

Outline

Heavy quark: General Picture

Heavy quark: General Picture

Radiative Energy Loss: Color charge dependence

Radiative Energy Loss: *Mass dependence*

Mass dependence in collisional energy loss

15/06/2015

Heavy quark: General Picture

15/06/2015

Topical Lectures -Nikhef

15/06/2015

15/06/2015

Therefore?

Probe calibration: *Heavy flavour production in pp*

D meson reconstruction (LHC example)

Just an example: $D^0 \rightarrow K^-\pi^+$ in ALICE

Just an example: $D^0 \rightarrow K^-\pi^+$ in ALICE

STAR Au+Au Central Then use particle identification: Specific energy loss in the TPC and time-STAR Preliminary of-flight using TOF.

What about RHIC results

Alessopidatoecures Nikhef

D meson - p_T differential production cross-section

- \checkmark D^{*+}, D⁰, D⁺ and D_s production cross section were measured at LHC in a wide rapidity and p_T range.
- Results are in agreement with pQCD within errors. Note: same models as ALICE used for the comparison
- Charm cross-section evaluated in a wide rapidity range 2.0<y<4.5

Nuclear Physics, Section B 871 (2013)

Total cross section (only topological)

 $R_{AA}^{D}(p_{T}) = \frac{dN_{AA}^{D}/dp_{T}}{\langle T_{AA} \rangle \times d\sigma_{nn}^{D}/dp_{T}}$

Topical Lectures -Nikhef

15/06/2015

Topical Lectures -Nikhef

Tipical Pb-Pb collision

15/06/2015

Event characterization: centrality

PROBLEM: we cannot directly measure b

SOLUTION: We model the expected number of produced particles for each possible b and then we compare with the one measured from data so that we can assign a centrality to each collision

It allows to control the collision geometry

3.5E

3È

2.5

2È

.5⊦

D mesons in Pb-Pb

D mesons dN/dp_T and R_{AA}

What about RHIC results D mesons R_{AA} and flow: comparison with models

- Disagreement STAR-PHENIX factor 2 in cross section measurement.
- Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark. *Predictions contradicted*!.

What about RHIC results D mesons R_{AA} and flow: comparison with models

Cross Section ($\sigma_{e\overline{e}}$) [mb]

1.2

0.8

0.6

0.4

0.2

STAR d+Au

NLO Upper Bound (New

PHENIX p+p

NLO Prediction (New)

NLO Lower Bound (New

Disagreement STAR-PHENIX factor 2 in cross section measurement.

 2

Data in agreement with binary scaling - negligible initial state nuclear effects.

STAR Au+Au Central STAR Preliminary

STAR Au+Au MinBias

STAR Prelimination Central

PHENIX Au+Au

central

New Cu+Cu Result STAR Preliminary

B mesons R_{AA}

First measurement of B mesons R_A performed by CMS using inonprompt J/Ψ

Mass dependence: D vs B

Mass dependence: D vs B

Conclusions

