Proton therapy

Joris Hartman, MD, PhD Nikhef colloquium, Friday 12 April 2019

Personal background

- Physics 1999 2009
- Medicine 2002 2013
- Master Nikhef 2006 2009
- PhD student @ ANTARES, Nikhef 2009-2010
- PhD student @ UMC Utrecht 2013-2018
 - Feasibility of MRI-guided proton therapy

Personal background

- Physics 1999 2009
- Medicine 2002 2013
- Master Nikhef 2006 2009
- PhD student @ ANTARES, Nikhef 2009-2010
- PhD student @ UMC Utrecht 2013-2018
 - Feasibility of MRI-guided proton therapy

Currently working on MC validation (physics) and in psychiatry (medicine).

- I. Radiotherapy: a short introduction
- II. Proton therapy: what?
- III. Proton therapy: why?
- IV. Proton therapy: how?
- V. Challenges and developments

I. Radiotherapy: a short introduction

What is radiotherapy

"In radiotherapy, ionizing radiation is used to treat cancer" †

[†]And some other, benign, conditions

What is radiotherapy

"In radiotherapy, ionizing radiation is used to treat cancer"

[†]And some other, benign, conditions

What is radiotherapy

"In radiotherapy, ionizing radiation is used to treat cancer"

50% of patients treated with radiation therapy

[†]And some other, benign, conditions

Dose $D = \mathbf{\Phi} \frac{S}{\rho}$ or $D = 0.1602 \, \mathbf{\Phi} \frac{S}{\rho} \, Gy \, (or \, \frac{J}{kg})$

with $\boldsymbol{\Phi}$ in Gp/cm² and S/ $\boldsymbol{\rho}$ in MeV/(g/cm²)

Based on tumor type and location

- A. tumor control probability (TCP)
- B. normal tissue complication probability (NTCP)

Based on tumor type and location

Example dose:

Prostate:	74 Gy (external) up to 200 Gy (internal, ¹²⁵ I)		
Glioblastoma:	50 Gy		
Melanoma:	30 Gy		
TBI:	12 Gy		
Fatal:	4 Gy (50% of patients)		

Example dose:

Prostate:	74 Gy (external) up to 200 Gy (internal, ¹²⁵ I)		
Glioblastoma:	50 Gy		
Melanoma:	30 Gy		
TBI:	12 Gy		
Fatal:	4 Gy (50% of patients)		

Limit the toxic effects by **hyperfractionation**

Radiation treatment

DNA damage

Linear Energy Transfer (LET) dE/dl in keV/ μ m

→ Differs per particle type (higher in **heavy charged particles**)

Radiation treatment

DNA damage

Linear Energy transfer (LET) dE/dl in keV/um

→ Differs per particle type (higher in **heavy charged particles**)

	Direct damage	VS	Indirect damage
	Direct ionization		Production of free
	of target		radicals
γ/e⁻	~ 1/3		$\sim 2/3$
p ⁺ /C/	predominant		

'Regular' treatment: linac

'Regular' treatment: linac

Multileaf collimator

'Regular' treatment: linac

'Regular' treatment: dose distributions

Intensity Modulated Radiotherapy

Zelig Tochner, PTCOG 57

'Regular' treatment: dose distributions

Intensity Modulated Radiotherapy

improvement

Zelig Tochner, PTCOG 57

Dose Volume Histogram

Before treatment

Most used: Computed Tomography (CT)

Better: Magnetic Resonance Imaging (MRI)

Before treatment

Most used: Computed Tomography (CT) Better: Magnetic Resonance Imaging (MRI)

During treatment

Planar X-Ray: kilovolt or megavolt Cone-beam CT

Before treatment

Most used: Computed Tomography (CT) Better: Magnetic Resonance Imaging (MRI)

During treatment

Planar X-Ray: kilovolt or megavolt Cone-beam CT GTV

CBCT

Image guided: MR-Linac

Integration of a 1.5T MRI with a linear accelerator

Joris Hartman

Nikhef colloquium, 12-04-2019

II. Proton therapy: what?

Wilson RR. Radiological use of fast protons. Radiology. 1946 Nov;47(5):487-91.

"These properties make it possible to irradiate intensely a strictly localized region within the body"

Wilson RR. Radiological use of fast protons. Radiology. 1946 Nov;47(5):487-91.

1946: Idea

1954: First treatment

2018: First in NL

"These properties make it possible to irradiate intensely a strictly localized region within the body"

Wilson RR. Radiological use of fast protons. Radiology. 1946 Nov;47(5):487-91.

Stopping power

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

Stopping power

Stopping power

depth

H. Paganetti "Proton Therapy Physics" Taylor & Francis / CRC Press

Single beam = **pencil beam**

Clinical energies: 70 – 250 MeV

Energy determines range, can only deliver high dose to small volume

Combination of 100's to 1000's of pencil beams used in a treatment plan

Higher energy (range) Increased range straggling

Higher energy (range) Increased range straggling

Range straggling

For water (in cm): $\sigma \approx 0.012 R_0^{0.935} \approx 4.31 \times 10^{-5} E_0^{1.636}$

Higher energy (range) Increased range straggling

Range straggling

For water (in cm): $\sigma \approx 0.012 R_0^{0.935} \approx 4.31 \times 10^{-5} E_0^{1.636}$

@ 200 MeV, $\sigma = 2.5$ mm

81.4 (outer blue), 100.9 (middle orange), and 219.3 (inner yellow) MeV in a water phantom at 2 cm depth

E (MeV)	σ (mm)	FWHM (mm)
72.5	14.91	35.12
151.0	7.60	17.90
221.8	5.57	13.11

For the MD Anderson Proton Therapy Center, Houston, Texas (Hitachi Synchrotron)

81.4 (outer blue), 100.9 (middle orange), and 219.3 (inner yellow) MeV in a water phantom at 2 cm depth

E (MeV)	σ (mm)	FWHM (mm)
72.5	14.91	35.12
151.0	7.60	17.90
221.8	5.57	13.11

For the MD Anderson Proton Therapy Center, Houston, Texas (Hitachi Synchrotron)

Not really small pencils

Ideal

E = 150 MeV, simulated in water phantom

Ideal

E = 150 MeV, simulated in water phantom

40 -0.8 20 -- 0.6 (Em) x - 0.4 -20 - 0.2 -40 -50 100 150 200 z (mm)

Realistic

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

Material!

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

Material!

Large influence on stopping power

Lot of unknows...

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

Material!

Large influence on stopping power

Lot of unknows...

What is the composition of human tissue?

$$S \equiv -\frac{\mathrm{d}E}{\mathrm{d}x} = C_1 \frac{Z}{A} \frac{1}{\beta^2} \left(\ln \frac{C_2 \beta^2}{I(1-\beta^2)} - \beta^2 \right)$$

For water, we assume I = 75 eV… or 78 eV (at least between 68 and 82 eV)

What is the composition of human tissue?

Large influence on stopping power

Lot of unknows...

Material!

Proton therapy: what?

Use of protons to deliver radiation dose Bragg peak: high dose in small volume

Pencil beams to deliver dose Size limited by physics

Knowlegde of body materials crucial Lot of unknowns

III. Proton therapy: why?

Zelig Tochner, PTCOG 57

Lot of dose in healthy tissue = BAD

Zelig Tochner, PTCOG 57

Protons: no exit dose!

Combine multiple pencil beams, create a Spread-out Bragg Peak (SOBP)

Protons

Protons

IMRT

Less dose in healthy tissue

= GOOD

Protons

IMRT

Less dose in healthy tissue = GOOD

(unfortunately, bad *clinical* example, don't do this)

Lower integral dose

Better example: pediatrics

Lower integral dose, less toxicity and **less secondary cancer**

Lower integral dose

T. DeLaney and R. Haas, Innovative radiotherapy of sarcoma: Proton beam radiation

Joris Hartman

Bussiere MR, Adams JA. **Treatment planning for conformal proton radiation therapy.** Technology in Cancer Research & Treatment 2:389-399. 2003

Bussiere MR, Adams JA. **Treatment planning for conformal proton radiation therapy.** Technology in Cancer Research & Treatment 2:389-399. 2003

Intensity Modulated Proton Therapy for Head and Neck Tumors: **Gilding the Lily or Holy Grail?**

Quality of Life and Value Considerations in Head and Neck Proton Beam Therapy: **The Holy Grail at Last, or the Quest Continues**?

Relative Biological Effectiveness (RBE)

RBE

... but this value is far from constant

Francesco Tommasino and Marco Durante, Proton Radiobiology, Cancers 2015

Joris Hartman

RBE

Francesco Tommasino and Marco Durante, Proton Radiobiology, Cancers 2015

Joris Hartman

Proton therapy: why?

Less integral dose but, not always best option

Less secondary cancers especially in, for example, pediatrics

Higher RBE but not completely understood

I. Planning

- I. Planning
- II. Production of protons

- I. Planning
- II. Production of protons
- III. Transport of protons

- I. Planning
- II. Production of protons
- III. Transport of protons
- IV. Delivery of protons to patient

Dedicated treatment planning software

Still mainly based on **analytical** beam models

Spots are determined, optimization based on goals:

- a) High, uniform dose to target
- b) Low dose to organs at risk, based on sensitivity of OAR

Number of fields (and angles) usually not optimized

Usually 2-5 fields per treatment plan

Based on CT and/or MR imaging

Planning

Planning

Joris Hartman

Production of protons

(Synchro)cyclotron

or synchrotron

Production of protons: cyclotron

Energy usually around 250 MeV

Energy selection with degrader

Continuous beam

Production of protons: cyclotron

Energy usually around 250 MeV

Energy selection with degrader

Continuous beam

Activation

(no carbon yet)

Joris Hartman

Nikhef colloquium, 12-04-2019

Joris Hartman

Production of protons: synchrotron

Adjustable energy

Low activation

(Carbon) ions

Limited intensity (average)

Large/expensive

Joris Hartman

Production of protons

Carbon Multiple particles Size (diameter) Intensity Fast E scanning Time structure Spot scanning

Continuous SS

Cyclotron

In development In development 3.5 - 5 m (SC < 2 m)Adjustable (SC: low) Degrader (activation) Cont (SC: pulsed) Yes

– Yes (SC: no)

Synchrotron Easy Easy 6 – 8 m (¹²C: 25m) Limited (per spill)

Next spill

Dead time

Yes

– Difficult

Transport of protons

Usually a single accelerator, shared by several gantries

Nikhef colloquium, 12-04-2019

Joris Hartman

Transport of protons

But systems with accelerator on gantry exist

Mevion S250

Delivery of protons

Delivery, per field, of planned dose to target

Timing is dependent on a lot of parameters

- i. Target size
- ii. Number of spots per field
- iii. Dose to be delivered
- iv. Proton current
- V. ...

In the order of a few Gy per minute

Delivery of protons

Dose distribution determined by **distal edge**.

Dose distribution determined by individual Bragg Peaks.

Delivery of protons

Dose distribution determined by **distal edge**.

Dose distribution determined by individual Bragg Peaks.

Delivery of protons: passive scattering

Time intensive

Patient specific

Activation

Non-optimal dose distribution

Becoming obsolete

Delivery of protons: scanning

Less preparation

Not patient specific

Best dose distribution

All new machines

Delivery of protons: scattering vs scanning

Passive scattering

3-field pencil beam scanning

Tony Lomax

Joris Hartman

Jay Flanz

Joris Hartman

i. Single Field Uniform Dose Optimization all fields deliver a uniform dose to the target

- i. Single Field Uniform Dose Optimization all fields deliver a uniform dose to the target
- ii. Multi Field Optimization every field may not be uniform, combined dose is

- i. Single Field Uniform Dose Optimization all fields deliver a uniform dose to the target
- ii. Multi Field Optimization every field may not be uniform, combined dose is

iii. Distal edge tracking Delivery to distal edge

loquium, 12-04-2019

Joris Hartman

Proton therapy: how?

Planning can be improved

still analytical and not all parameters are optimized

Cyclotron or synchrotron for protons no 'best' option

Different techniques for delivery scanning is new standard

V. Challenges and developments

Uncertainties

Larger effect for protons

Knopf and Lomax

Uncertainties

- I. What tissue? Composition? Imaging!
- II. Motion

Compensation by breathold, repainting ('averaging'), gating, robust planning, tracking, so **imaging**!

III. Anatomical changes (tumor shrinkage, cavity filling)Compensation by replanning, imaging!

Current imaging

CT has problems

- i. Low resolution
- ii. Low soft-tissue contrast
- iii. Ionizing radiation

Current imaging

CT has problems

- i. Low resolution
- ii. Low soft-tissue contrast
- iii. Ionizing radiation

MRI had advantages

- i. Superior contrast
- ii. Good resolution
- iii. No ionizing radiation

Current imaging

CT has problems

- i. Low resolution
- ii. Low soft-tissue contrast
- iii. Ionizing radiation

MRI had advantages

- i. Superior contrast
- ii. Good resolution
- iii. No ionizing radiation

and problems

- i. Relative values
- ii. Not easy to get stopping powers
- iii. Complicated technique

Based on MR-Linac, integrated MR - proton therapy system

Original philips design

MRI-guidance

Based on MR-Linac, integrated MR - proton therapy system

Problems:

- A. Magnetic field effects on the Bragg Peak
 - i. Inside MR
 - ii. Fringe fields
- B. Steering magnets close to MR magnet?
- C. How do you get the protons inside MR?

Joris Hartman

Original philips design

MRI-guidance

Based on MR-Linac, integrated MR - proton therapy system

Problems:

- A. Magnetic field effects on the Bragg Peak
 - i. Inside MR
 - ii. Fringe fields
- B. Steering magnets close to MR magnet?
- C. How do you get the protons inside MR?

Original philips design

MRI-guidance: field effects

Curvature

MRI-guidance: field effects

Curvature

So Bragg peak ends up at other location

MRI-guidance: field effects

Curvature

So Bragg peak ends up at other location

Of course well known physics

But.. not straightforward to determine position in tissue, espescially with analytical methods

But.. not straightforward to determine position in tissue, espescially with analytical methods

Joris Hartman

Joris Hartman

Joris Hartman

Joris Hartman

Joris Hartman

No field

Difference

Joris Hartman

Advantages

- i. Monte Carlo gives highest precision
- ii. You get magnetic field 'for free'

Advantages

- i. Monte Carlo gives highest precision
- ii. You get magnetic field 'for free'

Disadvantage: slow...

Advantages

- i. Monte Carlo gives highest precision
- ii. You get magnetic field 'for free'

Disadvantage: slow...

Solutions

- i. GPU MC
- ii. Simplification

Joris Hartman

Magnetic fields: beam entrance

Magnetic fields: complicated

Joris Hartman

Magnetic fields: complicated

Heavy particles

A. Kohler

Heavy particles

A. Kohler

Joris Hartman

Carbon gantry HIT (Heidelberg)

- Only in the world
- 25 x 13 meters
- 670 tons
- 360° rotation
- 425 MeV/u

Carbon gantry HIT (Heidelberg)

- Only in the world
- 25 x 13 meters
- 670 tons
- 360° rotation
- 425 MeV/u

Carbon gantry HIT (Heidelberg)

- Only in the world
- 25 x 13 meters
- 670 tons
- 360° rotation
- 425 MeV/u

Other developments

Proton imaging

In-vivo range verification

Further focus on particle therapy (with immunotherapy)

More compact accelerators

Other developments

Proton imaging

In-vivo range verification

Further focus on particle therapy (with immunotherapy)

More compact accelerators

And more... a lot of research is going on!

Joris Hartman

Questions?