HIGGS FACTORIES

THREE YEARS ALREADY

http://www.clowler.com/locute/physicth-

The Economist

JULY 7TH-13TH 2012

In praise of charter schools Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

A giant leap for science

Economist.com

Finding the Higgs boson

THE LHC is a Higgs Factory

several Million Higgs already produced – more than most Higgs factory projects. 15 Higgs bosons / minute – and more to come (gain factor 3 going to 13 TeV)

Difficulties: several production mechanisms to disentangle and significant systematics in the production cross-sections σ_{prod} . Challenge will be to reduce systematics by measuring related processes.

 $\sigma_{i \rightarrow f} \circ \sigma_{prod} \propto \sigma_{prod} \frac{(g_{Hi})^2 (g_{Hf})^2}{\Gamma_H}$ extract couplings to anything you can see or produce from if i=f as in WZ with H \rightarrow ZZ \rightarrow absolute normalization

HF2012 summary Physics-- Alain Blondel 16-11-2012 Fermilab

THE LHC is a Higgs Factory

➡ Fantastic progress in last 3 years

- Observation in three boson channels
- Evidence for fermion couplings
- Precision mass measurements: 125.09 ± 0.24 GeV (ATLAS+CMS)
- Spin/parity determined
- Higgs total width from off-shell production
- First results on differential cross sections
- New particle looks more and more like the SM Higgs boson
 - No evidence for non-SM decays
 - No evidence for additional Higgs bosons

THE LHC(13) and HL-LHC as Higgs Factory

Results from 13 TeV run will be very instructive from this point of view!

Alain Blondel TLEP Warsaw 2013-10-01

THE STANDARD MODEL CONSTRUCTION

Alain Blondel TLEP Warsaw 2013-10-01

What now?

Question 1: is the H(125) <u>The</u> Higgs boson?

- -- do/will we know well enough from LHC?
- -- how precisely do we need to know before we are convinced?

Question 2: is the SM closed? or is there something else in sight?

- -- known unknown facts need answer:
 - neutrino masses, (Dirac, and/or Majorana, sterile and right handed, CPV, MH..) non baryonic dark matter,
 - Accelerated expansion of the Universe
 - Matter-antimatter Asymmetry
- -- can the Higgs be used as search tool for new physics that answer these questions?
- -- precision measurements sensitive to the existence of new particles through loops?
- -- prepare highest possible reach
- -- how precisely do we need to know before we are convinced?

Question 3: which Higgs factories ?

- -- HL-LHC
- -- (V)HE-LHC
- -- mu+mu-
- -- gamma-gamma
- -- e+e- : linear (ILC or CLIC?) or circular (TLEP)

A: As precisely as we possibly can

Alain Blondel TLEP Warsaw 2013-10-01

Recommendations concerning Higgs Factories

European Strategy:

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded. (up to which energy?)

US P5 Report

An e+e- collider can provide the next outstanding opportunity [after LHC/HL-LHC] to investigate the properties of the Higgs in detail. [...] the physics case is extremely strong.

LINEAR or CIRCULAR?

At the time of the definition of these strategies, ILC was proposed by Japanese physicists to their governments and welcoming statements were added. Situation has been reviewed in Japan since. Likely to wait for results from LHC13. Issues of physics, manpower, cost, spinoffs, have been raised.

4/23/15

not too scale

CLIC Layout at 3 TeV

LEP3, CEPC and TLEP/FCC-ee

Circular e+e- colliders designed to study the Higgs boson but also Z,W (top) factories

AB, F. Zimmermann Dec. 13 2011

Alain Blondel TLEP Warsaw 2013-10-01

Original motivation (end 2011): now that m_H and m_top are known, explore EW region with a high precision, <u>affordable</u>, high luminosity machine

→ Discovery of New Physics in rare phenomena or precision measurements

ILC studies \rightarrow need increase over LEP 2 (average) luminosity by a factor 1000 How can one do that without exploding the power bill?

Answer is in the B-factory design: a low vertical emittance ring with higher intrinsic luminosity, and small β_{γ}^{*} (1mm vs 5cm at LEP) 50 Electrons and positrons have a much higher chance of interacting \rightarrow much shorter lifetime (few minutes) \rightarrow top up continuously with booster ==> increase operation efficiency 5 Increase SR beam power to 50MW/beam 4

1000

at ZH threshold in LEP/LHC tunnel X 4 in FCC tunnel X 4 interaction points EXCITING!

SuperKEKB – TLEP demonstrator!

Alain Blondel FCC Future Circular Colliders

Toping up ensures constant current, settings, etc... and greater reproducibility of system

LEP2 in 2000 (12th year!): fastest possible turnaround but average luminosity ~ 0.2 peak luminosity I HER I LER Luminosity Spec Lum E HER E LER E CM 8985 10589 1682.172553.95 9008 3.61 3120 N#10##30 / 10##30/Sec mA MoV MeV MeV nA##2/Sec HER N Buckets / Pattern LER N Buckets / Pattern 1722 0=1:3442=0.96:0:3442:2=r 1722 0:3442:2 29.02 /pb Last Owl/Day/Swing/24hr 293.7 303.3 313.7 (910.7 Shift: 10942 Peak Luminosities 11086 11137 11149 PEP-II Luminosity and Currents 12000 3000 10000 2250 9000 6000 1500 4000 780 2000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time of Dav 07/03/2006 09:20:21

B factory in 2006 with toping up average luminosity ≈ peak luminosity

The Higgs at a e+e- Collider has been studied for many years (Tesla, ILC, CLIC)

At a given Ecm and Luminosity, the physics has marginally to do with the fact that the collider is *linear or circular*

--specifics:

- -- e- polarization is easy at the source in LC, (not critical for Higgs)
- -- EM backgrounds from beam disruption at LC
- -- knowledge and definition of beam energy at CC
- -- one IP (LC) vs several IPs (CC)
- -- Dependence of Luminosity on Center-of-mass energy \rightarrow

-- detectors are likely to be very similar

Overlap in Higgs/top region, but differences and complementarities between linear and circular machines: Circ: High luminosity, experimental environment (up to 4 IP), E_{CM} calibration Linear: higher energy reach, longitudinal beam polarization

FCC-ee: PARAMETERS & STATISTICS ($e^+e^- \rightarrow ZH$, $e^+e^- \rightarrow W^+W^-$, $e^+e^- \rightarrow Z$, $[e^+e^- \rightarrow t\bar{t}]$)

	TLEP-4 IP, per IP	statistics
circumference	80 km	
max beam energy	175 GeV	
no. of IPs	4	
Luminosity/IP at 350 GeV c.m.	$1.3x10^{34}cm^{-2}s^{-1}$	10 ⁶ X tt pairs
Luminosity/IP at 240 GeV c.m.	6.0x10 ³⁴ cm ⁻² s ⁻¹	2 10 ⁶ ZH evts
Luminosity/IP at 160 GeV c.m.	1.6x10 ³⁵ cm ⁻² s ⁻¹	10 ⁸ WW pairs
Luminosity/IP at 90 GeV c.m.	2. 10 ^{35/36} cm ⁻² s ⁻¹	10 ^{12/13} Z
		decays

at the Z pole repeat the LEP physics programme in a few minutes...

RECEIVED: September 23, 2013 ACCEPTED: December 25, 2013 PUBLISHED: January 29, 2014

First look at the physics case of TLEP

PUBLISHED

The TLEP Design Study Working Group

M. Bicer.^a H. Duran Yildiz,^b I. Yildiz,^c G. Coignet,^d M. Delmastro,^d T. Alexopoulos,^e C. Grojean, ^f S. Antusch,^g T. Sen,^h H.-J. He,ⁱ K. Potamianos,^j S. Haug,^k A. Moreno,¹ A. Heister,^m V. Sanz,ⁿ G. Gomez-Ceballos,^o M. Klute,^o M. Zanetti,^o L.-T. Wang,^p M. Dam,^q C. Boehm,^r N. Glover,^r F. Krauss,^r A. Lenz,^r M. Syphers,^s C. Leonidopoulos,^t V. Ciulli,^u P. Lenzi,^u G. Sguazzoni,^u M. Antonelli,^v M. Boscolo,^v U. Dosselli,^v O. Frasciello,^v C. Milardi,^v G. Venanzoni,^v M. Zobov,^v J. van der Bij,^w M. de Gruttola,^x D.-W. Kim,^y M. Bachtis,^z A. Butterworth,^z C. Bernet,^z C. Botta,^z F. Carminati,^z A. David,^z L. Deniau,^z D. d'Enterria,^z G. Ganis,^z B. Goddard,^z G. Giudice,^z P. Janot,^z J. M. Jowett,^z C. Lourenço,^z L. Malgeri,^z E. Meschi,^z F. Moortgat.² P. Musella.² J. A. Osborne.² L. Perrozzi.² M. Pierini.² L. Rinolfi.² A. de Roeck,^z J. Rojo,^z G. Roy,^z A. Sciabà,^z A. Valassi,^z C.S. Waaijer,^z J. Wenninger,^z H. Woehri,^z F. Zimmermann,^z A. Blondel,^{aa} M. Koratzinos,^{aa} P. Mermod,^{aa} Y. Onel,^{ab} R. Talman,^{ac} E. Castaneda Miranda,^{ad} E. Bulyak,^{ae} D. Porsuk, af D. Kovalskyi, ag S. Padhi, ag P. Faccioli, ah J. R. Ellis, ai M. Campanelli, aj Y. Bai,^{ak} M. Chamizo,^{al} R.B. Appleby,^{am} H. Owen,^{am} H. Maury Cuna,^{an} C. Gracios, ao G. A. Munoz-Hernandez, ao L. Trentadue, ap E. Torrente-Lujan, aq S. Wang, ar D. Bertsche, as A. Gramolin, at V. Telnov, at M. Kado, au P. Petroff, au P. Azzi, av O. Nicrosini, aw F. Piccinini, aw G. Montagna, ax F. Kapusta, ay S. Laplace, ay W. da Silva,^{ay} N. Gizani,^{az} N. Craig,^{ba} T. Han,^{bb} C. Luci,^{bc} B. Mele,^{bc} L. Silvestrini,^{bc} M. Ciuchini,^{bd} R. Cakir,^{be} R. Aleksan,^{bf} F. Couderc,^{bf} S. Ganjour,^{bf} E. Lancon,^{bf} E. Locci, bf P. Schwemling, bf M. Spiro, bf C. Tanguy, bf J. Zinn-Justin, bf S. Moretti, bg M. Kikuchi,^{bh} H. Koiso,^{bh} K. Ohmi,^{bh} K. Oide,^{bh} G. Pauletta,^{bi} R. Ruiz de Austri,^{bj} M. Gouzevitch^{bk} and S. Chattopadhyay^{bl}

BEAMSTRAHLUNG

Beamstrahlung @TLEP is benign: particles are either lost or recycled on a synchrotron oscillation

 → some increase of energy spread but no change of average energy
 Little EM background in the experiment.

Alain Blondel TLEP Warsaw 2013-10-01

Beam polarization and E-calibration @ TLEP

Precise meast of E_{beam} by resonant depolarization ~100 keV each time the meast is made

At LEP transverse polarization was achieved routinely at Z peak. instrumental in 10⁻³ measurement of the Z width in 1993 led to prediction of top quark mass (179+- 20 GeV) in March 1994

Polarization in collisions was observed (40% at BBTS = 0.04)

At LEP beam energy spread destroyed polarization above 60 GeV $\sigma_E \propto E^2/\sqrt{\rho} \Rightarrow$ At TLEP transverse polarization up to at least 80 GeV to go to higher energies requires spin rotators and siberian snake

TLEP: use 'single' bunches to measure the beam energy continuously no interpolation errors due to tides, ground motion or trains etc...

<< 100 keV beam energy calibration around Z peak and W pair threshold. Δm_Z ~0.1 MeV, $\Delta \Gamma_Z$ ~0.1 MeV, Δm_W ~ 0.5 MeV Alain Blondel Higgs and Beyond June 2013 Sendai

First look at the physics case of TLEP, arXiv:1308.6176v3 scoped the precision measurements:

- -- Model independent Higgs couplings and invisible width
- -- Z mass (0.1 MeV), W mass (0.5 MeV) top mass (~10 MeV), $sin_W^{2}eff$, R_b , N_v etc...
 - ➔ powerful exploration of new physics with EW couplings up to very high masses

→ importance of luminosity and E_{beam} calibration by beam depolarization up to W pair So far: simulations with CMS detector (Higgs) -- or «just» paper studies.

Snapshot of novelties appeared in recent workshops

Higher luminosity prospects at W, Z with crab-waist

- → sensitivity to right handed (sterile) neutrinos
- → s-channel e+e- → H(125.2) production almost possible (→ monochromators?)
- → rare Higgs Z W and top decays, FCNCs etc...
- → discovery potential for very small couplings
- → precision event generators (Jadach et al)

Higgs production mechanism

"higgstrahlung" process close to threshold
Production xsection has a maximum at near threshold ~200 fb
10³⁴/cm²/s → 20'000 HZ events per year.

Z – tagging by missing mass

For a Higgs of 125GeV, a centre of mass energy of 240GeV is sufficient → kinematical constraint near threshold for high precision in mass, width, selection purity

Alain Blondel TLEP Warsaw 2013-10-01

Figure 1-4. Measurement precision on κ_b , κ_τ , and κ_t measured both directly via $t\bar{t}H$ and through global fits at different facilities.

Alaın Blondel TLEP Warsaw 2013-10-01

Figure 1-3. Measurement precision on κ_W , κ_Z , κ_γ , and κ_g at different facilities.

Performance Comparison

 $\sigma_{HZ} \propto g_{HZZ}^2$, and $\sigma_{HZ,WW \to H} \times \text{BR}(H \to XX) \propto g_{HZZ,HWW}^2 g_{HXX}^2 / \Gamma_H$

- Same conclusion when $\Gamma_{\rm H}$ is a free parameter in the fit

Expected precision on the total width

μ+μ-	ILC350	ILC1000	TLEP240	TLEP350
5%	5%	3%	2%	1%

TLEP : sub-percent precision, BSM Physics sensitivity beyond several TeV

C HOW CE NE

Alain Blondel TLEP Warsaw 2013-10-01

very accurate precision on threshold cross-section sensitive to loop corrections

- ➡ Very large datasets at high energy allow extreme precision g_{ZH} measurements
- Indirect and model-dependent probe of Higgs self-coupling
- Note, the time axis is missing from the plot

Alain Blondel Higgs Factories NIKHEF 2015-04-17

19

First generation couplings

➡ s-channel Higgs production

- Unique opportunity for measurement close to SM sensitivity
- Highly challenging; $\sigma(ee \rightarrow H) = 1.6$ fb; 7 Higgs decay channels studied

➡ Work in progress

- How large are loop induced corrections? How large are BSM effects?
- Do we need an energy scan to find the Higgs?
- How much luminosity will be available for this measurement? By how much is the luminosity reduced by monochromators?

Exclusive Higgs boson decays

- First and second generation couplings accessible
 - Study of ργ channel most promising; expect ~50 evts.
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

 $\frac{{\rm BR}_{h\to\rho\gamma}}{{\rm BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9\pm 0.15)\kappa_{\gamma} - 0.24\bar{\kappa}_u - 0.12\bar{\kappa}_d \right]}{0.57\bar{\kappa}_b^2} \times 10^{-5}$

- Also interesting to FCC-hh program
- Alternative H→MV decays should be studied (V= γ, W, and Z)

CP Measurements

- CP violation can be studied by searching for CP-odd contributions; CP-even already established
- → Snowmass Higgs paper <u>http://arxiv.org/abs/</u>
 <u>1310.8361</u>
- ➡ Higgs to Tau decays of interest
- → More detailed presentation by Felix Yu
 http://arxiv.org/abs/1308.1094

 $\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + i\gamma_5\sin\Delta)f$

Colliders	LHC	HL-LHC	$\mathrm{FCCee}~(1~\mathrm{ab^{-1}})$	FCCee (5 ab^{-1})	FCCee (10 ab^{-1})
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

Rare and Exotics Higgs Bosons

- 2,000,000 ZH events allow for detailed studies of rare and exotic decays
 - requires hadronic and invisible Z decays
 - set requirements for FCC-ee detector
- ➡ Coupling measurements have sensitivity to BSM decays
- Dedicated studies using specific final states improve sensitivity
- Example: Higgs to invisible, flavor violating Higgs, and many more
- ➡ Potential at the LHC (and HL-LHC) currently not fully explored
- Modes with of limited LHC sensitivity are of particular importance to FCC-ee program
 - ourrently under study
- FCC-ee might allow precision measurement of exotic Higgs decays
- Detailed discussion of exotic Higgs decays at <u>Phys. Rev. D 90</u>, <u>075004 (2014)</u> More from David Curtin

```
h \rightarrow \not \!\!\! E_T
 h \rightarrow 4b
h \rightarrow 2b2\tau
h \rightarrow 2b2\mu
h \rightarrow 4\tau, 2\tau 2\mu
h \rightarrow 4i
h \rightarrow 2\gamma 2i
h \rightarrow 4\gamma
h \rightarrow ZZ_{D}, Za \rightarrow 4\ell
h \rightarrow Z_D Z_D \rightarrow 4\ell'
h \rightarrow \gamma + \mathcal{K}_{T}
h \rightarrow 2\gamma + \varkappa_{T}
h \rightarrow 4 ISOLATED LEPTONS + \mathcal{L}_{\infty}
h \rightarrow 2\ell + \not\!\!\!/_T
 h \rightarrow ONE \ LEPTON-JET + X
h \rightarrow TWO \ LEPTON-JETS + X
h \rightarrow b\bar{b} + K_{T}
h \rightarrow \tau^+ \tau^- + \not\!\!\! Z_{\rm T}
```

Table 1-16. Uncertainties on coupling scaling factors as determined in a completely model-independent fit for different e^+e^- facilities. Precisions reported in a given column include in the fit all measurements at lower energies at the same facility, and note that the model independence requires the measurement of the recoil HZ process at lower energies. [‡]ILC luminosity upgrade assumes an extended running period on top of the low luminosity program and cannot be directly compared to TLEP and CLIC numbers without accounting for the additional running period. ILC numbers include a 0.5% theory uncertainty. For invisible decays of the Higgs, the number quoted is the 95% confidence upper limit on the branching ratio.

Facility		ILC		ILC(LumiUp)	TLE	P (4 IP)		CLIC	
\sqrt{s} (GeV)	250	500	1000	250/500/1000	240	350	350	1400	3000
$\int \mathcal{L} dt \ (\text{fb}^{-1})$	250	+500	+1000	$1150 + 1600 + 2500^{\ddagger}$	10000	+2600	500	+1500	+2000
$P(e^-,e^+)$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)	(0, 0)	(0, 0)	(-0.8, 0)	(-0.8, 0)	(-0.8, 0)
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%
κ_{γ}	18%	8.4%	4.0%	2.4%	1.7%	1.5%	-	5.9%	${<}5.9\%$
κ_g	6.4%	2.3%	1.6%	0.9%	1.1%	0.8%	4.1%	2.3%	2.2%
κ_W	4.9%	1.2%	1.2%	0.6%	0.85%	0.19%	2.6%	2.1%	2.1%
κ_Z	1.3%	1.0%	1.0%	0.5%	0.16%	0.15%	2.1%	2.1%	2.1%
κ_{μ}	91%	91%	16%	10%	6.4%	6.2%	-	11%	5.6%
$\kappa_{ au}$	5.8%	2.4%	1.8%	1.0%	0.94%	0.54%	4.0%	2.5%	$<\!\!2.5\%$
κ_c	6.8%	2.8%	1.8%	1.1%	1.0%	0.71%	3.8%	2.4%	2.2%
κ_b	5.3%	1.7%	1.3%	0.8%	0.88%	0.42%	2.8%	2.2%	2.1%
κ_t	-	14%	3.2%	2.0%	_	13%	-	4.5%	$<\!\!4.5\%$
$BR_{ m inv}$	0.9%	< 0.9%	< 0.9%	0.4%	0.19%	< 0.19%			
		the							
		10B\$ _C							5 N 5 5
	Ala	in Blondel II.	UP Warsaw	2013-10-01					I ST S

possible long-term strategy

& e[±] (120 GeV)–p (7, 16 & 50 TeV) collisions ([(V)HE-]TLHeC) ≥60 years of e⁺e⁻, pp, ep/A physics at highest energy Alain Blondel Higgs Factories NIKHEF 2015-04-17

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → defining infrastructure

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- e⁺e⁻ collider (*FCC-ee*) as potential intermediate step ECM=90-400 GeV
- p-e (FCC-he) option
- 80-100 km infrastructure ifr^{3/}Geneva area Alain Blondel FCC Future Circular Collider KHEF 2015-04-17

FCC-hh parameters – starting point

Energy **Dipole field** Circumference **#IPs** Luminosity/IP_{main} **Stored beam energy** Synchrotron radiation Long. emit damping time **Bunch spacing** Bunch population (25 ns) Transverse emittance #bunches Beam-beam tune shift β*

100 TeV c.m. ~ 16 T (Nb₃Sn), [20 T option HTS] ~ 100 km 2 main (tune shift) + 2 5 10³⁴ [2.5x10³⁵] cm⁻²s⁻¹ 8.2 GJ/beam **26 W/m/aperture** (filling fact. ~78% in arc) 0.5 h 25 ns [5 ns option] already available 1x10¹¹ p from SPS for 25 ns 2.2 micron normalized 10500 0.01 (total) 1.1 m (HL-LHC: 0.15 m)

Ongoing discussion : should we go to 10³⁶ cm⁻²s⁻¹?

Future Circular Collider Study Michael Benedikt FCC Kick-Off 2014

parameter	LHC	HL-LHC	FCC-hh
c.m. energy [TeV]		14ers	100
dipole magnet field [T]	naram	ele 2002,	16 (20)
circumference [km] haseline	NO. 13	34240	100 (83)
luminosity [12CG-ha] FDM		01 5	5 [→20?]
bunch spacing [rshed In CC	SPLO	25	25 {5}
events / bunch crossiFeCC-AC	minary	135	170 {34}
bunch population [10 ¹¹] - pre-	1.15	2.2	1 {0.2}
norm. transv <mark>erse emitt. [µ</mark> m]	3.75	2.5	2.2 {0.44}
IP beta-function [m]	0.55	0.15	1.1
IP beam size [µm]	16.7	7.1	6.8 {3}
synchrotron rad. [W/m/aperture]	0.17	0.33	28 (44)
critical energy [keV]	0	.044	4.3 (5.5)
total syn.rad. power [MW]	0.0072	0.0146	4.8 (5.8)
longitudinal damping time [h]	olliders	L2.9	0.54 (0.32)

FCC-hh: some design challenges

Stored beam energy: 8 GJ/beam (0.4 GJ LHC) = 16 GJ total
 → equivalent to an Airbus A380 (560 t) at full speed (850 km/h)

Collimation, beam loss control, radiation effects: very important
 Injection/dumping/beam transfer: very critical operations
 Magnet/machine protection: to be considered from early phase

.an ambitious post-LHC accelerator project at CERN"

Parameters - choices for initial machine relatively conservative

- a few more aggressive choices where cost savings balance the risks
 - --> establishing a credible baseline
- potential for evolution in performance
 - as design process incl R & D proceeds
 - as planned machine upgrade

important parameters for detectors

Energy Lumi

Laiiii

Bunch spacing Pile-up

Bunch-length % circumference filled

L * β*

transverse beam size at ip optimum run time

baseline 2014 100 TeV	considered (2015)
5 x 10 ³⁴ (p-p)	up to 2.5 x 10 ³⁵ (p-p)
3 x 10 ²⁷ (Pb-Pl	ა)
25ns	5 ns
170	34 - 340
8 cm	increased
80 %	
46m	38m
0.8m	0.3m
6.8mm	3mm
12 hrs	

93km "optimised" racetrack PRELIMINARY

Alignment	Shaft	loois	
Choose alignme	ent optio	n	
90km quasi-cir	cular	•	
Tunnel depth at	t <mark>cen</mark> tre:	236mA	SL)
Gradient Param	oters		
Azim	nuth (°):	-15	5
Slope Angle	Slope Angle x x(%):		
Slope Angle	y-y(%):	D	
	-	CAI CU	ATE
Alignment cent	re		
X: 2493923	Y:	110	5695
LHC Intersection		IP 1	IP 2
Angle		1.5	-17
Depth		542m	542m

		Shaft D	epth (m	0		Geology (m)
Sheft	Actual	Min	Mean	Max	Moraine	Molasse	Calcaire
1	200	195	197	200			
2	196	143	181	211			
З	183		184	194			
4	174	145		178			
5	299	286	311	350		325	
6	336	325	339	350			
7	374	349	377	412		256	
8	397		341				
9	155	131	145	157			
10	315	305	320	336			
11	203		202	204	122		
12	239	229	236				
Total	3014	2801	3001	3211	711	2052	217

Shaft Depths

Geology Intersected by Shafts

Alignment Profile

CERN

PH23/abrun

Alain Blondel FCC Future Circular FCC-ee Workshop Paris Oct 2014

Tunnel location: topography [1/3]

- Minimize ground coverage
 - Hydrostatic pressure for TBM tunnelling
 - Shaft depth/cost

HIGGS AT FCC-pp

Proton-proton Higgs datasets

	HL-LHC	HE-LHC	VLHC
\sqrt{s} (TeV)	14	33	100
$\int {\cal L} dt~({ m fb}^{-1})$	3000	3000	3000
$\sigma \cdot \text{BR}(pp \to HH \to bb\gamma\gamma) \text{ (fb)}$	0.089	0.545	3.73
S/\sqrt{B}	2.3	6.2	15.0
$\lambda \; ({ m stat})$	50%	20%	8%
arXiv:1310.8361			

Alain Blondel Higgs Factories NIKHEF 2015-04-17

10

➡ ... but also new measurements not possible at the LHC/HL-LHC

- Theoretical uncertainties cancel mostly
 - PDF (CTEQ 6.6) ± 0.5%
 - Missing higher orders ± 1.2%
- → One can not conclude that one can measure the cross section ratio with ~2% ($\delta\lambda_{top} \approx 1\%$) precision. More detailed studies are ongoing.

Table from D. Curtin FCC workshop, Washington, 23-27 March 2015)

Both lepton and 100 TeV pp colliders are vital for this effort!

Observables at Current + Future Colliders

- producing extra higgs states (incl. superpartners)
- Exotic Higgs Decays
- Electroweak Precision Observables
- Higgs coupling measurements
- Higgs portal direct production of new states
- Higgs self coupling measurements
- Zh cross section measurements

Higgs invisible decays

Right handed Neutrinos etc.. etc..

The numbers then (1999)

Table 9: Baseline parameters for high- and low-energy muon colliders. Higgs/year assumes a cross-section $\sigma = 5 \times 10^4$ fb; a Higgs width $\Gamma = 2.7$ MeV; 1 year = 10^7 s. From the Muon Collider Collaboration [16]

CoM energy (TeV)	3	0.4		0.1	
p energy (GeV)	16	16		16	
p/bunch	$2.5 imes 10^{13}$	$2.5 imes 10^{13}$		$5 imes 10^{13}$	
Bunches/fill	4	4		2	
Rep. rate (Hz)	15	15		15	
$1/\tau_{\mu}$ (Hz)	32	240		960	
p power (MW)	4	4		4	
μ /bunch	2×10^{12}	2×10^{12}		4×10^{12}	
μ power (MW)	28	4		1	
Wall power (MW)	204	120		81	
Collider circum. (m)	6000	1000		350	
$\langle B \rangle$ (T)	5.2	4.7		3	
$\delta p/p(\%)$	0.16	0.14	0.12	0.01	0.003
6-D $\epsilon_{6,N} \ (\pi m)^3$	$1.7 imes10^{-10}$	$1.7 imes 10^{-10}$	$1.7 imes 10^{-10}$	$1.7 imes10^{-10}$	$1.7 imes 10^{-10}$
Rms ϵ_n (π mm-mrad)	50	50	85	195	290
β^* (cm)	0.3	2.6	4.1	9.4	14.1
σ_z (cm)	0.3	2.6	4.1	9.4	14.1
$\sigma_r \text{ spot } (\mu \mathbf{m})$	3.2	26	86	196	294
σ_{θ} IP (mrad)	1.1	1.0	2.1	2.1	2.1
Tune shift	0.044	0.044	0.051	0.022	0.015
$n_{ m turns}^{ m effective}$	785	700	450	450	450
Luminosity $(cm^{-2}s^{-1})$	7×10^{34}	10^{33}	1.2×10^{32}	2.2×10^{31}	10^{31}
Higgs/year			1.9×10^3	4×10^3	3.9×10^3

Alain Blondel Higgs Factories NIKHEF 2015-04-17

$\mu^+\mu^-$ Collider vs e⁺e⁻ Collider ?

14 Nov 2012

Muon collider is the best way to reach lepton ccoliisions above 3 TeV ECM. MUCH R&D remain in cooling! Muon collider is a very pretty Higgs factory but not necessarily the one we need for H(125)

- -- if it is a single particle we will know more from the e+e- collider with ZH tag muon collider can do this but high luminosity is necessary.
- -- except ig the Higgs boson is constituted of several nearby peaks.

Alai

-- such a situation can occur in MSSM for H,A doublet with different CP parities in which case only the muon collider can isolate the two peaks.

-- neutrino factory is the ultinmate neutrino oscillation tool and a 'baby neutrino factory' nustorm is a necessary step to ensure the measurements of cross-sections needed for the long baseline search of CP violation

Fig. 39: Production cross-section of H and A via $\mu^+\mu^- \rightarrow H$, $A \rightarrow b\bar{b}$ as a function of the centre-of-mass energy for $m_A = 300 \text{ GeV}/c^2$ and $\tan \beta = 10$, with a centre-of-mass energy relative spread of 3×10^{-5} . The triangles with error bars represent a simulated six-energy-point scan, with 25 pb⁻¹ per point.

MANY CHALLENGES!

MUON COOLING → HIGH INTENSITY NEUTRINO FACTORY HIGH LUMINOSITY MUON COLLIDER

COOLING -- Principle is straightforwar Longitudinal:

Practical realization is not!

интонун наши пуатоуен авхответх.

MICE cooling channel (4D cooling)

6D candidate cooling lattices

EF

MICE the Muon Ionization Cooling Experiment

Particle by particle measurement, then accumulate few 10⁵ muons

 $\rightarrow \Delta [(\epsilon^{in} - \epsilon^{out})/\epsilon^{in}] = 10^{-3}$

STEP IV EXPERIMENTS (2013)

STEP IV

No absorber Alignment Optics studies

STEP IV

Solid absorber(s) LiH

STEP IV Lic

Liq H₂ absorber (full/empty)

Multiple scattering Energy loss → Cooling

There is a very strong motivation to study the Higgs boson thoroughly -- first time we see an elementary scalar!

The FCC-ee+FCC-hh combination is 'invincible' most precise and most complete.

CERN has launched a study of this 'ambitious post-LHC project', the FCC Join us!

Muon storage rings remain very specific and quite unique for neutrino studies and precise high energy colliders.

Much R&D remains to be done

MICE at RAL is <u>the</u> concrete R&D that is taking place. Although it has been delayed significantly since the beginning of the effort in 2001, it is now about to take thecrucial muon cooling data in 2015.

The final 'sustainable cooling' will be tested in 2017.

