Exercises Cosmology

March 2019

1. The 3-D unit sphere can be embedded in 4 dimensional flat space and is defined by the equation

$$
x^{2}+y^{2}+z^{2}+w^{2}=1
$$

The line element in 4-D flat space is

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}+d w^{2}
$$

a. Define the 3-D notation $\mathbf{r}=(x, y, z)$ and derive the line element measuring local distances between points on the sphere:

$$
d s^{2}=d \mathbf{r}^{2}+\frac{\mathbf{r} \cdot d \mathbf{r}}{1-\mathbf{r}^{2}}
$$

b. Show that in 3-D polar co-ordinates

$$
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta
$$

the line-element on the sphere can be rewritten as

$$
d s^{2}=\frac{d r^{2}}{1-r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

c. Do the same exercise for the 3-D unit hyperboloid defined by

$$
x^{2}+y^{2}+z^{2}-w^{2}=-1
$$

and derive that in 3-D polar co-ordinates

$$
d s^{2}=\frac{d r^{2}}{1+r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

2. The fundamental equations of cosmology for a homogeneous and isotropic universe are

$$
\begin{equation*}
\frac{d\left(\varepsilon a^{3}\right)}{d t}+p \frac{d a^{3}}{d t}=0, \quad H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G \varepsilon}{3}-\frac{k}{a^{2}} \tag{1}
\end{equation*}
$$

with $k=0, \pm 1$.
a. Take an equation of state of the form

$$
p=w \varepsilon,
$$

with w a constant. show that

$$
\varepsilon a^{3(1+w)}=\mathrm{constant}
$$

b. In a spatially flat universe $(k=0)$, derive that for $w \neq-1$:

$$
a(t)=\text { constant } \times t^{2 /[3(1+w)]}
$$

provided we take the initial condition $a(0)=0$; and for $w=-1$:

$$
a(t)=\text { constant } \times e^{H t}
$$

3. From eqn. (1) and the definition of the critical energy density

$$
\varepsilon_{c} \equiv \frac{3 H^{2}}{8 \pi G}
$$

show that a universe filled with radiation, cold matter an vacuum energy has an energy balance that can be written as

$$
\frac{\varepsilon_{c}}{\varepsilon_{c 0}}=\frac{H^{2}}{H_{0}^{2}}=\Omega_{r} x^{-4}+\Omega_{m} x^{-3}+\Omega_{k} x^{-2}+\Omega_{v}
$$

where $x=a / a_{0}$ and

$$
\Omega_{r}=\frac{\varepsilon_{r 0}}{\varepsilon_{c 0}}, \quad \Omega_{m}=\frac{\varepsilon_{m 0}}{\varepsilon_{c 0}}, \quad \Omega_{c}=\frac{\varepsilon_{v 0}}{\varepsilon_{c 0}}, \quad \Omega_{k}=-\frac{k}{a_{0}^{2} H_{0}^{2}}
$$

