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Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods
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Statistical 
methods 3 
(continued)"

Inference with parameters: 
maximum likelihood, confidence 

intervals, upper limits, likelihood 
ratio and asymptotic formulae
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What can we do with composite hypothesis


•  With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)


•  With composite hypotheses – many more options

•  1 Parameter estimation and variance estimation


–  What is value of s for which the observed data is most probable?

–  What is the variance (std deviation squared) in the estimate of s?


•  2 Confidence intervals

–  Statements about model parameters using frequentist concept of probability

–  s<12.7 at 95% confidence level

–  4.5 < s < 6.8 at 68% confidence level


•  3 Bayesian credible intervals 

–  Bayesian statements about model parameters

–  s<12.7 at 95% credibility
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s=5.5 ± 1.3




Interval estimation with fundamental methods


•  Can also construct parameters intervals using ‘fundamental’ 
methods explored earlier (Bayesian or Frequentist)


•  Construct Confidence Intervals or Credible Intervals with defined 
probabilistic meaning, independent of assumptions on normality of 
distribution (Central Limit Theorem) à “95% C.L.”


•  With fundamental methods you greater flexibility in types of 
interval.  E.g when no signal observed à usually wish to set an 
upper limit (construct ‘upper limit interval’)
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Reminder - the Likelihood as basis for hypothesis testing


•  A probability model allows us to calculate "
the probability of the observed data under a hypothesis


•  This probability is called the Likelihood
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s=0


s=5

s=10


s=15

P(obs|theo) 

is called the "
Likelihood




Reminder - Frequentist test statistics and p-values


•  Definition of ‘p-value’: Probability to observe this outcome or more 
extreme in future repeated measurements is x%, if hypothesis is 
true


•  Note that the definition of p-value assumes an explicit ordering of 
possible outcomes in the ‘or more extreme’ part
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P-values with a likelihood ratio test statistic


•  With the introduction of a (likelihood ratio) test statistic, hypothesis 
testing of models of arbitrary complexity is now reduced to the 
same procedure as the Poisson example


•  Except that we generally !
don’t know distribution f(λ)…!



λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

log(λ)


λobs


p− value = f (λ |Hb )
λobs

∞

∫



A different Likelihood ratio for composite hypothesis testing


•  On composite hypotheses, where both null and alternate 
hypothesis map to values of μ, we can define an alternative"
likelihood-ratio test statistics that has better properties


•  Advantage: distribution of new λμ has known asymptotic form#

•  Wilks theorem: distribution of –log(λμ) is asymptotically distribution 
as a χ2 with Nparam degrees of freedom*


*Some regularity conditions apply


•  à Asymptotically, we can directly calculate p-value from λμobs   
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λ(

N ) = L(


N |H0 )

L(

N |H1)

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

‘simple hypothesis’ 
 ‘composite hypothesis’ 


‘Best-fit value’


Hypothesis "
μ that is being "
tested




What does a χ2 distribution look like for n=1?


•  Note that it for n=1, it does not peak at 1, but rather at 0…
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Composite hypothesis testing in the asymptotic regime


•  For ‘histogram example’: what is p-value of null-hypothesis


− logµ

t0 = 34.77

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit "
value of μ

^


‘likelihood of best fit’


‘likelihood assuming zero signal strength’


On signal-like data t0 is large


P-value = TMath::Prob(34.77,1) "
            = 3.7x10-9


Wilks: f(λ|0) à χ2 distribution




Composite hypothesis testing in the asymptotic regime


•  For ‘histogram example’: what is p-value of null-hypothesis


t0 = 34.77 t0 = 0.02

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit "
value of μ

^


‘likelihood of best fit’


‘likelihood assuming zero signal strength’


On signal-like data t0 is large
 On background-like data t0 is small


P-value = TMath::Prob(34.77,1) "
            = 3.7x10-9


P-value = TMath::Prob(0.02,1) "
            = 0.88


Use

Wilks"

Theorem




How quickly does f(λμ|μ) converge to its asymptotic form


•  Pretty quickly – 
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Here is an example of likelihood function"
for 10-bin distribution with 200 events




Here is an example for event"
counting at various s,b




From hypothesis testing to confidence intervals


•  Next step for composite hypothesis is to go from p-values for a 
hypothesis defined by fixed value of μ to an interval statement on μ !



•  Definition: A interval on μ at X% confidence level is defined such that 
the true of value of μ is contained X% of the time in the interval.


–  Note that the output is not a probabilistic statement on the true s value 

–  The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ

–  Coverage = guarantee that probabilistic statements is true (i.e. repeated future 

experiments do reproduce results in X% of cases)




•  Definition of confidence intervals does not make "
any assumption on shape of interval "
"
à Can choose one-sided intervals (‘limits’), "
     two-sided intervals (‘measurements’),"
     or even disjoint intervals (‘complicated measurements’)
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Exact confidence intervals – the Neyman construction


•  Simplest experiment: one measurement (x), one theory parameter (θ)

•  For each value of parameter θ, determine distribution in in observable 

x
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observable x 



How to construct a Neyman Confidence Interval


•  Focus on a slice in θ

–  For a 1-α% confidence Interval, define acceptance interval  

that contains 100%-α% of the distribution
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observable x 

pdf for observable x"
given a parameter value θ0




How to construct a Neyman Confidence Interval


•  Definition of acceptance interval is not unique "
à Choose shape of interval you want to set here.


–  Algorithm to define acceptance interval is called ‘ordering rule’
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observable x 

pdf for observable x given a parameter value θ0


observable x


observable x


Lower Limit


Central Interval


Other options, are e.g. "
‘symmetric’ and ‘shortest’




How to construct a Neyman Confidence Interval


•  Now make an acceptance interval in observable x"
for each value of parameter θ
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observable x 



How to construct a Neyman Confidence Interval


•  This makes the confidence belt
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observable x 



How to construct a Neyman Confidence Interval


•  This makes the confidence belt
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observable x 



How to construct a Neyman Confidence Interval


•  The confidence belt can constructed in advance of any measurement, 
it is a property of the model, not the data


•  Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows


•  The interval [θ-,θ+] has a 68% probability to cover the true value


Wouter Verkerke, NIKHEF


observable x 



What confidence interval means & concept of coverage


•  A confidence interval is an interval on a parameter that contains 
the true value X% of the time


•  This is a property of the procedure, and should be interpreted in 
the concept of repeated identical measurements:"
"
Each future measurement will result a confidence interval that has 
somewhat different limits every time"
(‘confidence interval limits are a random variable’)!
!
But procedure is constructed such that true value is in X% of the 
intervals in a series of repeated measurements"
(this calibration concept is called ‘coverage’. The Neyman 
constructions guarantees coverage)


•  It is explicitly not a probability statement on the true value you 
are trying to measure. In the frequentist the true value is fixed (but 
unknown)
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On the interpretation of confidence intervals


Wouter Verkerke, NIKHEF




The confidence interval – Poisson counting example


•  Given the probability model for Poisson counting example: for 
every hypothesized value of s, plot the expected distribution N
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Confidence belt for"
68% and 90% central intervals


Confidence belt for"
68% and 90% lower limit


‘central’

ordering

rule


‘lower limit’

ordering

rule




The confidence interval – Poisson counting example


•  Given confidence belt and observed data, confidence interval on 
parameter is defined by belt intersection


Confidence belt for"
68% and 90% central intervals


Confidence belt for"
68% and 90% lower limit


Nobs
 Nobs

Central interval on s at 68% C.L.
 Lower limit on s at 90% C.L.




Confidence intervals using the Likelihood Ratio test statistic


•  Neyman Construction on Poisson counting looks like ‘textbook’ belt. 

•  In practice we’ll use the Likelihood Ratio test statistic to summarize the 

measurement of a (multivariate) distribution for the purpose of hypothesis 
testing.


•  Procedure to construct belt with LR is  identical: "
obtain distribution of λ for every value of μ to construct confidence belt   


x=3.2


observable x


pa
ra

m
et

er
 μ



λμ(x,μ)


Likelihood Ratio λ


pa
ra

m
et

er
 μ



?




The asymptotic distribution of the likelihood ratio test statistic


•  Given the likelihood ratio "
"
"
"
Q: What do we know about asymptotic distribution of λ(μ)?  


•  A: Wilks theorem à Asymptotic form of  f(t|μ) is a χ2 distribution"
"
                                             f(tμ|μ) = χ2(tμ,n)"
 "



•  Note that f(tμ|μ) is independent of μ! #
à Distribution of tμ is the same for every ‘horizontal slice’ of the belt
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tµ = −2 logλµ (x) = −2 log
L(x |µ)
L(x | µ̂)

Where "
μ is the hypothesis being tested and "
n is the number of parameters (here 1: μ )






Confidence intervals using the Likelihood Ratio test statistic


•  Procedure to construct belt with LR is identical: "
obtain distribution of λ for every value of μ to construct belt   


x=3.2


observable x


pa
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 μ



tμ(x,μ)


Likelihood "
Ratio
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m
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 μ



Confidence "
belt now "
range in LR




What does the observed data look like with a LR?


•  Note that while belt is (asymptotically) independent of parameter μ, 
observed quantity now is dependent of the assumed μ


x=3.2


observable x


pa
ra

m
et

er
 μ



tμ(x,μ)


Likelihood Ratio

pa

ra
m

et
er

 μ



Measurement = tμ(xobs,μ) "
is now a function of μ




Connection with likelihood ratio intervals


•  If you assume the asymptotic distribution for tμ, 

–  Then the confidence belt is exactly a box 

–  And the constructed confidence interval can be simplified"

to finding the range in μ where tμ=½⋅Z2 

à This is exactly the MINOS error#

Wouter Verkerke, NIKHEF

tμ


pa
ra

m
et

er
 μ



FC interval with Wilks Theorem
 MINOS / Likelihood ratio interval




Recap on confidence intervals


•  Confidence intervals on parameters are constructed "
to have precisely defined probabilistic meaning


–  This calibration is called “coverage” "
The Neyman Construction has coverage by construction


–  This is different from parameter variance estimates "
(or Bayesian methods) that don’t have (a guaranteed) coverage


–  For most realistic models confidence intervals are calculated using "
(Likelihood Ratio) test statistics to define the confidence belt


•  Asymptotic properties

–  In the asymptotic limit (Wilks theorem), "

Likelihood Ratio interval converges to a "
Neyman Construction interval "
(with guaranteed coverage) “Minos Error”"
NB: the likelihood does not need to be!
parabolic for Wilks theorem to hold


–  Separately, in the limit of normal distributions the "
likelihood becomes exactly parabolic and "
the ML Variance estimate converges to "
the Likelihood Ratio interval
 Wouter Verkerke, NIKHEF




Bayesian inference with composite hypothesis


•  With change LàL(μ) the prior and posterior model probabilities 
become probability density functions
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(µ |
!
N ) = L(

!
N |µ)P(µ)

L(
!
N |µ)P(µ)dµ∫

Hb
 Hs+b


H(μ)


P(µ |
!
N )∝ L(

!
N |µ)P(µ)

Prior "
probability density


Posterior"
probability density


NB: Likelihood is not a probability density




Bayesian credible intervals


•  From the posterior density function, a credible interval can be 
constructed through integration


•  Note that Bayesian interval estimation require no minimization "
of –logL, just integration
 Wouter Verkerke, NIKHEF


95% credible central interval
 95% credible upper limit


Posterior on μ
 Posterior on μ




Bayesian parameter estimation


•  Bayesian parameter estimate is the posterior mean

•  Bayesian variance is the posterior variance 
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Mean= "
<x>


Variance = "
<x2>-<x>2


V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ



Choosing Priors


•  As for simple models, Bayesian inference always in involves a prior "
à now a prior probability density on your parameter


•  When there is clear prior knowledge, it is usually straightforward to 
express that knowledge as prior density function


–  Example: prior measurement of μ = 50 ± 10"





–  Posterior represents updated belief à It incorporates information from 

measurement and prior belief 

–  But sometimes we only want to publish result of this experiment, or there is no prior 

information. What to do?
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prior p(μ)


posterior "
p(μ|x0)


likelihood

L(x0|μ)




Choosing Priors


•  Common but thoughtless choice: a flat prior

–  Flat implies choice of metric. Flat in x, is not flat in x2


•  Flat prior implies choice on of metric

–  A prior that is flat in μ is not flat in μ2


–  ‘Preferred metric’ has often no clear-cut answer. "
(E.g. when measuring neutrino-mass-squared, state answer in m or m2)


–  In multiple dimensions even complicated (prior flat in x,y or is prior flat in r,φ?)
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prior p(μ)


posterior "
p(μ|x0)


likelihood

L(x0|μ)
 prior p(μ’)


posterior "
p(μ’|x0)


likelihood

L(x0|μ’)


distribution in μ
 distribution in μ2




Is it possible to formulate an ‘objective’ prior?


•  Can one define a prior p(μ) which contains as little information as 
possible, so that the posterior pdf is dominated by the likelihood?


–  A bright idea, vigorously pursued by physicist Harold Jeffreys in in 
mid-20thcentury:


–  This is a really really thoughtless idea, recognized by Jeffreys as such, but 
dismayingly common in HEP: just choose p(μ) uniform in whatever metric you 
happen to be using! 


•  “Jeffreys Prior” answers the question using a prior uniform in a 
metric related to the Fisher information."
"
"



–  Unbounded mean μ of gaussian: p(μ) = 1

–  Poisson signal mean μ, no background: p(μ) = 1/√μ


•  Many ideas and names around on non-subjective priors

–  Advanced subject well beyond scope of this course.

–  Many ideas (see e.g. summary by Kass & Wasserman), "

but very much an open/active in area of research
 Wouter Verkerke, NIKHEF


I(θ ) = −E ∂2

∂θ 2
log f (x |θ )θ
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Sensitivity Analysis


•  Since a Bayesian result depends on the prior probabilities, which are 
either personalistic or with elements of arbitrariness, it is widely 
recommended by Bayesian statisticians to study the sensitivity of the 
result to varying the prior.


•  Sensitivity generally decreases with precision of experiment"
"
"
"
"



•  Some level of arbitrariness – what variations to consider in sensitivity 
analysis
 Wouter Verkerke, NIKHEF 




Likelihood Principle


•  As noted above, in both Bayesian methods and likelihood-ratio 
based methods, the probability (density) for obtaining the data at 
hand is used (via the likelihood function), but probabilities for 
obtaining other data are not used!


•  In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.


•  This difference is captured by the Likelihood Principle*: "
"
If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.
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The “Karmen Problem”


•  Simple counting experiment: 

–  You expected precisely 2.8 background events "

with a Poisson distribution

–  You count the total number of observed events N=s+b

–  You make a statement on s, given Nobs and b=2.8


•  You observe N=0!

–  Likelihood: L(s) = (s+b)0 exp(-s-b) / 0! = exp(-s) exp(-b)


•  Likelihood –based intervals

–  LR(s) = exp(-s) exp(-b)/exp(-b)= exp(-s) à Independent of b!

–  Bayesian integral also independent of factorizing exp(-b) term


•  So for zero events observed, likelihood-based inference about 
signal mean s is independent of expected b. 


•  For essentially all frequentist confidence interval constructions, the 
fact that n=0 is less likely for b=2.8 than for b=0 results in 
narrower confidence intervals for μ as b increases. 


–  Clear violation of the L.P.




Likelihood Principle Example #2


•  Binomial problem famous among statisticians "



•  Translated to HEP: You want to know the trigger efficiency e. 

–  You count until reaching n=4000 zero-bias events, "

and note that of these, m=10 passed trigger. "
"
Estimate e = 10/4000, compute binomial confidence interval for e."



–  Your colleague (in a different sample!) counts zero-bias events until m=10 "
have passed the trigger. She notes that this requires n=4000 events. "
"
Intuitively, e=10/4000 over-estimates e because she stopped just upon reaching 10 
passed events. (The relevant distribution is the negative binomial.)"



•  Each experiment had a different stopping rule. Frequentist confidence 
intervals depend on the stopping rule.


–  It turns out that the likelihood functions for the binomial problem and the negative 
binomial problem differ only by a constant! 


–  So with same n and m, (the strong version of) the L.P. demands same inference 
about e from the two stopping rules!"
"
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Summary


•  Maximum Likelihood

–  Point and variance estimation

–  Variance estimate assumes normal"

distribution. No upper/lower limits


•  Frequentist confidence intervals

–  Extend hypothesis testing to composite hypothesis

–  Neyman construction provides exact “coverage” "

= calibration of quoted probabilities

–  Strictly p(data|theory)

–  Asymptotically identical to likelihood ratio intervals"

(MINOS errors, does not assume parabolic L)


•  Bayesian credible intervals

–  Extend P(theo) to p.d.f. in model parameters

–  Integrals over posterior density à credible intervals

–  Always involves prior density function"

 in parameter space

Wouter Verkerke, NIKHEF
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Statistical 
methods 3b 
(continued)


Expected results, upper limits 
and asymptotic formulae


 




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
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Physics or statistics?


•  An important and recurring dilemma facing analyzers is what to do 
with inference results of a statistical model that cover unphysical 
regions in the parameter space of the underlying theory


•  Simplest example: Poisson counting experiment P(N|S+B)

–  Expect 5 background events, and 3 signal event

–  We observe 4 events – What result will we report? What conclusion will we draw?


•  The data tells us precisely this : Likelihood L(s)=Poisson (4|S+5)

•  Estimation procedures report:


•  Only S>0 is physical,"
what do we report?


–  Option A) Report as is?

–  Option B) Try to exclude unphysical regions from result
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ML parameter estimate à S= -1

ML variance estimate    à √V(S) = 1.83

MINOS Conf. Interval    à [-1.68,2.34] 68% C.L.


t(s) = −logΛ(s) = −log L(S)
L(Ŝ)

⎛

⎝
⎜

⎞

⎠
⎟



Physics or statistics?


•  Q: Only S>0 is physical, what do we report?

–  Option A) Report as is?

–  Option B) Try to exclude unphysical regions from result?


•  A: Depends on your goal!

•  Goal 1: reporting, as accurately as possible, result of experiment


–  Observed result is not peculiar: "
44% of experiments of hypothesis S=0 with B=5 result in Nobs<5"
10% of experiments of hypothesis S=3 with B=5 result in Nobs<5


–  Problem arises only in interpretation of N in terms of S+B à defer interpretation

–  Report S, V(S), or confidence on S as usual (as proxy for the full likelihood)

–  Downside: interpretation deferred 

–  Upside: easy to combine results of multiple experiments reported in this form"

(combination = inference on product of likelihoods
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Physics or statistics?


•  Q: Only S>0 is physical, what do we report?

–  Option A) Report as is?

–  Option B) Try to exclude unphysical regions from result?


•  A: Depends on your goal!

•  Goal 2: make physics interpretation of your model


–  Confidence interval should in that case not cover unphysical values

–  But you cannot simply exclude unphysical region without spoiling "

coverage properties (=calibration of 68%/95% promise)  
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xobs
 xobs


unphysical"
region


Reported "
interval


Subset of"
reported interval"

in physical region




Physics or statistics?


•  Goal 2: make physics interpretation of your model

–  Confidence interval should in that case not cover unphysical values

–  But you cannot simply exclude unphysical region without spoiling "

coverage properties (=calibration of 68%/95% promise)

–  But you are allowed to modify the test statistic (=observed quantity) "

so that confidence belt never enters the unphysical region"



•  Can we modify test statistic such that boundaries are obeyed? 
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xobs
 xobs


unphysical"
region


Reported "
interval


Subset of"
reported interval"

in physical region

unphysical"

region


Interval"
fully contained in"
in physical region


✗ ✓ 

yobs




Physical boundaries frequentist confidence intervals


•  Solution is to modify the statistic"
to avoid unphysical region
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tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%

&
&

'

&
&

Introduce !
“physical bound”

μ>0


    If μ<0, use 0 in denominator"
à Declare data maximally !
    compatible with hypothesis μ=0 


μ=-1
 μ=1
 μ=2


μ=-1
 μ=1
 μ=2




Physical boundaries in frequentist confidence intervals


•  What is effect on distribution "
of test statistic?
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!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$
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    If μ<0, use 0 in denominator"
à Declare data maximally !
    compatible with hypothesis μ=0 


Distribution of t0 for μ=2


Distribution of t0 for μ=0

~


Spike at zero contains all"
“unphysical” observations


~


Unmodified….


Introduce !
“physical bound”

μ>0


tµ (x) = − 2 log L(x |µ)
L(x | µ̂)



Physical boundaries frequentist confidence intervals


•  What is effect on acceptance interval"
of test statistic?
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!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%
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    If μ<0, use 0 in denominator"
à Declare data maximally !
    compatible with hypothesis μ=0 


Effect: Acceptance #
interval is shortened#

Introduce !
“physical bound”

μ>0


tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

Distribution of t0 for μ=0


Spike at zero contains all"
“unphysical” observations


~


Unmodified….




Physical boundaries frequentist confidence intervals


•  Putting everything together – the confidence with modified tμ

•  Confidence belt ‘pinches’ towards physical boundary

•  Offsetting of likelihood curves for measurements that prefer μ<0  


tμ(x,μ)


ß Large μ "
2-sided interval in μ 
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er
 μ



Likelihood Ratio
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Physical boundaries frequentist confidence intervals


•  Putting everything together – the confidence with modified tμ

•  Confidence belt ‘pinches’ towards physical boundary

•  Offsetting of likelihood curves for measurements that prefer μ<0  


tμ(x,μ)


ß Small μ>0"
 ‘upper limit’ interval
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Physical boundaries frequentist confidence intervals


•  Putting everything together – the confidence with modified tμ

•  Confidence belt ‘pinches’ towards physical boundary

•  Offsetting of likelihood curves for measurements that prefer μ<0  


tμ(x,μ)


μ<0 à "
‘upper limit’ interval
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Likelihood Ratio




~




Physical boundaries frequentist confidence intervals


•  Example for unconstrained unit Gaussian measurement


Wouter Verkerke, NIKHEF


L =Gauss(x |µ,1)
tμ(x,μ)
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Gauss(x|μ,1)

95% Confidence belt in (x,μ)  
defined by cut on tμ
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Physical boundaries frequentist confidence intervals


•  First map back horizontal axis of confidence belt from tμ(x)àx


tμ(x,μ)
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Likelihood Ratio
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observable x
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Gauss(x|μ,1)

95% Confidence belt in (x,μ)  
defined by cut on tμ 
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“Feldman-Cousins” 



Comparison of Bayesian and Frequentist limit treatment


•  Bayesian 95% credible upper-limit interval with flat prior μ>0 


tμ(x,μ)
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observable x
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Gauss(x|μ,1)

95% Confidence belt in (x,μ)  
defined by cut on tμ for
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Recap on test statistics


•  The ‘default’ frequentist test statistic "
is the likelihood ratio tμ


–  Confident belt (tμ vs μ) is asymptotically a box

–  Observed value tμ depends on μ

–  Confidence intervals as reported by MINOS

–  No notion of boundaries in parameters


•  The ‘modified’ frequentist test statistics"
is likelihood ration tμ


–  Confident belt will pinch near boundary in μ

–  Observed value tμ identical to tμ in the"

physical region

–  Reported interval will by construction be"

contained in the physical region

–  Built-in procedure that changes from 2-sided"

to 1-sided interval with increasing signal yield

–  Best known as ‘Feldman-Cousins’ 


Wouter Verkerke, NIKHEF


!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%

&
&

'

&
&

tµ (x) = − 2 log L(x |µ)
L(x | µ̂)



The order of things


•  The goal of the ‘ordering’ is to sort potential observations by 
signal extremity. Let’s reexamine discovery counting experiment


•  For a Poisson counting distribution this is was trivial 

–  Larger observed event count à more extreme





•  A Likelihood-Ratio test statistic generalizes this concept to 
measurement of any type, but note that it quantifies the"
(incompatibility) of the data with a fixed hypothesis
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p0 = Poisson(i | S + B)
i=Nobs

∞

∑ = 0.156

Example: B=20, Nobs=25


Example: B=20, Nobs=25


tµ = −2log
Poisson(N | S + 20)
Poisson(N | Ŝ + 20)

⎛

⎝
⎜

⎞

⎠
⎟=1.14

p0 = f
χ 2
(tµ )dtµ = 0.28

tµ
obs

∞

∫

Poisson !
distribution


Χ2 (n=1)

distribution




The order of things


•  Why do we get a different answer?

•  Because in the Likelihood Ratio test for discovery we "

order observations by compatibility with the hypothesis B=20





Wouter Verkerke, NIKHEF


For upward fluctuations


Compatible "
with B=20


"
Incompatible"
with B=20




The order of things


•  Why do we get a different answer?

•  Because in the Likelihood Ratio test for discovery we "

order observations by compatibility with the hypothesis B=20
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For upward fluctuations!
!
But also for downward fluctuations!


This is clearly not what we intended for 

a discovery test!



If the goal is discovery, then"

all observations N<B should be 

considered maximally compatible !

with the null-hypothesis











Compatible "
with B=20


"
Incompatible"
with B=20




Formulating a test statistic for discovery


•  We can formulate a new test statistic q0 "
which all negative fluctuations are "
considered to be maximally compatible "
with the background
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q0 (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

0 ∀µ̂ < 0

⎧

⎨
⎪

⎩
⎪

Compatible "
with B=20


δ-function "
at q0=0


Example: B=20, Nobs=25


tµ = −2log
Poisson(N | S + 20)
Poisson(N | Ŝ + 20)

⎛

⎝
⎜

⎞

⎠
⎟=1.14

p0 = 1
2δ(tµ )+ 1

2 fχ 2 (tµ )dtµ =
1
2 fχ 2 (tµ )dtµ = 0.145

tµ
obs

∞

∫
tµ
obs

∞

∫

F(q0) = ½δ(q0)+½Χ2(q0,1)


Now very close to Poisson result (0.156)"
(remaining difference due to discreteness of Poisson distribution)


Asymptotically half of fluctuations around"
null hypothesis are negative"
(for small N, actual distribution may deviate from asymptotic)




Formulating a test statistic for discovery


•  We can formulate a new test statistic q0 "
which all negative fluctuations are "
considered to be maximally compatible "
with the background
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q0 (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

0 ∀µ̂ < 0

⎧

⎨
⎪

⎩
⎪

Compatible "
with B=20


δ-function "
at q0=0


Example: B=20, Nobs=25


tµ = −2log
Poisson(N | S + 20)
Poisson(N | Ŝ + 20)

⎛

⎝
⎜

⎞

⎠
⎟=1.14

p0 = 1
2δ(tµ )+ 1

2 fχ 2 (tµ )dtµ =
1
2 fχ 2 (tµ )dtµ = 0.145

tµ
obs

∞

∫
tµ
obs

∞

∫

F(q0) = ½δ(q0)+½Χ2(q0,1)


Now very close to Poisson result (0.156)"
(remaining difference due to discreteness of Poisson distribution)


Asymptotically half of fluctuations around"
null hypothesis are negative"
(for small N, actual distribution may deviate from asymptotic)


Note that q0 is in fact not a new test statistic, but rather"
a special case of the Feldman-Cousins test statistic tμ!








q0 (x) =

−2log L(x |µ)
L(x | µ̂)

∀µ̂ ≥ 0

0 ∀µ̂ < 0

⎧

⎨
⎪

⎩
⎪

!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%

&
&

'

&
& =0 for μ=0


q0 = t0
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But wait… there is more


•  A similar problem of dilution of sensitivity applies when considering 
results in the form of upper limits
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Discovery 
p(μ=0) = … 


Measurement 
μlow<μ<μhigh (68% C.L.)


Exclusion limit 
μ<X (95% C.L.)


q0 (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

0 ∀µ̂ < 0

⎧

⎨
⎪

⎩
⎪

tµ (x) = 2log
L(x |µ)
L(x | µ̂)

Compatible#
with H0#

Incompatible#
with H0 (N>bkg)#

#

Compatible#
with μ#

Incompatible#
with μ (both dir.)#

Compatible#
with μ(limit)#

Incompatible#
with μ(limit)#

both directions#

Incompatible#
with H0 (N<bkg)#

#

#̂ #̂

tµ (x) = 2log
L(x |µ)
L(x | µ̂)

When considering limit μ<X "

fluctuations above Hμ "

are counted against hypothesis 

When considering discovery"

fluctuations below H0 are "

not counted against hypothesis 




But wait… there is more


•  A similar problem of dilution of sensitivity applies when considering 
results in the form of upper limits
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Discovery 
p(μ=0) = … 


Measurement 
μlow<μ<μhigh (68% C.L.)


Exclusion limit 
μ<X (95% C.L.)


q0 (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

0 ∀µ̂ < 0

⎧

⎨
⎪

⎩
⎪

tµ (x) = 2log
L(x |µ)
L(x | µ̂)

qµ (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≤ µ

0 ∀µ̂ > µ

⎧

⎨
⎪

⎩
⎪

Compatible#
with H0#

Incompatible#
with H0 (N>bkg)#

#

Compatible#
with μ#

Incompatible#
with μ (both dir.)#

Compatible#
with μ(limit)#

Observed μ #
below μ(limit)#

Incompatible#
with H0 (N<bkg)#

#

#̂ #̂

When considering limit μ<X "

fluctuations above Hμ are"

not counted against hypothesis 

When considering discovery"

fluctuations below H0 are "

not counted against hypothesis 


Incompatible#
with Hμ (μ>μ)#

#

#̂

#̂



Summary of likelihood ratio test statistics


•  All LR test statistics have a calibrated coverage

–  ‘Size of the test’ – generalization of concept of fixed ‘false positive rate’"




•  The power of the LR test statistics depends on underlying question

–  Discovery (exclusion of H0) à Use q0


–  Signal exclusion (exclusion of Hμ) à Use qμ


–  Measurement (Conf. Interval on μ) à Use tμ 


     For maximum sensitivity choose the correct one"


•  The discovery statistic q0 is a special case of "

the ‘Feldman-Cousins’ test statistic tμ

-  Bonus of feature of FC is that it automatically transitions from"

the optimal formulation for discovery q0 to "
the optimal formulation for measurement (tμ) "
as the signal strength increases (without spoiling coverage)


-  Note that while FC deals with downward fluctuations,"
it does not deal with upward fluctuations like qμ "
à limit setting power with FC (tμ) is weaker than qμ!
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These suppress influence of !
fluctuations in the ‘wrong’ direction


~




Summary of likelihood ratio test statistics


•  All LR test statistics have a calibrated coverage

–  ‘Size of the test’ – generalization of concept of fixed ‘false positive rate’"




•  The power of the LR test statistics depends on underlying question

–  Discovery (exclusion of H0) à Use q0


–  Signal exclusion (exclusion of Hμ) à Use qμ


–  Measurement (Conf. Interval on μ) à Use tμ 


     For maximum sensitivity choose the correct one"


•  The discovery statistic q0 is a special case of "

the ‘Feldman-Cousins’ test statistic tμ

-  Bonus of feature of FC is that it automatically transitions from"

the optimal formulation for discovery q0 to "
the optimal formulation for measurement (tμ) "
as the signal strength increases (without spoiling coverage)


-  Note that while FC deals with downward fluctuations,"
it does not deal with upward fluctuations like qμ "
à limit setting power with FC (tμ) is weaker than qμ!
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These suppress influence of !
fluctuations in the ‘wrong’ direction


~


Features of FC and qμ can be combined into a new test statistic qμ:




Improved limit setting power  
(upward fluctuations not counted"

against hypothesis μ "
that is being excluded)




Exclusion limit is guaranteed to be >0 

(avoid all signal strengths being"
excluded on fluctuation below bkg-only level)


!qµ =

0 µ̂ < 0

−2log L(µ)
L(µ̂)

0 < µ̂ < µ

0 µ̂ > µ

⎧

⎨

⎪
⎪

⎩

⎪
⎪



Summary of likelihood ratio test statistics


•  All LR test statistics have a calibrated coverage

–  ‘Size of the test’ – generalization of concept of fixed ‘false positive rate’"




•  The power of the LR test statistics depends on underlying question

–  Discovery (exclusion of H0) à Use q0


–  Signal exclusion (exclusion of Hμ) à Use qμ


–  Measurement (Conf. Interval on μ) à Use tμ 


     For maximum sensitivity choose the correct one for your purpose!"


•  The discovery statistic q0 is a special case of "

the ‘Feldman-Cousins’ test statistic tμ

-  Bonus of feature of FC is that it automatically transitions from"

the optimal formulation for discovery q0 to "
the optimal formulation for measurement (tμ) "
as the signal strength increases (without spoiling coverage)


-  Note that while FC deals with downward fluctuations,"
it does not deal with upward fluctuations like qμ "
à limit setting power with FC (tμ) is weaker than qμ!
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These suppress influence of !
fluctuations in the ‘wrong’ direction


~


A popular (but less formal) approach to ensuring that exclusion limits"
do not report an empty interval in case of a fluctuation below the background-only 
expectation is the so-called CLS technique



Essence: instead of setting limit at 95% C.L. using test statistic qμ, "
               one aims for the 95% target in a ratio of p-values 










CLS (µ) =
p(µ)
1− p(0) p-value for μ<0"

(since p(0) is p-value for μ>0)


p-value for μ<μ
^

^


^


Idea: if a (negative) fluctuation is as"
improbable under H(0) as under H(μ)"
it is considered to carry no information"
on H(μ) that value of μ is not excluded




Bayesian intervals using priors to exclude unphysical regions


•  Priors provide simple method to exclude unphysical regions 

•  Simplified example situations for a measurement of mν

2


1.  Central value comes out negative (= unphysical).

2.  Even upper limit (68%) may come out negative, e.g. m2<-5.3,

3.  What is inference on neutrino mass, given that is must be >0? "

"
"
"
 


–  Introducing prior that excludes unphysical region ensure limit in physical range of 
observable (m2<6.4)


•  Beware of apparent simplicity – strong entanglement with ill-defined 
concept of ‘flat prior’! 
 Wouter Verkerke, NIKHEF


p(μ|x0) with flat prior
 p(μ|x0) with p’(μ)
p’(μ)




Numeric comparison Bayes/FC limit results for Gaussian measurement


•  Bayesian 95% credible upper-limit interval with flat prior μ>0 


tμ(x,μ)
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Likelihood Ratio




x


observable x
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Gauss(x|μ,1)

95% Confidence belt in (x,μ)  
defined by cut on tμ for


Note that tμ / Feldman-Cousins automatically 
switches from ‘upper limit’ to ‘two-sided’

à  “unified procedure”



Note that Bayesian and Frequentist intervals!
at x>2 would agree exactly for Gaussian example !
if both would be taken as ‘two-sided’


~


~




Using priors to exclude unphysical regions


•  Do you want publish (only) results restricted to the physical region?

–  It depends very much to what further analysis and/or combinations is needed…


•  An interval / parameter estimate that in includes unphysical still 
represents the best estimate of this measurement


–  Straightforward to combined with future measurements,"
new combined result might be physical (and more precise)


–  You need to decide between ‘reporting outcome of this measurement’ vs 
‘updating belief in physics parameter’


•  Procedures exist to guarantee that procedures result in non-empty 
intervals in physics domain


–  Frequentist confidence intervals à Modified test statistics

–  Bayesian credible intervals à Priors that exclude unphysical regions


•  When reporting results constrained to physical region"
always aim to also report unconstrained results


–  Unconstrained results carry more information for future combination/
interpretation
 Wouter Verkerke, NIKHEF




Expected results


•  An important part of experimental design is being able to quantify 
the expected sensitivity of your proposed analysis


–  Briefly touched on this already when discussing connection between LR and 
optimal event selection


–  Only considered simplest analysis design (Poisson counting)"
and one metric (p-value of background-only hypothesis)


•  Will now generalize in 2 ways

1.  Type of statistical models: "

calculate sensitivity for "
any type of statistical model

–  Via a LR test statistic


2.  Types of output statement

–  Discovery (p0), Signal Exclusion,"

and Measurement

–  In addition to median expectation"

(of p0 etc) also calculate"
uncertainty interval due to "
expected statistical fluctuations




Expected sensitivity distributions - Poisson


•  Given a Poisson counting experiment "
P(N|S+B)  with B=5 events


•  Q: What is the median expected p-value "
for a hypothetical signal S=15?"



•  A: "



•  Q: What is spread in p-values for a "
     hypothetical signal S=15?


•  A: To obtain 68% (95%) intervals for p-values, "
    map 68%(95%) intervals of observable #
    distribution (N) to p/Z-value intervals"


68% interval p-values: [ 6.09 10-5 – 8.07 10-10 ], Z [ 3.8-6.0 ]"
        95% interval p-values: [ 1.37 10-2 – 1.70 10-13 ], Z [ 2.2-7.2 ]


Wouter Verkerke, NIKHEF


p0 = Poisson(i | 5) = 2.11⋅10−5→ Z = 5.0σ
i=20

∞

∑



Expected sensitivity – comparison with Likelihood Ratio


•  Compare distributions of counting experiment, direct vs LR


Wouter Verkerke, NIKHEF


f=Poisson


f=q0


Expression for Poisson distributions



F0(N)=Poisson(N|0+5)"


F15(N)=Poisson(N|15+5)"





Expression for discovery test statistic q0  
asymptotic distributions



F0(q0) =        0.5δ(q0) + 0.5fΧ2(q0,1)"


F15(q0)= (1-Φ(Λ15))δ(q0) + 0.5fNCΧ2(q0,1,Λ15)"
"
    Λ15 = q0(15)




Expected sensitivity – comparison with Likelihood Ratio


•  Compare distributions of counting experiment, direct vs LR


Wouter Verkerke, NIKHEF


f=Poisson


f=q0


Expression for Poisson distributions



F0(N)=Poisson(N|0+5)"


F15(N)=Poisson(N|15+5)"





Expression for discovery test statistic q0  
asymptotic distributions



F0(q0) =        0.5δ(q0) + 0.5fΧ2(q0,1)"


F15(q0)= (1-Φ(Λ15))δ(q0) + 0.5fNCΧ2(q0,1,Λ15)"
"
    Λ15 = q0(15)


Φ(x) = Cumulative of unit Gaussian


fΧ2(x,k) = Χ2 distribution for k d.o.f.


fNCΧ2
 (x,k,Λ) = non-central Χ2 distribution for k d.o.f."

                     with impact parameter Λ"
"
                   




Expected sensitivity – Poisson Likelihood Ratio asymptotics


•  If you have sufficient statistics in your measurement asymptotic 
expressions for distributions of q0(0) and q0(μ) allow for "
direct calculation of median significance and its statistical uncertainty


•  Direct calculation of median upper limit and it’s statistical uncertainty


Wouter Verkerke, NIKHEF


q0 distribution for S=0 observed"
q0 distribution for S=15 observed


Median[q0,15] = q0(15)"


Median[Z0(15)] = √Med[q0,15]= 5.0σ



68% interval = [ √Med[q0,15]-1, √Med[q0,15]+1 ] = [ 4.0, 6.0 ]

95% interval = [ √Med[q0,15]-2, √Med[q0,15]+2 ] = [ 3.0, 7.0 ]




q15 distribution for S=15 observed"
q15 distribution for S=0 observed"



To obtain 95% excl. limit on S, find value of X that"
for which a test statistic qμ=X for S=0 observed yields 0.05



à No analytical solution à must scan qμ=X for X=0…15




Expected sensitivity – Asymptotic upper limits


•  Visualization of scanning process


Wouter Verkerke, NIKHEF
p-value = 0.05 for qμ>2.7 (defined by f(qμ|μ)


F(qμ|1) à Med[qμ|1]=0.18"
F(qμ|2) à Med[qμ|2]=0.63"
…

F(qμ|8.8) à Med[qμ|8.8]=2.7

…

F(qμ|15) à Med[qμ|1]=16.0"
"
Result s<8.8 at 95% C.L.



Asymptotically:

     μUL95%=σ*Φ-1(0.95)  à σ=μUL95%/1.67=5.27"
μUL95%±Nσ=σ*(Φ-1(0.95)±N) "
       "
     1σ band = [ 3.5,14.1]"
     2σ band = [-1.8,19.4]




Expected sensitivity – Asymptotic vs Toys


•  Demonstrated asymptotic formulas for "
expected discovery p0 and "
expected signal exclusions"
along with N sigma uncertainty bands for Poisson counting model"



•  Use of asymptotic formulas only valid in limit of sufficient statistics!


Wouter Verkerke, NIKHEF


Easy to verify numerically"
for counting experiments



Decent results already for N>=10!



If outside validity regime"
à obtain f(qμ|μ’) from simulation"
à very CPU intensive because"
     * For 5σ discovery need, O(109) toys"
        to model tail of f(q0|0) far out"
     * For 95% limits need repeatedly generate "
       O(104) toys to remodel distribution f(qμ|μ’) "
       at every scan point of μ’ 




Expected sensitivity – Asymptotic vs Toys


•  Demonstrated asymptotic formulas for "
expected discovery p0 and "
expected signal exclusions"
along with N sigma uncertainty bands for Poisson counting model"



•  Use of asymptotic formulas only valid in limit of sufficient statistics!
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Easy to verify numerically"
for counting experiments



Decent results already for N>=10!



If outside validity regime"
à obtain f(qμ|μ’) from simulation"
à very CPU intensive because"
     * For 5σ discovery need, O(109) toys"
        to model tail of f(q0|0) far out"
     * For 95% limits need repeatedly generate "
       O(104) toys to remodel distribution f(qμ|μ’) "
       at every scan point of μ’ 


Numeric limit scan:"
For every line in this plot"
"
"
"
"
"
"
"
"
"
"
Make a toy MC run to make a histogram




Expected sensitivity – Beyond counting experiments


•  NB: Asymptotic formulas make use of concept "
‘expectation value data’ sets


"


•  For counting experiments this trivial, e.g. dataset N=20,"

represent exactly expectation value of Poisson(N|20)  


Wouter Verkerke, NIKHEF




Expected sensitivity – Beyond counting experiments


•  NB: Asymptotic formulas make use "
of concept  ‘expectation value data’"
sets


•  For generic data (e.g. with distributions) an analogous concept 
can defined – the ‘so-called Asimov dataset’


–  For example for Gaussian distribution in an observable x, "
the Asimov dataset is a dataset without any statistical fluctuations


•  Asymptotic formulas can thus be used for "
measurements of any shape and form (given enough statistics)  


‘regular’ sampled dataset
 ‘Asimov’ dataset




Expected results


•  Example plot from"
Higgs boson discovery


Wouter Verkerke, NIKHEF


Limit


Discovery


Measurement
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Software tools 2 
RooStats and its interface to RooFit 



Everything starts with the likelihood


Wouter Verkerke, NIKHEF


Frequentist statistics 


Confidence interval#
or p-value#

Posterior on s#
or Bayes factor#

s = x ± y#

Bayesian statistics 
 Maximum Likelihood


λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!



How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


ML estimation of"
parameters μ,θ using MINUIT "
(MIGRAD, HESSE, MINOS)




ML estimation of"
parameters μ,θ using MINUIT "
(MIGRAD, HESSE, MINOS)


How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Likelihood Model 
orders of magnitude more 
complicated. Describes

    - O(100) signal distributions

    - O(100) control sample distr.

    - O(1000) parameters 
                    representing  
                    syst. uncertainties


Frequentist confidence interval 
construction and/or p-value 
calculation not available 
as ‘ready-to-run’ algorithm 

in ROOT




How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Model Building phase (formulation of L(x|H)


ML estimation of"
parameters μ,θ using MINUIT "
(MIGRAD, HESSE, MINOS)




ML estimation of"
parameters μ,θ using MINUIT "
(MIGRAD, HESSE, MINOS)


How is Higgs discovery different from a simple fit?
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Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Model Usage phase (use L(x|H) to make statement on H)




ML estimation of"
parameters μ,θ using MINUIT "
(MIGRAD, HESSE, MINOS)


How is Higgs discovery different from a simple fit?


Wouter Verkerke, NIKHEF 


Higgs combination model
Gaussian + polynomial


L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1
 ROOT TF1


μ = 5.3 ± 1.7


“inside ROOT”


Design goal:

Separate building of Likelihood model as much as possible"
from statistical analysis using the Likelihood model



à  More modular software design

à  ‘Plug-and-play with statistical techniques

à  Factorizes work in collaborative effort 




The idea behind the design of RooFit/RooStats/HistFactory


•  Modularity, Generality and flexibility

•  Step 1 – Construct the likelihood function L(x|p)#

•  Step 2 – Statistical tests on parameter of interest p "
"
Procedure can be Bayesian, Frequentist, or Hybrid), "
but always based on L(x|p)


•  Steps 1 and 2 are conceptually separated, "
and in Roo* suit also implemented separately.
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RooFit,  or  RooFit+HistFactory#

RooStats#



The idea behind the design of RooFit/RooStats/HistFactory


•  Steps 1 and 2 can be ‘physically’ separated (in time, or user)

•  Step 1 – Construct the likelihood function L(x|p)!

!
!
!
!



•  Step 2 – Statistical tests on parameter of interest p "
"
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RooFit,  or  RooFit+HistFactory#

RooStats#

RooWorkspace#

Complete description!
of likelihood model,!
persistable in ROOT file

(RooFit pdf function)



Allows full introspection!
and a-posteriori editing!





The benefits of modularity


•  Perform different statistical test on exactly the same model
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RooFit,  or  RooFit+HistFactory#

RooStats#
(Frequentist#
with toys) #

RooWorkspace#

RooStats#
(Frequentist#
asymptotic) #

RooStats#
Bayesian#
MCMC#

“Simple fit”#
# (ML Fit with 

HESSE or 
MINOS) 



Running RooStats interval calculations ‘out-of-the-box’


•  Confidence intervals calculated with model

–  ‘Simple"

Fit’




–  Feldman"

Cousins"
(Frequentist"
Confidence"
Interval)




–  Bayesian "

(MCMC)
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FeldmanCousins fc;  
fc.SetPdf(myModel);  
fc.SetData(data); fc.SetParameters(myPOU);  
fc.UseAdaptiveSampling(true);  
fc.FluctuateNumDataEntries(false);  
fc.SetNBins(100); // number of points to test per parameter  
fc.SetTestSize(.1);  
ConfInterval* fcint = fc.GetInterval();  

UniformProposal up;  
MCMCCalculator mc;  
mc.SetPdf(w::PC);  
mc.SetData(data);  mc.SetParameters(s);  
mc.SetProposalFunction(up);  
mc.SetNumIters(100000); // steps in the chain  
mc.SetTestSize(.1); // 90% CL  
mc.SetNumBins(50); // used in posterior histogram  
mc.SetNumBurnInSteps(40);  
ConfInterval* mcmcint = mc.GetInterval(); 

RooAbsReal* nll = myModel->createNLL(data) ; 
RooMinuit m(*nll) ; 

m.migrad() ; 

m.hesse() ; 



But you can also look ‘in the box’ and build your own


Offset advanced control over details of statistical!
procedure (use of CLS, choice of test statistic, boundaries…)


High-level tool that constructs the confidence belt




But you can also look ‘in the box’ and build your own


)|( µµ ʹqf
Tool to construct "
test statistic distribution


Offset advanced control over details of statistical!
procedure (use of CLS, choice of test statistic, boundaries…)


The test statistic

to be used for"
the calculation"
of p-values 


)(µµ ʹq



But you can also look ‘in the box’ and build your own


Tool to scan over"
values of μ to find a qμ "
that results in a p-value"
of 0.05 (for 95% C.L.)


Offset advanced control over details of statistical!
procedure (use of CLS, choice of test statistic, boundaries…)




But you can also look ‘in the box’ and build your own


Offset advanced control over details of statistical!
procedure (use of CLS, choice of test statistic, boundaries…)


Optionally choose"
a technique to avoid "
spurious exclusions!
(all at 95% C.L."
 signal excluded"
due to low fluctuation)



Options are "
1) FC-style test stat qμ"
2) CLS: calculate"
    p-value from qμ"
    divide by p-value"
    of bkg hypothesis"
    in scan for 95% point.




But you can also look ‘in the box’ and build your own


Offset advanced control over details of statistical!
procedure (use of CLS, choice of test statistic, boundaries…)


Run calculation"
"
Extract result"
"
"
Make optional plot




RooStats class structure
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Summary

•  RooFit and RooStats allow you to perform advanced statistical data 

analysis

–  LHC Higgs results a prominent example
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•  RooFit provides (almost) limitless "
model building facilities


–  Concept of persistable model workspace allows to 
separate model building and model interpretation


–  HistFactory package introduces structured model 
building for binned  likelihood template models that 
are common in LHC analyses


•  Concept of RooFit Workspace has"
completely restructured HEP analysis"
workflow with ‘collaborative modeling’


•  RooStats provide a wide set of statistical 
tests that can be performed on RooFit 
models


–  Bayesian, Frequentist and Likelihood-based test 
concepts


CMS 

ATLAS 



Full demo of RooFit/RooStats calculation


•  Phase 1 – Build model (here just a Poisson), prepare for use
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RooWorkspace w("w") ; 
 
// Construct a single Poisson model P(N|mu*S+B) 
w.factory("Poisson::model('mu*S+B',mu[1,-1,10],S[10],B[20])") ; 
w.factory("expr::Nexp( (Nobs[0,100],Nexp)") ; 
 
// Construct a dataset containing N=25 
RooDataSet d("d","d",*w.var("Nobs")) ; 
w.var("Nobs")->setVal(25) ; 
d.add(*w.var("Nobs")) ; 
w.import(d,RooFit::Rename("observed_data")) ; 
   
// Construct interpretatation of model used by RooStats 
RooStats::ModelConfig mc("ModelConfig",&w); 
 
// Define the pdf, the parameter of interest and the observables 
mc(*w.pdf("model")); 
mc.SetParametersOfInterest(*w.var("mu")); 
mc.SetObservables.SetPdf (*w.var("Nobs")); 
 
// Define the current value mu (1) as an hypothesis  
mc.SetSnapshot(*w.var("mu")); 
 
// import model in the workspace  
w.import(mc); 
w.writeToFile("model.root") ; 

Poisson::model(Nobs|μS+B)#

f(N|μ) = model#
POI=μ#
obs=Nobs#
#
H1=model(μ=1)#
H0=model(μ=0) [ implicit ]#



Full demo of RooFit/RooStats calculation


•  Phase 2 – Perform limit calculation
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// Retrieve components 
RooWorkspace* w = (RooWorkspace*) f->Get("w") ; 
RooAbsData* data = w->data("observed_data") ; 
RooStats::ModelConfig* sbModel = (RooStats::ModelConfig*) w->obj("ModelConfig") ; 
 
// Construct B-only model (for CLS) as clone of P(N|muS+B) with B=0 
RooStats::ModelConfig* bModel = (RooStats::ModelConfig*) sbModel->Clone("BonlyModel") ; 
RooRealVar* poi = (RooRealVar*) bModel->GetParametersOfInterest()->first(); 
poi->setVal(0) ; 
bModel->SetSnapshot( *poi  ); 
   
// Use calculator based on asymptotic formulas 
RooStats::AsymptoticCalculator  asympCalc(*data, *bModel, *sbModel); 
asympCalc.SetOneSided(true);   
 
// Request 90% C.L. upper limit with CLS technique enabled 
RooStats::HypoTestInverter inverter(asympCalc); 
inverter.SetConfidenceLevel(0.90); 
inverter.UseCLs(true);  
 
// Run interval calculation 
inverter.SetVerbose(false); 
inverter.SetFixedScan(50,0.0,6.0); // set number of points , xmin and xmax  
RooStats::HypoTestInverterResult* result =  inverter.GetInterval(); 
 
// Report results 
cout << 100*inverter.ConfidenceLevel() << "%  upper limit : " << result->UpperLimit() << endl; 
std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl; 
std::cout << " expected limit (median) " << result->GetExpectedUpperLimit(0) << std::endl; 
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit(-1) << std::endl; 
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit(1) << std::endl; 



Full demo of RooFit/RooStats calculation


•  Phase 2 – Perform limit calculation
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// Retrieve components 
RooWorkspace* w = (RooWorkspace*) f->Get("w") ; 
RooAbsData* data = w->data("observed_data") ; 
RooStats::ModelConfig* sbModel = (RooStats::ModelConfig*) w->obj("ModelConfig") ; 
 
// Construct B-only model (for CLS) as clone of P(N|muS+B) with B=0 
RooStats::ModelConfig* bModel = (RooStats::ModelConfig*) sbModel->Clone("BonlyModel") ; 
RooRealVar* poi = (RooRealVar*) bModel->GetParametersOfInterest()->first(); 
poi->setVal(0) ; 
bModel->SetSnapshot( *poi  ); 
   
// Use calculator based on asymptotic formulas 
RooStats::AsymptoticCalculator  asympCalc(*data, *bModel, *sbModel); 
asympCalc.SetOneSided(true);   
 
// Request 90% C.L. upper limit with CLS technique enabled 
RooStats::HypoTestInverter inverter(asympCalc); 
inverter.SetConfidenceLevel(0.90); 
inverter.UseCLs(true);  
 
// Run interval calculation 
inverter.SetVerbose(false); 
inverter.SetFixedScan(50,0.0,6.0); // set number of points , xmin and xmax  
RooStats::HypoTestInverterResult* result =  inverter.GetInterval(); 
 
// Report results 
cout << 100*inverter.ConfidenceLevel() << "%  upper limit : " << result->UpperLimit() << endl; 
std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl; 
std::cout << " expected limit (median) " << result->GetExpectedUpperLimit(0) << std::endl; 
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit(-1) << std::endl; 
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit(1) << std::endl; 

AsymptoticCalculator  . "
calculates p-values"

for given hypothesis μ


CLS ratio divides  "
p(s+b) "

 by p(b)


Hypothesis inverter finds"
intersection of CLS with"

target p-value (0.10) for 90% C.L. "
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Model building 4 
Models with parameters II - 

simultaneous fits, representing 
external information as subsidiary 
measurements (‘profile likelihood 

fits’)




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




So far we’ve only considered the ideal experiment


•  The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement


•  For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial"
"
"
"
"
"
"
"
"



•  So far only considered a single parameter in the likelihood:"
the physics parameter of interest, usually denoted as μ
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment


•  In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest


•  How do you model these uncertainties in the likelihood? 


Wouter Verkerke, NIKHEF


L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions!
are affected by (systematic) uncertainties




Adding parameters to the model


•  We can describe uncertainties in our model by adding new 
parameters of which the value is uncertain


•  These additional model parameters are not ‘of interest’, but we 
need them to model uncertainties à ‘Nuisance parameters’
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏



What are the nuisance parameters of your physics model?


•  Empirical modeling of uncertainties, e.g. polynomial for background, 
Gaussian for signal, is easy to do, but may lead to hard questions"
"



•  Is your model correct? (Is true signal distr. captured by a Gaussian?)

•  Is your model flexible enough? (4th order polynomial, or better 6th)?

•  How do model parameters connect to known detector/theory 

uncertainties in your distribution? 

–  what conceptual uncertainty do your parameters represent?
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )



What information constrains nuisance parameters?


•  Some datasets contain sufficient information to constrain nuisance 
parameters, other do not.
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Example 1 – Shape fit
 Example 2 – Counting experiment


f(x|S,B)=S*Gaussian(x)+B*Uniform(x)
 f(N|S,B)=Poisson(N|S+B)


Sufficient information"
in data to constrain both S,B


Insufficient information"
in data to constrain both S,B"

à Need additional measurement of B




Simultaneous fits / joint likelihoods


•  If >1 measurements exist that constrain (nuisance) parameters,"
can combine information by formulating a joint likelihood"





•  No constraints shapes or forms of Likelihood


–  Can combine counting measurement, shape measurement

–  Likelihoods can have same observables, different observables, all OK

–  Only condition is that parameter have same meaning in all measurements   
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LA(x|S,B)
 LB(y|B)


L(x,y|S,B)A+B = LA(x|S,B)*LB(y|B)




Constraining a nuisance parameter from a control region


•  Solution for Poisson counting measurement P(N|S+B) "
with unconstrained B is to join with "
measurement in a control region that measures B only
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LSIG(Nsig|S,B)=Poisson(Nsig|S+B)
 LCTL=Poisson(NCTL|τ*B)


Ljoint(NSIG,NCTL|S,B)A+B = Poisson(Nsig|S+B)*Poisson(NCTL|τ*B)


Sufficient information in joint Likelihood to solve for both S and B




Constraining parameters from >>1 region


•  Inference from joint likelihood models combines information from 
all measurements that carry information on a given parameter


–  Can also combine many measurements that constrain the same parameter


•  So can also do LSIG1 + LSIG2 +…+ LSIGN instead of LSIG + LCTL"
or any combination of signal and control regions 
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W+b(b) enriched"
control region


Z+b(b) enriched"
control region
Example: !

Higgs channels from ATLAS and CMS, !
along with the background control regions!

All channels measure common !
Higgs signal strength modifier!

(=deviation of expectation from SM)




Splitting signal regions by expected purity


•  Another common strategy that results in >>1 signal region,"
is to split an existing (big) signal region in multiple regions"
that have different expected purity


•  Prototypical problem – MVA classifier sorts observed events by purity

–  If MVA shape is trusted (well understood in simulation) à fit MVA distribution

–  But MVA classification is not well trusted, then what?


•  If another discriminating observable exists (e.g. invariant mass)

–  Train MVA without this observable

–  Fit ‘invariant mass’ in bins of MVA observable "

à Measures signal count independent of MVA prediction

–  Exploits difference in purity across MVA prediction range  

without relying on its predicted distribution


Wouter Verkerke, NIKHEF




Visualization of signal region splitting


•  Split data in regions by BDT score, fit each region with inv. mass


fbin−i (m | S,B) =
S
fsig
bin−i

fS (m)+ Bbin−i fB (s)

(S / fsig
bin−i )

(S / fsig
bin−i )+ B

BDT bin


Fitted purity"
in each bin


Scale factor that ensures"
that every bin interprets "
S as the total signal yield




Visualization of signal region splitting


•  Split data in regions by BDT score, fit each region with inv. mass


fbin−i (m | S,B) =
S
fsig
bin−i

fS (m)+ Bbin−i fB (s)

(S / fsig
bin−i )

(S / fsig
bin−i )+ B

BDT bin


Fitted purity"
in each bin


Scale factor that ensures"
that every bin interprets "
S as the total signal yield


fbin−0 (m | S,B0 ) =
S
fsig
bin−0

fS (m)+ Bbin−0 fB (s)

fbin−1(m | S,B1) =
S
fsig
bin−1

fS (m)+ Bbin−1 fB (s)

fbin−2 (m | S,B2 ) =
S
fsig
bin−2

fS (m)+ Bbin−2 fB (s)

fbin−3(m | S,B3) =
S
fsig
bin−3

fS (m)+ Bbin−3 fB (s)

fbin−N (m | S,BN ) =
S
fsig
bin−N

fS (m)+ Bbin−N fB (s)

f (m,nBDT | S,
!
B) = lookup(nBDT )

!

Joint PDF for "
this model


// Construct template model 
w.factory("SUM::fit_template(prod(Nsig[30,0,100],frac[1])*sig1, 
                                       Nbkg[1000,0,10000]*bkg1)") ; 
 
// Construct joint model from template clones 
w.factory("SIMCLONE::fitmodel(fit_template, 
                              $SplitParam({Nbkg,frac},bdtBin))") ; 



The imperfect experiment


•  When relying on simulation templates to build models, a whole 
world of problems awaits when considering that simulation 
predictions have many systematic uncertainties associated with 
them?


Wouter Verkerke, NIKHEF


L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions!
are affected by (systematic) uncertainties




The simulation workflow and origin of uncertainties
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Simulation of high-energy"
physics process


Simulation of ‘soft physics’"
physics process


Simulation of ATLAS"
detector


Reconstruction "
of ATLAS detector


LHC data


An
aly

sis
 E

ve
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 s
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Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% for jets with pT<40”"




•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty”

–  “Evaluate the effect of using Herwig and Pythia and consider the difference "

the systematic uncertainty”"



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties in MC samples 
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What can you do with systematic uncertainties


•  As most of the typical systematic prescriptions have no immediately 
apparent parametric formulation in your likelihood, common approach 
is ‘vary setting, rerun analysis, observe the difference’ 


•  This common ‘naïve’ approach to assess effect of systematic 
uncertainties amounts to simple error propagation


•  Error propagation procedure in a nutshell

–  Make nominal measurement (using your favorite statistical inference procedure)

–  Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1 

sigma’ up and down ) Redo measurement procedure for each shift

–  Consider propagated effect of shifted setting the systematic uncertainty"



"
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µ = µnom ±σ stat ± (µsyst
up −µsyst

down ) / 2±...

From statistical!
analysis


Systematic uncertainty!
from error propagation




Pros and cons of the ‘naïve’ approach


•  Pros

–  It’s easy to do

–  It results in a seemingly easy-to-interpret table of systematics


•  Cons

–  Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored

–  Magnitude of stated systematic uncertainty may be incompatible with 

measurement result à Completely ignored 

–  You lost the connection with fundamental statistical techniques "

(i.e. evaluation of systematic uncertainties is completely detached from 
statistical procedure used to estimate physics quantity of interest) à No 
prescription to make confidence intervals, Bayesian posteriors etc in this way


–  No calibrated probabilistic statements possible (95% C.L.)


•  ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 
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Everything starts with the likelihood


•  All fundamental statistical procedures are based on the likelihood 
function as ‘description of the measurement’


Frequentist statistics 


Confidence interval on s# Posterior on s# s = x ± y#

Bayesian statistics 
 Maximum Likelihood


Nobs e.g. L(15|s=0)#
e.g. L(15|s=10)#



Everything starts with the likelihood
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Frequentist statistics 


Confidence interval#
or p-value#

Posterior on s#
or Bayes factor#

s = x ± y#

Bayesian statistics 
 Maximum Likelihood


λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!



Introducing uncertainties – a non-systematic example


•  The original model (with fixed b)


•  Now consider b to be uncertain"
"



•  The experimental data contains insufficient to constrain both"
s and b à Need to add an additional measurement to constrain b
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s=0 

s=5 

s=10 
s=15 

L(N|s) à L(N|s,b)




The sideband measurement


•  Suppose your data "
in reality looks like this è "
"
"
"
"
Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space "



•  Full likelihood of the measurement (‘simultaneous fit’)


LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents "
the amount of bkg is the SR. "
"
Scale factor τ accounts for difference "
in size between SR and CR


Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR
 SR


“Background uncertainty constrained from the data”




Generalizing the concept of the sideband measurement


•  Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’"
"
 


•  Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty 
 
 
 
 
 



–  We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement
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Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’


‘Subsidiary measurement’"
of background rate


Generalize: ‘sideband’ à ‘subsidiary measurement’#



What is a systematic uncertainty?


•  Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.


–  E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” "
does not discuss systematic uncertainties at all"



•  A common definition is

–  “Systematic uncertainties are all uncertainties that are "

not directly due to the statistics of the data”"



•  But the notion of ‘the data’ is a key source of ambiguity: 

–  does it include control measurements?

–  does it include measurements that were used to perform basic "

(energy scale) calibrations?
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Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% "

 for jets with pT<40”"



•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 "

and 2.0 and consider the difference "
the systematic uncertainty”


–  “Evaluate the effect of using "
Herwig and Pythia and consider the difference "
the systematic uncertainty”"



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties"

in MC samples 
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Subsidiary measurement"
is an actual measurement"
à conceptually similar to "
    a ‘sideband’ fit


Subsidiary measurement"
unclear, but origin of"
prescription may well"
be another measurement

(if yes, like sideband, if"
 no, what is source of info?)


Subsidiary measurement"
is a Poisson counting"
experiment (but now in"
MC events), otherwise"
conceptually identical to"
a ‘sideband fit’




Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% "

 for jets with pT<40”"



•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 "

and 2.0 and consider the difference "
the systematic uncertainty”


–  “Evaluate the effect of using "
Herwig and Pythia and consider the difference "
the systematic uncertainty”"



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties"

in MC samples 
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Subsidiary measurement"
is an actual measurement"
à conceptually to "
    a ‘sideband’ fit


Subsidiary measurement"
unclear, but origin of"
prescription may well"
be another measurement

(if yes, like sideband, if"
 no, what is source of info?)


Subsidiary measurement"
is a Poisson counting"
experiment (but now in"
MC events), otherwise"
conceptually identical to"
a ‘sideband fit’


Almost all systematic uncertainties are similar in nature 
to ‘sidebands’ measurements of some form or shape#


à Can always model systematics like sidebands "
     in the Likelihood



And even when the are not the (in)direct result of "
some measurement (certainty theory uncertainties)"
we can still model them in that form






Modeling a detector calibration uncertainty


•  Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 


L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)


Observed event count


Nominal background "
expectation from MC"
(a constant), obtained"
with a=a˜


Response function#
for JES uncertainty#
(a 1% JES change "

results in a 2% "
acceptance change)


“Subsidiary measurement”

Encodes ‘external knowledge’ "
on JES calibration


Nominal calibration

Assumed calibration


Uncertainty"
on nominal"
calibration"
(here 5%)#

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty


•  Simplify expression by renormalizing “subsidiary measurement”
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L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)


Observed event count


Nominal background "
expectation from MC"
(a constant)


Response function 
for normalized JES  

parameter"
[a unit change in α "

– a 5% JES change –  "
still results in a 10% "
acceptance change]


“Normalized #
subsidiary measurement”#
#
The scale of parameter 
α is now chosen such that  
values ±1 corresponds to the  
nominal uncertainty 
(in this example 5%) 

Gauss( α |α,σα )



The response function as empirical model of full simulation


•  Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain


–  But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming


–  Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation


–  For example run at nominal JES and with JES shifted up and down by ±5%
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L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α


b(
α)



-1
  0
  +1
 0.9


1.0


1.1


Full MC result for JES at -5%


Full MC result for JES at +5%

Empirical approximation!
of true response




What is a systematic uncertainty?


•  It is an uncertainty in the Likelihood of your physics measurement"
that is characterized deterministically, up to a set of parameters,"
of which the true value is unknown.


•  A fully specified systematic uncertainty defines 

–  1: A set of one or more parameters "

    of which the true value is unknown, 

–  2: A response model that describes the effect of those "

    parameters on the measurement"
    (sampled from full simulation, and interpolation)


–  3: A subsidiary measurement of the parameters"
    that constrains the values the parameters can take"
    (implies a specific distribution: Gaussian (default, CLT),"
     Poisson (low-stats counting), or otherwise)
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Names and conventions – ‘profiling’ & ‘constraints’


•  The full likelihood function of the form "
"
"
"
is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way


–  Note: statisticians use the word profiling for something else


•  Physicists often refer to the subsidiary measurement as a 
‘constraint term’


–  This is correct in the sense that it constrains the parameter α, but this labeling 
commonly lead to mistaken statements (e.g. that it is a pdf for α)


–  But it is not a pdf in the NP
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L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)



Names and conventions


•  The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point


–  The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure


–  In a perfect world, not bound by technical modelling constraints"
you would use this likelihood"
"
"
"
where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.


•  Since we are bound by technical constrains, we substitute LJES 
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same
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L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



Gamma and logNormal distributions
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Gamma distribution 
=distribution of µ resulting from 
a Poisson measurement L(N|µ) 

logNormal distribution 



MC statistical uncertainties as systematic uncertainty


•  Another example of modeling a systematic uncertainty:"
MC statistical uncertainty


•  Follow same procedure again as before: 

–  Define response function (this is trivial for MC statistics: "

it is the luminosity ratio of the MC sample and the data sample)

–  Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process

–  Construct full likelihood (‘profile likelihood’)


•  Note uncanny similarity to full likelihood of a sideband measurement! 
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L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)


L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



Modeling multiple systematic uncertainties


•  Introduction of multiple systematic uncertainties presents no 
special issues


•  Example JES uncertainty plus generator ISR uncertainty




•   A brief note on correlations


–  Word “correlations” often used sloppily – proper way is to think of correlations 
of parameter estimators. Likelihood defines parameters αJES, αISR. "
The (ML) estimates of these are denoted


–  The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)


–  The ML estimators of               using the full Likelihood may be correlated."
This is due to physics modeling effects encoded in the joint response function 
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L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function"
for both systematics


One subsidiary"
measurement for each 

source of uncertainty


α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels


•  Systematic effects that affect multiple measurements should be 
modeled coherently.


–  Example – Likelihood of two Poisson counting measurements


–  Effect of changing JES parameter αJES coherently affects both measurement.

–  Magnitude and sign effect does not need to be same, this is dictated by the 

physics of the measurement 
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L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response "
function for "
channel A


JES response 

function for "
channel B


JES"
subsidiary"

measurement




Introducing response functions for shape uncertainties 


•  Modeling of systematic uncertainties in Likelihoods describing 
distributions follows the same procedure as for counting models


–  Example: Likelihood modeling "
distribution in a di-lepton invariant"
mass. POI is the signal strength μ"






•  Consider a lepton energy scale "
systematic uncertainty that affects this measurement


–  The LES has been measured with a 1% precision

–  The effect of LES on mll has been determined to a 2% shift for 1% LES change
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L( mll |µ) = µ ⋅Gauss(mll
(i), 91,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Response function
 Subsidiary measurement




Response modeling for distributions


•  For a change in the rate, response "
modeling of histogram-shaped "
distribution is straightforward:"
simply scale entire distribution#



•  But what about a systematic uncertainty that shifts the mean,"

or affects the distribution in another way?
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L(
!
N |µ) = Poisson(

i
∏ Ni |µ !si + !bi )

L(
!
N |µ,α) = Poisson(

i
∏ Ni |µ !si ⋅ (1+3.75α)+ !bi ) ⋅Gauss(0 |α,1)

Response function"
for signal rate


Subsidiary "
measurement




Modeling of shape systematics in the likelihood


•  Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain


–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ "
settings of systematic effect


•  Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 
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‘-1σ’
 ‘nominal’
 ‘+1σ’




Need to interpolate between template models


•  Need to define ‘morphing’ algorithm to define "
distribution s(x) for each value of α
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s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Piecewise linear interpolation


•  Simplest solution is piece-wise linear interpolation for each bin
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Piecewise linear"
interpolation"
response model"
for a one bin


Extrapolation to |α|>1


Kink at α=0


Ensure si(α)≥0




Visualization of bin-by-bin linear interpolation of distribution
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x
α




There are other morphing algorithms to choose from
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Vertical"
Morphing


Horizontal"
Morphing


Moment"
Morphing


Gaussian"
varying"
width


Gaussian"
varying"
mean


Gaussian

to"

Uniform"
(this is"

conceptually ambigous!)


n-dimensional"
morphing?
 ✔ ✗ ✔ 



Piece-wise interpolation for >1 nuisance parameter


•  Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.


–  Difficult to visualize effect on full distribution, but easy to understand concept 
at the individual bin level


"
"
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Visualization of 2D interpolation




Shape, rate or no systematic?


•  Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)


–  Example morphing of a very subtle change in the background model

–  Is this a meaningful new degree of freedom in the likelihood model?


–  A χ2 or KS test between"
nominal and alternate"
template can help to decide "
if a shape uncertainty is meaningul


–  Most systematic uncertainties"
affect both rate and shape, but can make"
independent decision on modeling rate (which less likely to affect fit stability)
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Fit stability due to insignificant shape systematics


•  Shape of profile likelihood in NP α clearly raises two points


•  1) Numerical minimization process will be ‘interesting’

•  2) MC statistical effects induce strongly defined minima that are fake


–  Because for this example all three templates were sampled from the same parent 
distribution (a uniform distribution)
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+ à 
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)



Recap on shape systematics & template morphing 


•  Implementation of shape systematic in "
likelihoods modeling distributions conceptually "
no different that rate systematics in counting "
experiments


•  For template modes obtained from MC simulation template 
provides a technical solution to implement response function


–  Simplest strategy piecewise linear interpolation,"
but only works well for small changes


–  Moment morphing better adapted to modeling"
of shifting distributions


–  Both algorithms extend to n-dimensional"
interpolation to model multiple systematic NPs"
in response function


–  Be judicious in modeling ‘weak’ systematics:"
MC systematic uncertainties will dominate likelihood
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L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)



Example 1: counting expt


•  Will now demonstrate how to "
construct a model for a "
counting experiment with"
a systematic uncertainty
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  // Subsidiary measurement of alpha 
  w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ; 
 
 // Response function mu(alpha) 
  w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;   
 
  // Main measurement  
  w.factory(“Poisson::p(N[0,10000],mu)”); 
   
  // Complete model Physics*Subsidiary 
  w.factory(“PROD::model(p,subs)”) ; 
 

L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)



Example 2: unbinned L with syst. 


•  Will now demonstrate how to "
code complete example of"
the unbinned profile likelihood "
of Section 5:
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L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES ),1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

 
  // Subsidiary measurement of alpha 
  w.factory(“Gaussian::subs(0,alpha[-5,5],1)”); 
   
  // Response function m(alpha) 
  w.factory(“expr::m_a(“m*(1+2alpha)”,m[91,80,100],alpha)”) ;   
 
  // Signal model 
  w.factory(“Gaussian::sig(x[80,100],m_a,s[1])”) 
 
  // Complete model Physics(signal plus background)*Subsidiary 
  w.factory(“PROD::model(SUM(mu[0,1]*sig,Uniform::bkg(x)),subs)”) ; 
 



Example 3 : binned L with syst


•  Example of template morphing"
systematic in a binned likelihood
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L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m) ; 
 
 // Construct template models from histograms 
 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“HistFunc::s_p(x,hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 
 // Construct morphing model 
 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct full model 
 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 



Other uncertainties in MC shapes – finite MC statistics 


•  In practice, MC distributions used for template fits have finite 
statistics."
"
"
"
"
"
"
"
"
"
"
"



•  Limited MC statistics represent an uncertainty on your model "
à how to model this effect in the Likelihood?
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Other uncertainties in MC shapes – finite MC statistics 


•  Modeling MC uncertainties: each MC bin has a Poisson uncertainty

•  Thus, apply usual ‘systematics modeling’ prescription.  

•  For a single bin – exactly like original counting measurement 


Lbin−i (µ) = Poisson(Ni |µ ⋅ !si + !bi )

Lbin−i (µ, si,bi ) = Poisson(Ni |µ ⋅ si + bi )
⋅Poisson(Ni

MC−s | si )
⋅Poisson(Ni

MC−b | bi )

Fixed signal, bkg MC prediction


Signal, bkg "
MC nuisance params


Subsidiary measurement for signal MC"
(‘measures’ MC prediction si with Poisson uncertainty)




Nuisance parameters for template statistics


•  Repeat for all bins


•  Result: accurate model for MC statistical uncertainty, but lots of 
nuisance parameters (#samples x #bins)...


L(
!
N |µ) = P(Ni |µ ⋅ !si + !bi )

bins
∏

L(
!
N |µ, !s,

!
b) = P(Ni |µ ⋅ si + bi )

bins
∏ P(!si | si

bins
∏ ) P( !bi | bi

bins
∏ )

Binned likelihood "
with rigid template


Response function"
w.r.t. s, b as parameters


2x Nbins subsidiary "
measurements"
of s ,b from s~,b~




The effect of template statistics


•  When is it important to model the effect of template "
statistics in the likelihood


–  Roughly speaking the effect of template statistics becomes "
important when Ntempl< 10x Ndata (from Beeston & Barlow)


•  Measurement of effect of template statistics in "
previously shown toy likelihood model, where"
POI is the signal yield"
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‘model 2 – Beeston-Barlow likelihood’

‘model 1 – plain template likelihood’


NMC=Ndata


NMC=10Ndata


Note that even at"
NMC=10Ndata"
uncertainty on POI "
can be underestimated"
by 10% without BB




Reducing the number NPs – Beeston-Barlow ‘lite’ 


•  Another approach that is being used is called ‘BB’ – lite

•  Premise: effect of statistical fluctuations on sum of templates is 

dominant à Use one NP per bin instead of one NP per 
component per bin  


L(

N | n) = P(Ni | ni )

bins
∏ P(si + bi | ni

bins
∏ )

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

Response function"
w.r.t. n as parameters


Subsidiary measurements"
of n from s~+b~


Normalized NP lite model (nominal value of all γ is 1)


L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )

‘Beeston-Barlow’


‘Beeston-Barlow lite ’




The interplay between shape systematics and MC systematics


•  Best practice for template morphing models is to also include effect 
of MC systematics


•  Note that that for every ‘morphing systematic’ there is an set of two 
templates that have their own (independent) MC statistical 
uncertainties.


–  A completely accurate should model MC stat uncertainties of all templates"
"
"



•  But has severe practical problems

–  Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous 

number of NP models with only a handful of shape systematics…
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L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) P(

bins
∏ si

− | si
− ) P(

bins
∏ si

0 | si
0 ) P(

bins
∏ si

+ | si
+ )

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Morphing response function
 Subsidiary measurements




The interplay between shape systematics and MC systematics


•  Commonly chosen "
practical solution"
"
"
"



•  Approximate MC template statistics already significantly improves 
influence of MC fluctuations on template morphing


–  Because ML fit can now ‘reweight’ contributions of each bin 
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L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Morphing & MC response function"
"
Models relative MC rate uncertainty for each bin w.r.t the nominal 
MC yield, even if morphed total yield is slightly different


Subsidiary measurements


without BB-L

with BB-L




Pruning complexity – MC statistical for selected bins


•  Can also make decision to model MC statistical uncertainty on a 
bin-by-bin basis


–  No modeling for high statistics bins

–  Explicit modeling for low-statistics bins
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L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

low−stats bins
∏ )) δ(γ i )

hi−stats bins
∏



Adapting binning to event density


•  Effect of template statistics can also be controlled by rebinning 
data such all bins contain expected and observed events


–  For example choose binning such that expected background has a uniform 
distribution (as signals are usually small and/or uncertain they matter less)
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Example 4 – Beeston-Barlow light


•  Beeston-Barlow-(lite) modeling"
of MC statistical uncertainties
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L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

// Import template histogram in workspace 
 w.import(hs) ; 
 
// Construct parametric template models from histograms 
// implicitly creates vector of gamma parameters 
 w.factory(“ParamHistFunc::s(hs)”) ; 
  
 // Product of subsidiary measurement 
 w.factory(“HistConstraint::subs(s)”) ;  
 
 // Construct full model 
 w.factory(“PROD::model(s,subs)”) ; 



Example 5 – BB-lite + morphing


•  Template morphing model"
with Beeston-Barlow-lite"
MC statistical uncertainties


L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m,hb) ; 
 
 // Construct parametric template morphing signal model 
 w.factory(“ParamHistFunc::s_p(hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct parametric background model (sharing gamma’s with s_p) 
 w.factory(“ParamHistFunc::bkg(hb,s_p)”) ; 
 
 // Construct full model with BB-lite MC stats modeling 
 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]), 
            HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ; 


