/s and ζ/s + higher order coefficients, other transport coefficients.
- Energy loss in hard probes

Basic mechnamisms: Gluon brehmstrahlung and Langevin diffusion

 \Rightarrow Calculate the jet-quenching parameter \hat{q} and momentum diffusion parameters κ .

- Anomalous trasport: Chial Magnetic Effect, Chiral Magnetic Wave, etc. ⇒ Calculate chiral conductivities
- Thermalization

Non-equilibrium physics, formation of $QGP \Rightarrow$ black-hole formation by collapsing matter

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography.

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography. Take the large N_c 't Hooft limit:

Take the large N_c 't Hooft limit:

 $N_c \to \infty, \qquad g^2 \to 0, \qquad \lambda = g^2 N = fixed$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography. Take the large N_c 't Hooft limit:

Take the large N_c 't Hooft limit:

 $N_c \to \infty, \qquad g^2 \to 0, \qquad \lambda = g^2 N = fixed$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c

 \Rightarrow Large N_c pure glue theory with gauge-group $SU(N_c)$

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography.

Take the large N_c 't Hooft limit:

 $N_c \to \infty, \qquad g^2 \to 0, \qquad \lambda = g^2 N = fixed$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c

⇒ Large N_c pure glue theory with gauge-group $SU(N_c)$ Extrapolation on the lattice: Both at zero T (glueball spectra) and finite T (thermodynamic functions) VERY close to SU(3).

QCD with $N_c = 3$ and dynamical quarks is too complicated for holography.

Take the large N_c 't Hooft limit:

 $N_c \to \infty, \qquad g^2 \to 0, \qquad \lambda = g^2 N = fixed$

- Only planar Feynman diagrams
- Quarks in loops suppressed by N_f/N_c

⇒ Large N_c pure glue theory with gauge-group $SU(N_c)$ Extrapolation on the lattice: Both at zero T (glueball spectra) and finite T (thermodynamic functions) VERY close to SU(3).

This is what we will assume in the rest of the lectures...

N-dependence of thermodynamic quantities

- About 10 % deviation in the hadron spectra
- Thermodynamic observables very close to each other

Holographic dual of QCD?

Top-bottom approach: holography from two different descriptions of D-branes.

Holographic dual of QCD?

Top-bottom approach: holography from two different descriptions of **D**-branes. They couple to:

- 1. Open strings \Rightarrow Gauge theory in *d* dimensions
- 2. Closed strings \Rightarrow GR in d + 1 dimensions

At low energy 1. and 2. decouple and become equivalent!

Holographic dual of QCD?

Top-bottom approach: holography from two different descriptions of D-branes. They couple to:

- 1. Open strings \Rightarrow Gauge theory in *d* dimensions
- 2. Closed strings \Rightarrow GR in d + 1 dimensions

At low energy 1. and 2. decouple and become equivalent!

Very hard to deal with in practice...

- Construct a consistent GR set-up in the most economic fashion:
 - Dimensions of QFT + 1 (energy scale)
 - Symmetries of QFT in the bulk
 - One bulk field for each relevant + marginal operator
 - Realization of dynamical phenomena (e.g. spontaneous symmetry breaking)

- Construct a consistent GR set-up in the most economic fashion:
 - Dimensions of QFT + 1 (energy scale)
 - Symmetries of QFT in the bulk
 - One bulk field for each relevant + marginal operator
 - Realization of dynamical phenomena (e.g. spontaneous symmetry breaking)
- Declare that this GR theory secretly describes the strong coupling region of the QFT
- Check this by calculations

- Construct a consistent GR set-up in the most economic fashion:
 - Dimensions of QFT + 1 (energy scale)
 - Symmetries of QFT in the bulk
 - One bulk field for each relevant + marginal operator
 - Realization of dynamical phenomena (e.g. spontaneous symmetry breaking)
- Declare that this GR theory secretly describes the strong coupling region of the QFT
- Check this by calculations
- For generic GR set-ups \Rightarrow universal lessons

Domain-wall type geometries with boundary Minimal metric: $ds^2 = b(r)^2 (dr^2 + dx_d^2)$

Domain-wall type geometries with boundary Minimal metric: $ds^2 = b(r)^2 (dr^2 + dx_d^2)$

Rules to compute: Witten; Gubser, Klebanov, Polyakov '98

Domain-wall type geometries with boundary Minimal metric: $ds^2 = b(r)^2 (dr^2 + dx_d^2)$

Rules to compute: Witten; Gubser, Klebanov, Polyakov '98

1. A bulk fluctuation $\phi(x, r) \Leftrightarrow \mathcal{O}(x)$ on the boundary.

Domain-wall type geometries with boundary Minimal metric: $ds^2 = b(r)^2 (dr^2 + dx_d^2)$

Rules to compute: Witten; Gubser, Klebanov, Polyakov '98

1. A bulk fluctuation $\phi(x, r) \Leftrightarrow \mathcal{O}(x)$ on the boundary.

Fundamental relation:

 $\exp(-S_G[\phi(x,r) \to \phi_0(x)]) = \langle \exp(\int \mathcal{O}\phi_0) \rangle$

Computes n-point functions $\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle$ of QFT.

Domain-wall type geometries with boundary Minimal metric: $ds^2 = b(r)^2 (dr^2 + dx_d^2)$

Rules to compute: Witten; Gubser, Klebanov, Polyakov '98

1. A bulk fluctuation $\phi(x, r) \Leftrightarrow \mathcal{O}(x)$ on the boundary.

Fundamental relation:

 $\exp(-S_G[\phi(x,r) \to \phi_0(x)]) = \langle \exp(\int \mathcal{O}\phi_0) \rangle$

Computes n-point functions $\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle$ of QFT.

2. Finite temperature in the QFT \Leftrightarrow black-hole in the geometry.

• Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions
 - 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate Tr F^2

 \Rightarrow Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\phi \Leftrightarrow \text{Tr} F^2$

- Consider pure SU(N) at large N, at strong coupling \Rightarrow classical Einstein's GR
- Most economic set-up:
 - 1. $Mink^4$ + energy scale \Rightarrow 5 dimensions
 - 2. Only relevant/marginal operators the stress-tensor $T_{\mu\nu}$ and the gluon condensate Tr F^2

 \Rightarrow Need metric $g_{\mu\nu} \Leftrightarrow T_{\mu\nu}$ and dilaton $\phi \Leftrightarrow \operatorname{Tr} F^2$

3. Running coupling extremely important for correct thermodynamics \Rightarrow non-conformally invariant background with $e^{\phi} \propto g^2 N$ a function of r: $\phi = \phi(\Lambda r)$ with $\Lambda \Rightarrow$ dynamically generated QCD scale.

Improved HQCD U.G, Kiritsis; U.G. Kiritsis, Nitti '07

Improved HQCD U.G, Kiritsis; U.G. Kiritsis, Nitti '07

• Gravitational dual in 2∂ effective GR theory:

$$S = M_p^3 N_c^2 \int d^5 x \sqrt{g} \left\{ R - \frac{4}{3} (\partial \phi)^2 - V(\phi) \right\}$$

• Look for domain-wall type solutions of the Einstein-dilaton eqs: $ds^2 = b^2(r) \left(dr^2 - dt^2 + dx_3^2 \right), \lambda = \lambda(r) \equiv \exp(\phi(r))$

Improved HQCD U.G, Kiritsis; U.G. Kiritsis, Nitti '07

• Gravitational dual in 2∂ effective GR theory:

$$S = M_p^3 N_c^2 \int d^5 x \sqrt{g} \left\{ R - \frac{4}{3} (\partial \phi)^2 - V(\phi) \right\}$$

- Look for domain-wall type solutions of the Einstein-dilaton eqs: $ds^2 = b^2(r) \left(dr^2 - dt^2 + dx_3^2 \right), \lambda = \lambda(r) \equiv \exp(\phi(r))$
- Dictionary: Geometry vs. QFT:
 - Scale factor $b_0(r)$ is the energy scale in the field theory E,
 - Dilaton $\lambda(r) \propto \lambda_t(E)$ running 't Hooft coupling,
 - Dilaton potential $V(\phi) \Leftrightarrow \beta(\lambda_t)$ the beta-function of the QFT.

Quark potential and confinement

Linear quark potential from flux tube:

$$V_{q\bar{q}}(L) = \sigma_s L + \cdots$$
Quark potential and confinement

Linear quark potential from flux tube:

K.G. Wilson '74 $\langle W[C] \rangle = \langle \operatorname{Tr} P e^{-\oint_C A_\mu dx^\mu} \rangle = e^{-V_{q\bar{q}}(L)T}$

Quark potential and confinement

Linear quark potential from flux tube:

K.G. Wilson '74 $\langle W[C] \rangle = \langle \text{Tr} P e^{-\oint_C A_\mu dx^\mu} \rangle = e^{-V_{q\bar{q}}(L)T}$

Quark potential and confinement

Linear quark potential from flux tube:

K.G. Wilson '74 $\langle W[C] \rangle = \langle \operatorname{Tr} P e^{-\oint_C A_\mu dx^\mu} \rangle = e^{-V_{q\bar{q}}(L)T}$

dacena '98; S. Rey, J. Yee '98

Color confinement

Linear quark potential $\Leftrightarrow \exists$ minimum of b_s This constrains large λ asymptotics of the dilaton potential $V(\lambda)$.

- Requirement of a marginal deformation $\operatorname{Tr} F^2$ fixes the UV asymptotics as $V(\lambda) = v_0 + v_1 \lambda + \cdots, \qquad \lambda \to 0$
- Requirement of linear color confinement fixes the IR asymptotics as $V(\lambda) \propto \lambda^{\frac{4}{3}} \log^{\frac{1}{2}} \lambda + \cdots, \qquad \lambda \to \infty$
- Then 1) mass gap 2) first order T_c is automatic
- Spectrum of glueballs can be computed with no IR ambiguity

IR asymptotics

IR asymptotics

In terms of the potential:

$$V(\phi) \to e^{\frac{4}{3}\phi}\phi^{\frac{\alpha-1}{\alpha}} + \cdots$$

(we will eventually set $\alpha = 2$)

IR asymptotics

In terms of the potential:

$$V(\phi) \to e^{\frac{4}{3}\phi}\phi^{\frac{\alpha-1}{\alpha}} + \cdots$$

(we will eventually set $\alpha = 2$) IR asymptotics of the background:

$$b(r) \sim e^{-\left(\frac{r}{L}\right)^{\alpha}}, \qquad \lambda(r) \sim e^{3/2\left(\frac{r}{L}\right)^{\alpha}} \left(\frac{r}{L}\right)^{\frac{3}{4}(\alpha-1)}, \qquad r \to \infty$$

• The dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

• Parameters in the action: V_0, V_2 fixed by scheme independent β -function coefficients (b_0 and b_1), V_1, V_3 fixed by the latent heat L_h and $S(2T_c)$ (lattice)

• The dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

- Parameters in the action: V_0 , V_2 fixed by scheme independent β -function coefficients (b_0 and b_1), V_1 , V_3 fixed by the latent heat L_h and $S(2T_c)$ (lattice)
- The Planck scale M_p also by thermodynamics. matching high T asymptotics of QCD free energy: $M_p = (45\pi^2)^{-\frac{1}{3}} \ell^{-1}$

• The dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

- Parameters in the action: V_0, V_2 fixed by scheme independent β -function coefficients (b_0 and b_1), V_1, V_3 fixed by the latent heat L_h and $S(2T_c)$ (lattice)
- The Planck scale M_p also by thermodynamics. matching high T asymptotics of QCD free energy: $M_p = (45\pi^2)^{-\frac{1}{3}} \ell^{-1}$
- $\Lambda_{QCD}\ell_{AdS}$ the only parameter of the zero T solutions, fixed by $m_{0++} = 1475 \ MeV \Rightarrow \Lambda_{QCD} = 292 \ MeV.$

• The dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

- Parameters in the action: V_0 , V_2 fixed by scheme independent β -function coefficients (b_0 and b_1), V_1 , V_3 fixed by the latent heat L_h and $S(2T_c)$ (lattice)
- The Planck scale M_p also by thermodynamics. matching high T asymptotics of QCD free energy: $M_p = (45\pi^2)^{-\frac{1}{3}} \ell^{-1}$
- $\Lambda_{QCD}\ell_{AdS}$ the only parameter of the zero T solutions, fixed by $m_{0++} = 1475 \ MeV \Rightarrow \Lambda_{QCD} = 292 \ MeV.$
- The string length ℓ_s by lattice string σ_s : $\frac{\ell_{AdS}}{\ell_s} \approx 6.5$ This measures how good the two-derivative approximation is!

Spectrum of 4D glueballs \Leftrightarrow Spectrum of normalizable fluctuations of the bulk fields.

• Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$;

- Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$;
- For a particle in 4D with wave-function $\psi(x)$ the corresponding bulk fluctuation is $\phi(x, r) = \psi(x)\zeta(r)$

- Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$;
- For a particle in 4D with wave-function ψ(x) the corresponding bulk fluctuation is φ(x, r) = ψ(x)ζ(r) For ζ(r) square integrable on r, the fluctuation eq. is a Schrödinger equation:
 Hζ ≡ -ζ + V_s(r)ζ = m²ζ where V_s = V_s[b(r), λ(r)]

- Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$;
- For a particle in 4D with wave-funciton ψ(x) the corresponding bulk fluctuation is φ(x, r) = ψ(x)ζ(r) For ζ(r) square integrable on r, the fluctuation eq. is a Schrödinger equation:
 Hζ ≡ -ζ + V_s(r)ζ = m²ζ where V_s = V_s[b(r), λ(r)]
- Both mass gap and discrete spectra m^2 follows if V_s has a well-shape \Leftrightarrow linear quark potential!

- Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$;
- For a particle in 4D with wave-funciton ψ(x) the corresponding bulk fluctuation is φ(x, r) = ψ(x)ζ(r) For ζ(r) square integrable on r, the fluctuation eq. is a Schrödinger equation:
 Hζ ≡ -ζ̈ + V_s(r)ζ = m²ζ where V_s = V_s[b(r), λ(r)]
- Both mass gap and discrete spectra m^2 follows if V_s has a well-shape \Leftrightarrow linear quark potential!

Glueballs

Spectrum of 4D glueballs \Leftrightarrow Spectrum of normalizable fluctuations of the bulk fields.

Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$;

Glueballs

Spectrum of 4D glueballs \Leftrightarrow Spectrum of normalizable fluctuations of the bulk fields.

Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$; Quadratic action for fluctuations:

$$S \sim \frac{1}{2} \int d^4x dr e^{2B(r)} \left[\dot{\zeta}^2 + (\partial_\mu \zeta)^2\right]$$

$$\ddot{\zeta} + 3\dot{B}\dot{\zeta} + m^2\zeta = 0, \quad \partial^\mu\partial_\mu\zeta = -m^2\zeta$$

Glueballs

Spectrum of 4D glueballs \Leftrightarrow Spectrum of normalizable fluctuations of the bulk fields.

Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta \Phi$; Quadratic action for fluctuations:

$$S \sim \frac{1}{2} \int d^4x dr e^{2B(r)} \left[\dot{\zeta}^2 + (\partial_\mu \zeta)^2 \right]$$

$$\ddot{\zeta} + 3\dot{B}\dot{\zeta} + m^2\zeta = 0, \quad \partial^\mu\partial_\mu\zeta = -m^2\zeta$$

- Scalar : $B(r) = 3/2A(r) + \log(\dot{\Phi}/\dot{A})$
- Tensor : B(r) = 3/2A(r)

Comparison with one lattice study Meyer, '02

J^{PC}	Lattice (MeV)	Our model (MeV)	Mismatch
0^{++}	1475 (4%)	1475	0
2^{++}	2150 (5%)	2055	4%
0^{++*}	2755 (4%)	2753	0
2^{++*}	2880 (5%)	2991	4%
0^{++**}	3370 (4%)	3561	5%
0++***	3990 (5%)	4253	6%

 $0^{++}: TrF^2; \qquad 2^{++}: TrF_{\mu\rho}F_{\nu}^{\rho}.$

• Fix the dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

• Fix the dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

• Two sol'ns with AdS asymptotics $ds^2 = e^{A(r)} \left(dt^2 f(r) + dx_3^2 + \frac{dr^2}{f(r)} \right)$:

- Thermal Gas \Leftrightarrow thermal gas of glueballs.
- Black-hole \Leftrightarrow quark-gluon plasma.
- Hawking-Page transition \Leftrightarrow deconfinement transition at T_c .

• Fix the dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

• Two sol'ns with AdS asymptotics $ds^2 = e^{A(r)} \left(dt^2 f(r) + dx_3^2 + \frac{dr^2}{f(r)} \right)$:

- Thermal Gas \Leftrightarrow thermal gas of glueballs.
- Black-hole \Leftrightarrow quark-gluon plasma.
- Hawking-Page transition \Leftrightarrow deconfigurent transition at T_c .
- Free energy from $S_{BH} S_{TG}$.
- Parameter fixing: V_0, V_2 fixed by scheme independent β -function coefficients (b_0 and b_1), V_1, V_3 fixed by the latent heat L_h and $S(2T_c)$ (lattice).

• Fix the dilaton potential:

$$V = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \log \left(1 + V_2 \lambda^{\frac{4}{3}} + V_3 \lambda^2 \right)^{\frac{1}{2}} \right\}$$

• Two sol'ns with AdS asymptotics $ds^2 = e^{A(r)} \left(dt^2 f(r) + dx_3^2 + \frac{dr^2}{f(r)} \right)$:

- Thermal Gas \Leftrightarrow thermal gas of glueballs.
- Black-hole \Leftrightarrow quark-gluon plasma.
- Hawking-Page transition \Leftrightarrow deconfigurent transition at T_c .
- Free energy from $S_{BH} S_{TG}$.
- Parameter fixing: V_0, V_2 fixed by scheme independent β -function coefficients (b_0 and b_1), V_1, V_3 fixed by the latent heat L_h and $S(2T_c)$ (lattice).
- Deconfiniment transition at $T_c = 247 MeV$ (lattice: $T_c = 260$ MeV.) Comparison to Boyd et al. '96

iHQCD Thermodynamics continued

The free energy:

iHQCD Thermodynamics continued

The free energy:

iHQCD Thermodynamics continued

The free energy:

- Big and Small black-hole solutions, like $\mathcal{N} = 4$ on \mathbb{R}^3
- Existence of $T_{min} \Leftrightarrow$ phase transition at $T_c > T_{min}$

Survey of thermodynamical quantities I

Survey of thermodynamical quantities II

Survey of thermodynamical quantities III

Survey of thermodynamical quantities IV

Survey of thermodynamic quantities V

Comparison to Boyd et al. '96 Thermodynamic functions and the speed of sound:

Dissipation in relativistic hydrodynamics
• $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?

- $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?
- When no other conserved charge, particle flow is only due energy flow: $u_{\mu}T^{\mu\nu} = \epsilon u^{\mu} \Rightarrow u_{\mu}\Pi^{\mu\nu} = 0$ Landau reference frame.

- $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?
- When no other conserved charge, particle flow is only due energy flow: $u_{\mu}T^{\mu\nu} = \epsilon u^{\mu} \Rightarrow u_{\mu}\Pi^{\mu\nu} = 0$ Landau reference frame.
- A straightforward exercise: From second law of thermodynamics $\partial_{\mu}s^{\mu} = 0$ (with $s^{\mu} = su^{\mu}$)

- $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?
- When no other conserved charge, particle flow is only due energy flow: $u_{\mu}T^{\mu\nu} = \epsilon u^{\mu} \Rightarrow u_{\mu}\Pi^{\mu\nu} = 0$ Landau reference frame.
- A straightforward exercise: From second law of thermodynamics $\partial_{\mu}s^{\mu} = 0$ (with $s^{\mu} = su^{\mu}$)

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu} + P^{\mu\alpha}P^{\nu\beta}\left[\eta\left(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha} - \frac{2}{3}g_{\alpha\beta}\partial \cdot u\right) + \zeta g_{\alpha\beta}\partial \cdot u\right] + \mathcal{O}(\partial u)^{2}; P^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$

• η : "shear viscosity"; ζ : "bulk viscosity"

- $T^{\mu\nu} = T^{\mu\nu}_{(0)} + \Pi^{\mu\nu}$, what is $\Pi^{\mu\nu}$?
- When no other conserved charge, particle flow is only due energy flow: $u_{\mu}T^{\mu\nu} = \epsilon u^{\mu} \Rightarrow u_{\mu}\Pi^{\mu\nu} = 0$ Landau reference frame.
- A straightforward exercise: From second law of thermodynamics $\partial_{\mu}s^{\mu} = 0$ (with $s^{\mu} = su^{\mu}$)

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu} + P^{\mu\alpha}P^{\nu\beta} \left[\eta \left(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha} - \frac{2}{3}g_{\alpha\beta}\partial \cdot u \right) + \zeta g_{\alpha\beta}\partial \cdot u \right] + \mathcal{O}(\partial u)^{2}; P^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$

• η : "shear viscosity"; ζ : "bulk viscosity"

 $\partial_{\mu}T^{\mu\nu} = 0.$

Another exercise: Navier-Stokes and continuity eqs. follow from

AdS/CFT and Heavy Ion Physics – p.29

• Kubo's linear response theory:

 $\mathcal{L} \to \mathcal{L} + \int \mathcal{O}^{A} \delta \phi_{A},$ then $\langle \mathcal{O}^{B} \rangle = G_{R}^{BA} \delta \phi_{A}$ where $G_{R}(\omega, \vec{k}) = -i \int d^{4}x e^{-ik \cdot x} \theta(t) \langle [\mathcal{O}^{A}(t, \vec{x}), \mathcal{O}^{B}(0, \vec{0})] \rangle$

• Kubo's linear response theory:

 $\mathcal{L} \to \mathcal{L} + \int \mathcal{O}^{A} \delta \phi_{A},$ then $\langle \mathcal{O}^{B} \rangle = G_{R}^{BA} \delta \phi_{A}$ where $G_{R}(\omega, \vec{k}) = -i \int d^{4}x e^{-ik \cdot x} \theta(t) \langle [\mathcal{O}^{A}(t, \vec{x}), \mathcal{O}^{B}(0, \vec{0})] \rangle$

• Viscosities: response of $T^{\mu\nu}$ to $g_{\alpha\beta}$.

- Kubo's linear response theory:
 - $\mathcal{L} \to \mathcal{L} + \int \mathcal{O}^{A} \delta \phi_{A},$ then $\langle \mathcal{O}^{B} \rangle = G_{R}^{BA} \delta \phi_{A}$ where $G_{R}(\omega, \vec{k}) = -i \int d^{4}x e^{-ik \cdot x} \theta(t) \langle [\mathcal{O}^{A}(t, \vec{x}), \mathcal{O}^{B}(0, \vec{0})] \rangle$
- Viscosities: response of $T^{\mu\nu}$ to $g_{\alpha\beta}$.
- $\eta \left(\delta^{il} \delta^{km} + \delta^{im} \delta^{kl} \frac{2}{3} \delta^{ik} \delta^{lm} \right) + \zeta \delta^{ik} \delta^{lm} = \lim_{\omega \to 0} \frac{i}{\omega} G_R^{ik,lm}(\omega)$

- Kubo's linear response theory:
 - $\mathcal{L} \to \mathcal{L} + \int \mathcal{O}^{A} \delta \phi_{A},$ then $\langle \mathcal{O}^{B} \rangle = G_{R}^{BA} \delta \phi_{A}$ where $G_{R}(\omega, \vec{k}) = -i \int d^{4}x e^{-ik \cdot x} \theta(t) \langle [\mathcal{O}^{A}(t, \vec{x}), \mathcal{O}^{B}(0, \vec{0})] \rangle$
- Viscosities: response of $T^{\mu\nu}$ to $g_{\alpha\beta}$.
- $\eta \left(\delta^{il} \delta^{km} + \delta^{im} \delta^{kl} \frac{2}{3} \delta^{ik} \delta^{lm} \right) + \zeta \delta^{ik} \delta^{lm} = \lim_{\omega \to 0} \frac{i}{\omega} G_R^{ik,lm}(\omega)$
- Read off η from the xy component, and ζ from the 11 + 22 + 33 component.

- Relativistic fluid with 4-velocity u^{μ} , energy density ϵ and pressure p.
- Navier-Stokes & continuity equations from the energy-momentum tensor:

$$T_{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu} + P^{\mu\alpha}P^{\nu\beta} \left[\eta \left(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha} - \frac{2}{3}g_{\alpha\beta}\partial \cdot u \right) + \zeta g_{\alpha\beta}\partial \cdot u \right] + \mathcal{O}(\partial u)^{2}$$

- Relativistic fluid with 4-velocity u^{μ} , energy density ϵ and pressure p.
- Navier-Stokes & continuity equations from the energy-momentum tensor:

$$T_{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu} + P^{\mu\alpha}P^{\nu\beta} \left[\eta \left(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha} - \frac{2}{3}g_{\alpha\beta}\partial \cdot u \right) + \zeta g_{\alpha\beta}\partial \cdot u \right] + \mathcal{O}(\partial u)^{2}$$

The characteristic parameters of the fluid at $\mathcal{O}(\partial u)$

• Shear viscosity η : For all 2 ∂ theories $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$ Buchel and Liu '03

- Relativistic fluid with 4-velocity u^{μ} , energy density ϵ and pressure p.
- Navier-Stokes & continuity equations from the energy-momentum tensor:

$$T_{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu} + P^{\mu\alpha}P^{\nu\beta} \left[\eta \left(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha} - \frac{2}{3}g_{\alpha\beta}\partial \cdot u \right) + \zeta g_{\alpha\beta}\partial \cdot u \right] + \mathcal{O}(\partial u)^{2}$$

The characteristic parameters of the fluid at $\mathcal{O}(\partial u)$

- Shear viscosity η : For all 2 ∂ theories $\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$ Buchel and Liu '03
- Bulk viscosty ζ: What is already known from field theory and lattice ?

Holographic computation

- Kubo's linear response theory:
 - $\zeta = -\frac{1}{9} \lim_{\omega \to 0} \frac{1}{\omega} Im G_R(w, 0)$
- More complicated than shear because h_{ii} mix with dilaton fluctuations $\delta \phi$.
- Derive the fluctuation equations for h_{ii} , pick up the gauge $\delta \phi = 0$,
- Fluctuations decouple in the smart gauge! Gubser et al '08: Define $X = \phi'/3A'$

•
$$h_{ii}'' + \left(3A' + 2\frac{X'}{X} + \frac{f'}{f}\right)h_{ii}' + \left(\frac{\omega^2}{f^2} - \frac{f'X'}{fX}\right)h_{ii} = 0$$

- Boundary conditions:
 - $h_{ii}(\phi = -\infty) = 1$ and,
 - In-falling wave at horizon $h_{ii} \rightarrow c_b (r_h r)^{-\frac{i\omega}{4\pi T}}$
- Read off $c_b(\omega, T)$

Results I: Comparison to Meyer '08

Results I: Comparison to Meyer '08

- Near UV, vanishes as expected: ideal gluon gas at high T
- Near T_c Peak, much smaller than lattice expectations!
- Agreement with another holographic model Gubser et al. 08

Jet quenching

Back-to-back jet production is highly suppressed at RHIC:

Jet quenching

Back-to-back jet production is highly suppressed at RHIC:

The first direct signals of jet-quenching - November 2010!

Jet quenching

Back-to-back jet production is highly suppressed at RHIC:

The first direct signals of jet-quenching - November 2010!

A clear signal of strongly-coupled plasma.

What is known: recoiling hadrons are suppr

Compare to d+Au: suppression is final-state

M. van Leeuwen, LBNI.

High-p, at SPS, RHIC and LHC

What is known: recoiling hadrons are suppr

Compare to d+Au: suppression is final-state

M. van Leeuwen, LBNI.

High-p, at SPS, RHIC and LHC

What is known: recoiling hadrons are suppr

M. van Leeuwen, I.BNI.

High-p₁ at SPS, RHIC and LHC

Average transverse momentum lost into the media in a flight of distance D.

$$\hat{q} = \frac{\langle p_{\perp}^2 \rangle}{D}$$

Weak-coupling computation does not explain the data.

• Highly energetic partons produced in head-on nuclei collisions are very important probes

- Highly energetic partons produced in head-on nuclei collisions are very important probes
- In weakly coupled QGP: main source of energy loss is collisions with thermal gluons and quarks.

D. Teaney '03

• What happens in a strongly coupled plasma?

- Highly energetic partons produced in head-on nuclei collisions are very important probes
- In weakly coupled QGP: main source of energy loss is collisions with thermal gluons and quarks.

D. Teaney '03

• What happens in a strongly coupled plasma? Combination of two distinct mechanisms:

- Highly energetic partons produced in head-on nuclei collisions are very important probes
- In weakly coupled QGP: main source of energy loss is collisions with thermal gluons and quarks.

D. Teaney '03

- What happens in a strongly coupled plasma? Combination of two distinct mechanisms:
 - 1. Energy loss by Langevin diffusion process
 - 2. Energy loss by gluon Brehmstahlung

- Hard probe moving in QGP: $S[X(t)] = S_0 + \int d\tau X_\mu(\tau) \mathcal{F}^\mu(\tau)$ S_0 : free quark action, $\mathcal{F}(\tau)$: drag force—summarizes the d.o.f of the plasma
- EOM of the hard probe:

- Hard probe moving in QGP: $S[X(t)] = S_0 + \int d\tau X_\mu(\tau) \mathcal{F}^\mu(\tau)$ S_0 : free quark action, $\mathcal{F}(\tau)$: drag force—summarizes the d.o.f of the plasma
- EOM of the hard probe:

 $\frac{\delta S_0}{\delta X_i(t)} = \int_{-\infty}^{+\infty} d\tau \ \theta(\tau) C^{ij}(\tau) X_j(t-\tau) + \xi^i(t), \qquad i = 1, 2, 3$ with $\langle \xi^i(t) \xi^j(t') \rangle = A^{ij}(t-t')$

- Hard probe moving in QGP: $S[X(t)] = S_0 + \int d\tau X_\mu(\tau) \mathcal{F}^\mu(\tau)$ S_0 : free quark action, $\mathcal{F}(\tau)$: drag force—summarizes the d.o.f of the plasma
- EOM of the hard probe:

 $\frac{\delta S_0}{\delta X_i(t)} = \int_{-\infty}^{+\infty} d\tau \ \theta(\tau) C^{ij}(\tau) X_j(t-\tau) + \xi^i(t), \qquad i = 1, 2, 3$ with $\langle \xi^i(t) \xi^j(t') \rangle = A^{ij}(t-t')$

• The entire information is stored in: $C^{ij}(t) \equiv -i\langle \left[\mathcal{F}^{i}(t), \mathcal{F}^{j}(0)\right] \rangle,$ $A^{ij}(t) \equiv -\frac{i}{2}\langle \left\{\mathcal{F}^{i}(t), \mathcal{F}^{j}(0)\right\} \rangle.$

• Suppose correlations vanish for $t - t' \gg \tau_c$:

• Suppose correlations vanish for $t - t' \gg \tau_c$: $A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \qquad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t)$

- Suppose correlations vanish for $t t' \gg \tau_c$: $A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \qquad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t)$
- EOM for the hard probe becomes,

$$\frac{\delta S_0}{\delta X_i(t)} + \eta^{ij} \dot{X}_j(t) = \xi^i(t), \qquad \langle \xi^i(t) \xi^j(t') \rangle = \kappa^{ij} \delta(t - t') \quad \text{with}$$

$$\kappa^{ij} = \lim_{\omega \to 0} A^{ij}(\omega),$$

$$\eta^{ij} \equiv \int_0^\infty d\tau \, \gamma^{ij}(\tau) = -\lim_{\omega \to 0} \frac{\operatorname{Im} C^{ij}(\omega)}{\omega}$$
Local approximation

- Suppose correlations vanish for $t t' \gg \tau_c$: $A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \qquad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t)$
- EOM for the hard probe becomes,

$$\frac{\delta S_0}{\delta X_i(t)} + \eta^{ij} \dot{X}_j(t) = \xi^i(t), \qquad \langle \xi^i(t) \xi^j(t') \rangle = \kappa^{ij} \delta(t - t') \quad \text{with}$$

$$\kappa^{ij} = \lim_{\omega \to 0} A^{ij}(\omega),$$

$$\eta^{ij} \equiv \int_0^\infty d\tau \, \gamma^{ij}(\tau) = -\lim_{\omega \to 0} \frac{\operatorname{Im} C^{ij}(\omega)}{\omega}$$

• For QGP at equilibrium at temperature T: $A^{ij}(\omega) = -\coth(\frac{\omega}{2T})ImG_R^{ij}(\omega), \qquad C^{ij}(\omega) = ImG_R^{ij}(\omega)$

Local approximation

- Suppose correlations vanish for $t t' \gg \tau_c$: $A^{ij}(t - t') \approx \kappa^{ij} \delta(t - t'), \qquad C^{ij}(t) = \frac{d}{dt} \gamma^{ij}(t)$
- EOM for the hard probe becomes,

$$\frac{\delta S_0}{\delta X_i(t)} + \eta^{ij} \dot{X}_j(t) = \xi^i(t), \qquad \langle \xi^i(t)\xi^j(t')\rangle = \kappa^{ij}\delta(t-t') \quad \text{with}$$

$$\kappa^{ij} = \lim_{\omega \to 0} A^{ij}(\omega),$$

$$\eta^{ij} \equiv \int_0^\infty d\tau \, \gamma^{ij}(\tau) = -\lim_{\omega \to 0} \frac{\operatorname{Im} C^{ij}(\omega)}{\omega}$$

- For QGP at equilibrium at temperature T: $A^{ij}(\omega) = -\coth(\frac{\omega}{2T})ImG_R^{ij}(\omega), \qquad C^{ij}(\omega) = ImG_R^{ij}(\omega)$
- Thus, it is sufficient to calculate

 $G_R(\omega) = -i \int dt e^{-i\omega t} \theta(t) \langle [F^i(t), F^j(0)] \rangle$

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$. $\frac{d\delta p^{\perp}}{dt} = -\eta^{\perp} \delta p^{\perp} + \xi^{\perp}$

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$. $\frac{d\delta p^{\perp}}{dt} = -\eta^{\perp} \delta p^{\perp} + \xi^{\perp}$

Solution with initial conditions $\delta \vec{p}(t=0) = 0$:

 $p^{\perp}(t) = \int_0^t dt' e^{\eta^{\perp}(t'-t)} \xi^{\perp}(t'),$

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$.

 $\frac{d\delta p^{\perp}}{dt} = -\eta^{\perp}\delta p^{\perp} + \xi^{\perp}$

Solution with initial conditions $\delta \vec{p}(t=0) = 0$:

$$p^{\perp}(t) = \int_0^t dt' \, e^{\eta^{\perp}(t'-t)} \xi^{\perp}(t'),$$

Compute the noise-average of fluctuations:

 $\langle (p^{\perp})^2 \rangle = \int_0^t dt' \, \int_0^t dt'' \, e^{\eta^{\perp}(t'+t''-2t)} \langle \xi^{\perp}(t')\xi^{\perp}(t'') \rangle$

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$. $\frac{d\delta p^{\perp}}{dt} = -\eta^{\perp} \delta p^{\perp} + \xi^{\perp}$ Solution with initial conditions $\delta \vec{p}(t=0) = 0$: $p^{\perp}(t) = \int_0^t dt' \, e^{\eta^{\perp}(t'-t)} \xi^{\perp}(t')$, Compute the noise-average of fluctuations: $\langle (p^{\perp})^2 \rangle = \int_0^t dt' \, \int_0^t dt'' \, e^{\eta^{\perp}(t'+t''-2t)} \langle \xi^{\perp}(t') \xi^{\perp}(t'') \rangle$

Use $\langle \xi(t')\xi(t'')\rangle = \kappa\delta(t'-t'')$, for $t\eta^{\perp} \ll 1$: $\langle (p^{\perp})^2 \rangle = 2\kappa^{\perp}t$

For $\Delta t \ll \tau_c$, short-time solution to the EOM for the hard-probe: (in momentum space, around liner trajectory: $\vec{p} \simeq p_0 \vec{v}/v + \delta \vec{p}$. $\frac{d\delta p^{\perp}}{dt} = -\eta^{\perp} \delta p^{\perp} + \xi^{\perp}$ Solution with initial conditions $\delta \vec{p}(t=0) = 0$: $p^{\perp}(t) = \int_0^t dt' \ e^{\eta^{\perp}(t'-t)}\xi^{\perp}(t')$, Compute the noise-average of fluctuations: $\langle (p^{\perp})^2 \rangle = \int_0^t dt' \ \int_0^t dt'' \ e^{\eta^{\perp}(t'+t''-2t)}\langle \xi^{\perp}(t')\xi^{\perp}(t'') \rangle$ Use $\langle \xi(t')\xi(t'') \rangle = \kappa \delta(t'-t'')$, for $t\eta^{\perp} \ll 1$: $\langle (p^{\perp})^2 \rangle = 2\kappa^{\perp}t$

thus jet-quenching parameter:

$$\hat{q}^{\perp} = \frac{\langle (p^{\perp})^2 \rangle}{vt} = 2\frac{\kappa^{\perp}}{v}.$$

How to calculate in the bulk dual?

Recall $S[X(t)] = S_0 + \int d\tau X_\mu(\tau) \mathcal{F}^\mu(\tau)$

To calculate $\langle \{ \mathcal{F}^{\perp}(t), \mathcal{F}^{\perp}(0) \} \rangle = \mathcal{O}(0) + \langle \{ \xi^{\perp}(t), \xi^{\perp}(0) \} \rangle$

We need to calculate the fluctuations $\delta X^{\perp}(t)$.

Dual picture

Herzog et al; Gubser '06

Holography: Represent the (infinitely) heavy quark with a trailing string moving with constant v:

Dual picture

Herzog et al; Gubser '06

Holography: Represent the (infinitely) heavy quark with a trailing string moving with constant *v*:

Drag force on a heavy quark in a hot wind: $F = \frac{dp}{dt} = \frac{1}{v} \frac{dE}{dt} = -\mu p + \zeta(t)$

Ignore stochastic force $\zeta(t)$ in this talk \Leftrightarrow fluctuations of the trailing string \Rightarrow diffusion constant.

Standard calculation:

- Pick up the static gauge: $\sigma^0 = t$, $\sigma^1 = r$.
- String ansatz $x^1 = vt + \delta(r)$
- Minimize the area (in the string frame!)
- Compute the WS momentum flowing into the BH horizon

Standard calculation:

- Pick up the static gauge: $\sigma^0 = t$, $\sigma^1 = r$.
- String ansatz $x^1 = vt + \delta(r)$
- Minimize the area (in the string frame!)
- Compute the WS momentum flowing into the BH horizon

$$F = \frac{1}{v} \frac{dE}{dt} = -\frac{1}{2\pi \ell_s^2} v e^{2A(r_s)} \lambda(r_s)^{\frac{4}{3}}, r_s \text{ defined by } f(r_s) = v^2.$$

Standard calculation:

- Pick up the static gauge: $\sigma^0 = t$, $\sigma^1 = r$.
- String ansatz $x^1 = vt + \delta(r)$
- Minimize the area (in the string frame!)
- Compute the WS momentum flowing into the BH horizon

$$F = \frac{1}{v} \frac{dE}{dt} = -\frac{1}{2\pi\ell_s^2} v e^{2A(r_s)} \lambda(r_s)^{\frac{4}{3}}, r_s \text{ defined by } f(r_s) = v^2.$$

Relativistic limit,
$$v \to 1$$
: $F = -\frac{\ell^2}{\ell_s^2} \sqrt{\frac{45 \ T \ s(T)}{4N_c^2}} \frac{v}{\sqrt{1 - v^2} \left(-\frac{\beta_0}{4} \log[1 - v^2]\right)^{\frac{4}{3}}} + \cdots$
Non-relativistic limit $v \to 0$: $F = -\frac{\ell^2}{\ell_s^2} \left(\frac{45\pi \ s(T)}{N_c^2}\right)^{\frac{2}{3}} \frac{\lambda(r_h)^{\frac{4}{3}}}{2\pi} v + \cdots$

Comparison to conformal case

The AdS result: $F_{conf} = \frac{\pi}{2} \sqrt{\lambda} T^2 \frac{v}{\sqrt{1-v^2}}$

Fix ℓ_s in our model by the lattice string tension Fix $\lambda = 5.5$ in $\mathcal{N} = 4$ SYM:

Comparison to conformal case

The AdS result: $F_{conf} = \frac{\pi}{2}\sqrt{\lambda}T^2 \frac{v}{\sqrt{1-v^2}}$ Fix ℓ_s in our model by the lattice string tension Fix $\lambda = 5.5$ in $\mathcal{N} = 4$ SYM:

We clearly see the effects of asymptotic freedom!

Comparison schemes

Comparison schemes

- An important detail:: How to compare to QCD?
- Direct scheme: $T_{QGP} = T_{our}$

Comparison schemes

- An important detail:: How to compare to QCD?
- Direct scheme: $T_{QGP} = T_{our}$

In the range $1.5T_c < T < 3T_c E_{QGP} \propto E_{GP} \propto T^4$

- Alternative schemes: $E_{QGP} = E_{our}$ or $s_{QGP} = s_{our}$
- We try all possible schemes.

Predictions for experiments

Predictions for experiments

Equilibration times for charm and bottom:

Solid: direct, dashed: energy, dot-dashed entropy schemes.

Predictions for experiments

Equilibration times for charm and bottom:

Solid: direct, dashed: energy, dot-dashed entropy schemes. Some experimental studies + models PHENIX col. '06, van Hees et al '05: For p = 10 GeV, $\tau_e \approx 4.5$ fm (charm)

We have $3 < \tau_e < 5.5 \ fm$

Diffusion constants

Diffusion constants

• In Fourier space

 $\kappa = \lim_{\omega \to 0} G_{sym}(\omega) = \lim_{\omega \to 0} \coth(\frac{\omega}{4T_s}) Im G_R(\omega)$ where T_s is the world-sheet temperature.

• G_R extracted from fluctuations on the trailing string solution: $X^1 = vt + \zeta(r) + \delta X^1$, $X^T = \delta X^T$.

Diffusion constants

• In Fourier space

 $\kappa = \lim_{\omega \to 0} G_{sym}(\omega) = \lim_{\omega \to 0} \coth(\frac{\omega}{4T_s}) Im G_R(\omega)$ where T_s is the world-sheet temperature.

- G_R extracted from fluctuations on the trailing string solution: $X^1 = vt + \zeta(r) + \delta X^1, \qquad X^T = \delta X^T.$
- There is a "horizon" on the world-sheet: $ds^2 = b^2 \left[-(f(r) - v^2) d\tau^2 + \frac{dr^2}{f - v^2 b^4(r_s)/b^4(r)} \right]$ WS horizon at $f(r_s) = v^2$.
- $\kappa_{\perp} = \frac{2}{\pi \ell_s^2} b^2(r_s) T_s, \qquad \kappa_{\parallel} = \frac{32\pi}{\ell_s^2} \frac{b^2(r_s)}{f'(r_s)^2} T_s^3$

Physical picture

Physical picture

• A black-hole holizon on the ws at r_s . Fluctuations on the string fall into the horizon \Rightarrow energy loss

Physical picture

- A black-hole horizon on the WS at r_s : Fluctuations on the string fall into the horizon \Rightarrow energy loss
- However, there is Hawking radiation at r_s towards the boundary \Rightarrow momentum broadening.

• From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_{\perp} \sim 5 - 15 \ GeV^2/fm$.

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_{\perp} \sim 5 15 \ GeV^2/fm$.
- If Langevin dynamics satisfied: $\hat{q}_{\perp} = \frac{2\kappa_{\perp}}{v}$.

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_{\perp} \sim 5 15 \ GeV^2/fm$.
- If Langevin dynamics satisfied: $\hat{q}_{\perp} = \frac{2\kappa_{\perp}}{v}$.
- In the extreme relativistic limit $v \approx 1$, one derives:

 $\kappa_{\perp} \approx \frac{(45\pi^2)^{\frac{3}{4}}}{\sqrt{2}\pi^2} \frac{\ell^2}{\ell_s^2} \frac{(sT)^{\frac{3}{4}}}{(1-v^2)^{\frac{1}{4}}} \left(-\frac{b_0}{4}\log(1-v^2)\right)^{-\frac{4}{3}}$

- From the nuclear modification factors R_{AA} at RHIC and comparison with hydro simulations: $\hat{q}_{\perp} \sim 5 15 \ GeV^2/fm$.
- If Langevin dynamics satisfied: $\hat{q}_{\perp} = \frac{2\kappa_{\perp}}{v}$.
- In the extreme relativistic limit $v \approx 1$, one derives:

$$\kappa_{\perp} \approx \frac{(45\pi^2)^{\frac{3}{4}}}{\sqrt{2}\pi^2} \frac{\ell^2}{\ell_s^2} \frac{(sT)^{\frac{3}{4}}}{(1-v^2)^{\frac{1}{4}}} \left(-\frac{b_0}{4}\log(1-v^2)\right)^{-\frac{4}{3}}$$

 $\hat{q}_{\perp} = 5.2$ (direct), 12 (energy), 13.13 (entropy) GeV^2/fm ,

for a charm quark traveling at p = 10 GeV at T = 250 MeV.

Jet quenching, non-perturbative

Non-perturbative def. of \hat{q} :

Wiedemann '00
$$\langle W(C) \rangle \approx \exp\left[-\frac{1}{8\sqrt{2}}\hat{q}L^{-}L^{2}\right].$$

Jet quenching, non-perturbative

Non-perturbative def. of \hat{q} :

Holographic computation Liu, Rajagopal, Wiedemann '06: $\langle W(C) \rangle = e^{iS}$ Pick up gauge: $x^- \equiv x_1 - t = \tau$, $x_2 = \sigma$, Compute minimal area:

•
$$\hat{q} = \frac{\sqrt{2}}{\pi \ell_s^2} \frac{1}{\int_0^{r_h} \frac{dr}{e^{2A_s}\sqrt{f(1-f)}}}$$
Results

T_{QGP}, MeV	$\hat{q} \; (GeV^2/fm)$	$\hat{q} \; (GeV^2/fm)$	$\hat{q} \; (GeV^2/fm)$
	(direct)	(energy)	(entropy)
220	_	0.89	1.01
250	0.53	1.21	1.32
280	0.79	1.64	1.73
310	1.07	2.14	2.21
340	1.39	2.73	2.77
370	1.76	3.37	3.42
400	2.18	4.20	4.15

Results

T_{QGP}, MeV	$\hat{q} \; (GeV^2/fm)$	$\hat{q} \; (GeV^2/fm)$	$\hat{q} \; (GeV^2/fm)$
	(direct)	(energy)	(entropy)
220	_	0.89	1.01
250	0.53	1.21	1.32
280	0.79	1.64	1.73
310	1.07	2.14	2.21
340	1.39	2.73	2.77
370	1.76	3.37	3.42
400	2.18	4.20	4.15

Close to AdS somewhat smaller than pQCD + fit to data Eskola et al '05

 $\hat{q}_{expect}\sim 5-12\;GeV^2/fm$

• Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.
- Higher order hydrodynamic coefficients
- Fluctuations of the trailing string ⇒ momentum broadening and diffusion constants.
- Spectral density associated with ζ .
- Expanding plasma (non-static configurations)

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.
- Higher order hydrodynamic coefficients
- Fluctuations of the trailing string ⇒ momentum broadening and diffusion constants.
- Spectral density associated with ζ .
- Expanding plasma (non-static configurations)
- Meson sector. Melting of heavy mesons, etc.
- Finite chemical potential and phase diagram in $\mu_c T$.
- Heavy Ion Physics under finite B
- Anomalous transport

- Bulk viscosity and energy loss for hard probes and ultra-relativistic quarks in improved holographic QCD. Results comparable to expectations from lattice or data. ζ/s peak near T_c lower than lattice expectations. Drag force well within expectations, better than AdS. \hat{q} somewhat below simulations.
- Higher order hydrodynamic coefficients
- Fluctuations of the trailing string ⇒ momentum broadening and diffusion constants.
- Spectral density associated with ζ .
- Expanding plasma (non-static configurations)
- Meson sector. Melting of heavy mesons, etc.
- Finite chemical potential and phase diagram in $\mu_c T$.
- Heavy Ion Physics under finite B
- Anomalous transport