
Exercise Sheet: Introduction to AdS/CFT

Exercise 1: String actions

In lecture we introduced the Polyakov action for the string:

SP =
1

4πl2s

∫
dσdτ

√
−ggαβ∂αXµ∂βXµ .

a. Substitute the equation of motion for the world-sheet metric gαβ in the action
and show that SP is classically equivalent to the Nambu-Goto action

SNG ∝
∫
dσdτ

√
det∂αXµ∂βXµ .

b. Show that this is just the area of a string that it sweeps as it moves in
time.

c. Work out the variational principle for the Polyakov action above and show
that there are essentially three different types of solutions below. Use Dirichlet
boundary conditions in time as usual: δXµ(τ0) = δXµ(τ1) = 0 for initial and
final times.

1. Closed string: Xµ(σ + 2π, τ) = Xµ(σ, τ). Length of the closed string is
chosen as 2π for simplicity.

2. Open string: ∂σX
µ(0, τ) = ∂σX

µ(π, τ) = 0. Length of the open string is
chosen as π for simplicity.

3. Open string on a Dp brane: ∂σX
µ(0, τ) = ∂σX

µ(π, τ) = 0 for µ =
0, 1, · · · p. δXµ(0, τ) = δXµ(π, τ) = 0 for µ = p+ 1, p+ 2, · · ·D.

Exercise 2: String modes and energy-momentum

a. Show that the Polyakov action is invariant under three local symmetries:
The two diffeomorphisms τα → τα + ξα(σ, τ), gαβ → gαβ +∇αξβ +∇βξα, for
τ0 = τ , τ1 = σ. And the Weyl symmetry: gαβ → e2ω(σ,τ)gαβ .
b. Show that this freedom can be used to fix gαβ = ηαβ , at least locally at
every point (σ, τ).
c. Work out the equation of motions for the Xµ fields in flat space time and in
the gauge gαβ = ηαβ and show that

Xµ(σ, τ) = xµ +
pµ

πT
τ +

i√
πT

∑
n 6=0

αµn
n
e−inτ cos(nσ), (open string)

Xµ(σ, τ) = xµ +
pµ

2πT
τ +

i√
4πT

∑
n 6=0

1

n
e−inτ

(
αµne

inσ + ᾱµne
−inσ) . (closed string)

d. Show that the components of the world-sheet energy-momentum tensor in
the conformal gauge (gαβ = ηαβ) read

T01 = T10 =
1

2
Ẋ ·X ′, T00 = T11 =

1

4

(
Ẋ2 +X

′2
)
.
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e. Obtain T00 in terms of α oscillators both for the closed and the open string.

Exercise 3: Mass spectrum of the string

a. Show that the equation of motion for the world-sheet metric gαβ requires
vanishing of the world-sheet energy momentum tensor Tαβ = 0 classically.
b. In quantum theory this cannot be maintained as there is a normal order-
ing anomaly in the product of α operators. The normal ordering is defined as
: αµnα

ν
m := αµnα

ν
m for m < 0, n > 0 and : αµnα

ν
m := ανmα

µ
n for m > 0, n < 0. In

quantum mechanics the condition (Hamiltonian constraint) T00 = 0 becomes

(T̂00 − 1)|ψ〉 = 0 ,

where the −1 bit is due to normal ordering anomaly (think of the 1/2 in the
harmonic oscillator).
Show that this condition yields the mass formula

m2 =
1

l2s

(∑
m>0

α−m · αm − 1

)
,

for the open string and

m2 =
2

l2s

(∑
m>0

(α−m · αm + ᾱ−m · ᾱm − 2)

)
,

for the closed string.
c. Show that the massless open string state is a gauge field. Similarly show that
the massless closed string state includes a scalar field Φ, the dilation, a traceless
symmetric tensor hµν , that is the graviton, and an antisymmetric tensor Bµν .

Exercise 4: Scalar field in AdS

In class we wrote down a metric for the AdS5 space-time

ds2 =
dr2

r2
+ r2(−dt2 + dx2

1 + dx2
2 + dx2

3) .

Another useful coordinate system is obtained by z = 1/r.
a. Show that in this coordinate system the metric becomes

ds2 =
1

z2
(dz2 − dt2 + dx2

1 + dx2
2 + dx2

3) .

b. Derive the equation of motion for a scalar field Φ in this space with mass m2.

c. Show that near the boundary z = 0

Φ(z, x)→ φ−(x)z∆− + φ+(x)z∆+ + · · ·

where
∆−∆+ = −m2, ∆− + ∆+ = 4 .
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Exercise 5: Bulk to boundary propagator in AdS

Show that

K∆(z, ~x, ~y) =
Γ(∆)

π2Γ(∆− 2)

(
z

z2 + (~x− ~y)2

)∆

is a solution to the scalar equation of motion with the boundary condition

z∆−4K∆(z, ~x, ~y) = δ(~x, ~y) ,

as z → 0 and
K∆(z, ~x, ~y)→ 0 ,

as z →∞ (regularity in the interior).

Exercise 6: Spectrum of a dimension 4 operator in dual field the-
ory

a. Fourier transform the scalar field Φ(z, ~x) only in the Minkowski directions
~x, not z, and obtain the equation of motion for a scalar field that is dual to a
dimension 4 operator as

Φ′′(z, k)− 3

z
Φ′(z, k)− k2Φ(z, k) = 0 .

b. We will now obtain the mass spectrum of states created by this operator
acting on the vacuum as m2

4 = −k2. To obtain a gaped spectrum, let us assume
there is an IR cut-off at z = z0 where the AdS geometry terminates. Show
that requiring the boundary conditions (i) normalizability near z = 0 and (ii)
regularity Φ(z0) = 0 at the IR cut-off determines the spectrum as

J2(m4z0) = 0,

where J2 is a Bessel function. What are the first few states?

Exercise 7: AdS-Schwarzchild black-hole

Show that the Einstein’s equation that follow from the action

S =
1

16πG

∫
d5x
√
−g (R+ Λ)

has a solution of the form

ds2 =
1

z2
(
dz2

f(z)
− f(z)dt2 + dx2

1 + dx2
2 + dx2

3) ,

with f(z) = 1− (z/zh)4.
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