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Inference with parameters:
maximum likelihood, confidence
Intervals, upper limits, likelihood
ratio and asymptotic formulae
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What can we do with composite hypothesis

e \With simple hypotheses — inference is restricted to making
statements about P(D|hypo) or P(hypo|D)

e \With composite hypotheses — many more options

e 1 Parameter estimation and variance estimation
— What is value of s for which the observed data is most probable? ]_ =55+ 13

— What is the variance (std deviation squared) in the estimate of s?
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Interval estimation with fundamental methods

e (Can also construct parameters intervals using ‘fundamental’
methods explored earlier (Bayesian or Frequentist)

e (Construct Confidence Intervals or Credible Intervals with defined
probabilistic meaning, independent of assumptions on normality of
distribution (Central Limit Theorem) - “95% C.L.”

e \With fundamental methods you greater flexibility in types of
interval. E.g when no signal observed - usually wish to set an
upper limit (construct ‘upper limit interval’)
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Reminder - the Likelihood as basis for hypothesis testing

A probability model allows us to calculate
the probability of the observed data under a hypothesis

This probability is called the Likelihood

s=0

.,20.09
c T
§oos P(n|s+b) = (s+b) (5+b)
&£0.07 n!
0.06 §=9

P(obs|theo)

Is called the

Likelihood
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Reminder - Frequentist test statistics and p-values

e Definition of ‘p-value’: Probability to observe this outcome or more
extreme in future repeated measurements is x%, if hypothesis is

true

¢ Note that the definition of p-value assumes an explicit ordering of
possible outcomes in the ‘or more extreme’ part
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P-values with a likelihood ratio test statistic

e \With the introduction of a (likelihood ratio) test statistic, hypothesis
testing of models of arbitrary complexity is now reduced to the
same procedure as the Poisson example

Pro_jgction of h1

- LN )
L(NIH,)

e Except that we generally
don’t know distribution f(A). ..

o lIII|IIII|IllllIlll|III|||III|IIII|IIII|III

log(A)

p—value = jf(AIHb)

obs



A different Likelihood ratio for composite hypothesis testing

On composite hypotheses, where both null and alternate
hypothesis map to values of y, we can define an alternative
likelihood-ratio test statistics that has better properties

Hypothesis

‘simple hypothesis’ ‘composite hypothesis’ u that is being
— tested
)L(N)=L(N|H) » A( )_L(N|M)
L(NH,) T LN Q)

‘Best-fit value’

Advantage: distribution of new A, has known asymptotic form

Wilks theorem: distribution of —log(A ) is asymptotically distribution
as a x* with N, degrees of freedom”

*Some regularity conditions apply

- Asymptotically, we can directly calculate p-value from )\UObS

Wouter Verkerke, NIKHEF



What does a ¥ distribution look like for n=17
e Note that it for n=1, it does not peak at 1, but rather at O...
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Composite hypothesis testing in the asymptotic regime

e [or ‘histogram example’: what is p-value of null-hypothesis

‘likelihood assuming zero signal strength’

L(datal u=0)

t, =—2In (lis best fit
O VaN
L(data | M)/ value of |
‘likelihood of best fit’
On signal-like data t, is large ~logu

00

Events /(1)

Distribution of test statistic value
for data obtained under s=0 hypothesis

80-
C f(Als=0) Y Test statistic
A(N(,,,_\.) value for

60F observed data

i p-value

/

t
Wilks: f(A\|0) = 2 distribution

P-value = TMath::Prob(34.77,1)
=3.7x10°
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Composite hypothesis testing in the asymptotic regime

e [or ‘histogram example’: what is p-value of null-hypothesis

‘likelihood assuming zero signal strength’
L(datal u=0) N
I, = —21In ~——— H is best fit
L(datal u) value of

‘likelihood of best fit’

On signal-like data t, is large On background-like data t, is small
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How quickly does (A, ) converge to its asymptotic form

e Pretty quickly —

Here is an example of likelihood function Here is an example for event
for 10-bin distribution with 200 events counting at various s,b
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From hypothesis testing to confidence intervals

e Next step for composite hypothesis is to go from p-values for a
hypothesis defined by fixed value of p to an interval statement on u

e Definition: A interval on u at X% confidence level is defined such that
the true of value of 1 is contained X% of the time in the interval.

— Note that the output is not a probabilistic statement on the true s value

— The true pis fixed but unknown — each observation will result in an estimated
interval [u_,u,]. X% of those intervals will contain the true value of p

— Coverage = guarantee that probabilistic statements is true (i.e. repeated future
experiments do reproduce results in X% of cases)

e Definition of confidence intervals does not make
any assumption on shape of interval

- Can choose one-sided intervals (‘limits’),
two-sided intervals (‘measurements’),
or even disjoint intervals (‘complicated measurements’)
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Exact confidence intervals — the Neyman construction

e Simplest experiment: one measurement (x), one theory parameter (6)

e [or each value of parameter 6, determine distribution in in observable
X

f(x16)
A

observable x —
T




How to construct a Neyman Confidence Interval

e Focusonaslicein®

— For a 1-a% confidence Interval, define acceptance interval
that contains 100%-a% of the distribution

pdf for observable x
given a parameter value 6,

A
f(x]0o)

observable x
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How to construct a Neyman Confidence Interval

e Definition of acceptance interval is not unique
- Choose shape of interval you want to set here.
— Algorithm to define acceptance interval is called ‘ordering rule’

4 pdf for observable x given a parameter value 6,

f(x]6o)

Lower Limit

observable x

fx|6o)

Central Interval

Other options, are e.g.
‘symmetric’ and ‘shortest’

>
observable X | .. \r




How to construct a Neyman Confidence Interval

e Now make an acceptance interval in observable x
for each value of parameter 6

f(x|0)
4

>

observable x
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How to construct a Neyman Confidence Interval

e This makes the confidence belt

f (9i|9)

>

observable x
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How to construct a Neyman Confidence Interval

e [his makes the confidence belt

>
/ observable x
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How to construct a Neyman Confidence Interval
e The confidence belt can constructed in advance of any measurement,
it is a property of the model, not the data

e (Given a measurement x,, a confidence interval [8,,0 ] can be
constructed as follows

e Theinterval [B,6,] has a 68% probability to cover the true value

\

>

observable x

\Wouter Verkerke, NIKHEF



What confidence interval means & concept of coverage

e A confidence interval is an interval on a parameter that contains
the true value X% of the time

e This is a property of the procedure, and should e interpreted in
the concept of repeated identical measurements:

Each future measurement will result a confidence interval that has
somewhat different limits every time
(‘confidence interval limits are a random variable’)

But procedure is constructed such that true value is in X% of the
Intervals in a series of repeated measurements

(this calibration concept is called ‘coverage’. The Neyman
constructions guarantees coverage)

e |t is explicitly not a probability statement on the true value you
are trying to measure. In the frequentist the true value is fixed (but
unknown)
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On the interpretation of confidence intervals

Why isn’t everyone a Bayesian ?

My suspicion: it is because most people do not understand the frequentist
approach. Frequentist statements and Bayesian statements are thought to

be about the same logical concept, and the frequentist statement does not
require a prior, so ...

A. L. Read, Presentation of search results: the CLg technique, J. Phys. G: Nucl. Part. Phys. 28
(2002) 2693-2704.

nearly all physicists tend to misinterpret frequentist results as statements
about the theory given the data.

Frequentist statements are not statements about the model — only about

the data in the context of the model. This is not what we wanted to know
... At least not the ultimate statement.

SOS 12
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The confidence interval — Poisson counting example

e Given the probability model for Poisson counting example: for
every hypothesized value of s, plot the expected distribution N

Confidence belt for Confidence belt for
68% and 90% central intervals 68% and 90% lower limit
Foe! ‘ )
= central -
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The confidence interval — Poisson counting example

e Given confidence belt and observed data, confidence interval on
parameter is defined by belt intersection

Confidence belt for Confidence belt for
68% and 90% central intervals 68% and 90% lower limit

II|III]IIIlI7IIII|IIIl[IIII|I]IIIIIIIlIIIIlIl[I 3 i’
0510152(:!2530354045500 0 5 10 15 20 25 30 35 40 45 50

N X N "

obs

obs
Central interval on s at 68% C.L. Lower limit on s at 90% C.L.



Confidence intervals using the Likelihood Ratio test statistic

¢ Neyman Construction on Poisson counting looks like ‘textbook’ belt.

e |n practice we’ll use the Likelihood Ratio test statistic to summarize the
measurement of a (multivariate) distribution for the purpose of hypothesis

testing.

e Procedure to construct belt with LR is identical:
obtain distribution of A for every value of p to construct confidence belt

X=3.2 A (X, )
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The asymptotic distribution of the likelihood ratio test statistic

e (Given the likelihood ratio

=-2logA,(x)=-2log iii:ﬁ;

Q: What do we know about asymptotic distribution of A(u)?

e A: Wilks theorem = Asymptotic form of f(t|u) is a x2 distribution

ft,Ib) = x(t..n)
Where

U is the hypothesis being tested and
n is the number of parameters (here 1: u )

* Note that f(t |u) is independent of p!
— Distribution of t, is the same for every “horizontal slice” of the belt
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Confidence intervals using the Likelihood Ratio test statistic

e Procedure to construct belt with LR is identical:
obtain distribution of A for every value of p to construct belt

~

parameter u
|
parameter u
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What does the observed data look like with a LR?

e Note that while belt is (asymptotically) independent of parameter p,
observed quantity now is dependent of the assumed p

t,(X,)
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Connection with likelihood ratio intervals

e If you assume the asymptotic distribution for t,
— Then the confidence belt is exactly a box

— And the constructed confidence interval can be simplified
to finding the range in u where t =272

—> This is exactly the MINOS error

FC interval with Wilks Theorem MINOS / Likelihood ratio interval
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Recap on confidence intervals

Confidence intervals on parameters are constructed

to have precisely defined probabilistic meaning

— This is different from parameter variance estimates

This calibration is called “coverage”

The Neyman Construction has coverage by construction

(or Bayesian methods) that don’t have (a guaranteed) coverage

For most realistic models confidence intervals are calculated using
(Likelihood Ratio) test statistics to define the confidence belt

Asymptotic properties

In the asymptotic limit (Wilks theorem),
Likelihood Ratio interval converges to a
Neyman Construction interval

(with guaranteed coverage) “Minos Error”
NB: the likelihood does not need to be
parabolic for Wilks theorem to hold

Separately, in the limit of normal distributions the
likelihood becomes exactly parabolic and

the ML Variance estimate converges to

the Likelihood Ratio interval
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Bayesian inference with composite hypothesis

e \With change L->L(u) the prior and posterior model probabilities
become probability density functions

P(H | N) = L(N | Hs+b)P(Hs+b)

s+ L(NI|H,,)P(H,,)+L(N|H,)P(H,)
? > H

Hb Hs+/o

Pl Wy = — LV P W)

[ LN 1 w)P(u)du
Posterior Prior
probability density probability density

P(uIN)ox L(N | u)P(u)

. . B iy . \/A\’,”O Jter \v/ Srkar
NB: Likelihood is not a probability density Wouter Verkerks, NIKHEF



Bayesian credible intervals

e [rom the posterior density function, a credible interval can be
constructed through integration

Posterior on Posterior on p
‘go.o:i:— go,o4}
g F § F
D035~ B.035
e F ek
0.03— 0.03:_
0-0255— o.ozsf—
0‘025— o.ozf—
0~015E— 0.0153—
0'015— o.oé—
0.0055— 0'0052_
X L X
95% credible central interval 95% credible upper limit

¢ Note that Bayesian interval estimation require no minimization
of —logL, just integration Wouter Verkerke, NIKHEF



Bayesian parameter estimation

e Bayesian parameter estimate is the posterior mean

e Bayesian variance is the posterior variance

o
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Choosing Priors

e As for simple models, Bayesian inference always in involves a prior
—> NOW a prior probability density on your parameter

e \When there is clear prior knowledge, it is usually straightforward to
express that knowledge as prior density function

— Example: prior measurement of y =50 + 10

_§o.09;—
50.081 posterior
%om;— P(u[x0)
0.06F
o -
0.05F-
0.04F o
o likelihood
o.ozi— L(XO“J)
0.012—
O =16"""20"""30"""20 30" "s0 " 70— "80 90400

X

— Posterior represents updated belief 2 It incorporates information from
measurement and prior belief

— But sometimes we only want to publish result of this experiment, or there is no prior

information. What to do?
Wouter Verkerke, NIKHEF



Choosing Priors

Common but thoughtless choice: a flat prior

— Flat implies choice of metric. Flat in x, is not flat in x2

distribution in p

o
> o
N ®

ojegtlon Oof prior
.g §

=

P

0.05

0.04

0.03

0.02

0.01
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posterior

p([x0)

likelihood
L(X0|U)

QO

distribution in p?

posterior
P’ [X)

likelihood
L(Xo/1")

Flat prior implies choice on of metric

— A prior that is flat in p is not flat in p?

(..

A L 4 IS I B N I U P
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
y

‘Preferred metric’ has often no clear-cut answer.
(E.g. when measuring neutrino-mass-squared, state answer in m or m?)

In multiple dimensions even complicated (prior flat in X,y or is prior flat in r,®?)

\Wouter Verkerke, NIKHEF



Is it possible to formulate an ‘objective’ prior?

e (Can one define a prior p(u) which contains as little information as
possible, so that the posterior pdf is dominated by the likelihood?

— A bright idea, vigorously pursued by physicist Harold Jeffreys in in
mid-20thcentury:

— This is a really really thoughtless idea, recognized by Jeffreys as such, but
dismayingly common in HEP: just choose p(u) uniform in whatever metric you
happen to be using!

o “Jeffreys Prior” answers the question using a prior uniform in a
metric related to the Fisher information.

82

—log f(x16

Py gf(x16)

1(0)=-E 0

— Unbounded mean p of gaussian: p(u) = 1

— Poisson signal mean p, no background: p(u) = 1//u

e Many ideas and names around on non-subjective priors
— Advanced subject well beyond scope of this course.

— Many ideas (see e.g. summary by Kass & Wasserman),

V much an N ive in ar fr rch
but very much an open/active in area of researc e e



Sensitivity Analysis

e Since a Bayesian result depends on the prior probabilities, which are
either personalistic or with elements of arbitrariness, it is widely

recommended by Bayesian statisticians to study the sensitivity of the
result to varying the prior.

e Sensitivity generally decreases with precision of experiment
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X

e Some level of arbitrariness — what variations to consider in sensitivity

analysis Wouter Verkerke, NIKHEF



Likelihood Principle

e As noted above, in both Bayesian methods and likelihood-ratio
based methods, the probability (density) for obtaining the data at
hand is used (via the likelihood function), but probabilities for
obtaining other data are not used!

e |n contrast, in typical frequentist calculations (e.g., a p-value which
IS the probability of obtaining a value as extreme or more extreme
than that observed), one uses probabilities of data not seen.

e This difference is captured by the Likelihood Principle”:
If two experiments yield likelihood functions which are

proportional, then Your inferences from the two experiments
should be identical.

Wouter Verkerke, NIKHEF
[B.Cousins HPCP]



The “Karmen Problem”

Simple counting experiment:

— You expected precisely 2.8 background events —
with a Poisson distribution

— You count the total number of observed events N=s+b

— You make a statement on s, given N, and b=2.8

obs
You observe N=0!

— Likelihood: L(s) = (s+b)° exp(-s-b) / O! = exp(-s) exp(-b)
Likelihood —based intervals

— LR(s) = exp(-s) exp(-b)/exp(-b)= exp(-s) = Independent of b!

— Bayesian integral also independent of factorizing exp(-b) term

So for zero events observed, likelihood-based inference about
signal mean s is independent of expected b.

For essentially all frequentist confidence interval constructions, the
fact that n=0 is less likely for b=2.8 than for b=0 results in
narrower confidence intervals for p as b increases.

— Clear violation of the L.P.




Likelihood Principle Example #2

¢ Binomial problem famous among statisticians

e Translated to HEP: You want to know the trigger efficiency e.

You count until reaching n=4000 zero-bias events,
and note that of these, m=10 passed trigger.

Estimate e = 10/4000, compute binomial confidence interval for e.

Your colleague (in a different sample!) counts zero-bias events until m=10
have passed the trigger. She notes that this requires n=4000 events.

Intuitively, e=10/4000 over-estimates e because she stopped just upon reaching 10
passed events. (The relevant distribution is the negative binomial.)

e Each experiment had a different stopping rule. Frequentist confidence
intervals depend on the stopping rule.

It turns out that the likelihood functions for the binomial problem and the negative
binomial problem differ only by a constant!

So with same n and m, (the strong version of) the L.P. demands same inference
about e from the two stopping rules!

Wouter Verkerke, NIKHEF
[B.Cousins HPCP]



Summary

Maximum Likelihood
Point and variance estimation -

— Variance estimate assumes normal
distribution. No upper/lower limits

Frequentist confidence intervals

o
Extend hypothesis testing to composite hypothesis

mrmmwuuuumwHVH\H\HH\HHWHM@

— Neyman construction provides exact “coverage”
= calibration of quoted probabilities

gy,

My

w -
g

— Strictly p(dataltheory)
— Asymptotically identical to likelihood ratio intervals
(MINOS errors, does not assume parabolic L)

S
—

Bayesian credible intervals
Extend P(theo) to p.d.f. in model parameters

([
Integrals over posterior density = credible intervals

— Always involves prior density function
in parameter space



Statistical
methods 3b
(continued)

Expected results, upper limits
and asymptotic formulae

Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques




Physics or statistics?

e An important and recurring dilemma facing analyzers is what to do
with inference results of a statistical model that cover unphysical
regions in the parameter space of the underlying theory

e Simplest example: Poisson counting experiment P(N|S+B)

— Expect 5 background events, and 3 signal event

— We observe 4 events — What result will we report? What conclusion will we draw?

e The data tells us precisely this : Likelihood L(s)=Poisson (4|S+5)

e Estimation procedures report:

ML parameter estimate - S= -1
ML variance estimate -2 /V(S) = 1.83 ‘
MINOS Conf. Interval > [-1.68,2.34] 68% C.L. os%

i(S))

t(s)=-logA(s) = —log(L(ﬁ)

TTT AT TTTTI
[TTLEEET |

e Only S>0 is physical,
what do we report?

WIIIlIIIII-I

— Option A) Report as is”? 0

— Option B) Try to exclude unphysical regions from result
Wouter Verkerke, NIKHEF



Physics or statistics?

Q: Only S>0 is physical, what do we report?
— Option A) Report as is?
— Option B) Try to exclude unphysical regions from result?

A: Depends on your goal!
Goal 1: reporting, as accurately as possible, result of experiment

— Observed result is not peculiar:
44% of experiments of hypothesis S=0 with B=5 result in Nobs<5
10% of experiments of hypothesis S=3 with B=5 result in Nobs<5

— Problem arises only in interpretation of N in terms of S+B - defer interpretation
— Report S, V(S), or confidence on S as usual (as proxy for the full likelihood)
— Downside: interpretation deferred

— Upside: easy to combine results of multiple experiments reported in this form
(combination = inference on product of likelihoods
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Physics or statistics?

e Q: Only S>0 is physical, what do we report?
— Option A) Report as is?

— Option B) Try to exclude unphysical regions from result?
e A: Depends on your goal!

e (Goal 2: make physics interpretation of your model
— Confidence interval should in that case not cover unphysical values

— But you cannot simply exclude unphysical region without spoiling
coverage properties (=calibration of 68%/95% promise)

— Subset of 4

4 —
- -~ reported interval -
Reported {3 ' ] in physical region ‘[3
i 2 - — 2
interval § E unphysical §
] region [

0

Wouter Verkerke, NIKHEF



Physics or statistics?

o
7 " 7
6 = 6
> 3 5
: E Subset of -
Reported |* F - reported interval §3 F
interval 1, E in physical region
_ : unphysical g
! ] .
] region E
0 17
o

Goal 2: make physics interpretation of your model

1

1 in physical region

0

2

Confidence interval should in that case not cover unphysical values

But you cannot simply exclude unphysical region without spoiling
coverage properties (=calibration of 68%/95% promise)

But you are allowed to modify the test statistic (=observed quantity)
so that confidence belt never enters the unphysical region

7 ILELELE B | AL R

w4

Interval _*E
fully contained in {3 .

unphysical E
region

0 -l
0 1 2 3 4 5

yobs

Can we modify test statistic such that boundaries are obeyed?

Wouter Verkerke, NIKHEF



Physical boundaries frequentist confidence intervals

U:—1 :2
e Solution is to modify the statistic @ T
. . . 5 6
to avoid unphysical region -
L(x|uw) 13
(,(x)= —2log XL
L(xlw) g
Introduce 05 @
“ohysical bound” 15..|...|...|...[...|..,
,U>O 6 -4 -2 0 2 4 Xs
U:—1 :2
L(x| . S
-2log ( ‘lf) Viu=0 i
- L(x|w) e
tM (.X) = 3 L( | ) 4;—
X A B
-2 log “ VYiu<0 E
L(X | O)'> 2?
If u<0, use 0 in denominator °F 22., ®
= Declare data maX/ma//y 3 " E m'“‘?:A/éu{er'l\/’éfkéer’ke‘I N‘Wl‘ [IFI i

X

compatible with hypothesis u=0



Physical boundaries in frequentist confidence intervals

e \What is effect on distribution

f tost statistic? Distribution of t, for p=2
of test statistic”

: Unmodified. ..
L(x|
t(x)= —2log (el |
L(xlu) wh
Introduce B LT
“ohysical bound”
>0 <—Spike at zero contains all
. “unphysical” observations
L(x| . Distribution of t, for p=0
-2log ( ‘lf) Viu=0 =t
L(x|w)
tM (X) = < L( | ) e
X N
—2log H VYi<0 wl
L(x| O)'>
~ 10 ++L

5

If u<O, use 0 in denominator ' ' ' ' " LR
- Declare data maximally

, , , Wouter Verkerke, NIKHER
compatible with hypothesis u=0



Physical boundaries frequentist confidence intervals

e \What is effect on acceptance interval ~
of test statistic?

: Unmodified. ..
L(xw)
t(x)= -2log (x T
L(xlu)
Introduce moTT’Ws 2 28 3TEETS js%'is
“physical bound” ' ' ' ' S uR
>0 <—Spike at zero contains all
- “unphysical” observations
L(x| R Distribution of t, for p=0
-2log ( ‘lf) Vu=0 F |
L(x | M) § Effect: Acceptance
L (x) =+ Lix|w) "’ interval is shortened
X A
—-2log “ Yi<0
L(x10)
~ 10 ++L
If u<0, use 0 in denominator penEes st Pe

- Declare data maximally

, , , Wouter Verkerke, NIKHER
compatible with hypothesis u=0



Physical boundaries frequentist confidence intervals

e Putting everything together — the confidence with modified t,,
e (Confidence belt ‘pinches’ towards physical boundary

e (ffsetting of likelihood curves for measurements that prefer p<0O

parameter

N < Large
F 2-sided interval in p

6 7

Likelihood Ratio



Physical boundaries frequentist confidence intervals

e Putting everything together — the confidence with modified t,

e (Confidence belt ‘pinches’ towards physical boundary

e (ffsetting of likelihood curves for measurements that prefer p<0O

parameter

~

Y

-

--------

WY

I N VA T T O O

3 4 5 6

Likelihood Ratio

<
ot
[ ¢

7

< Small p>0
‘upper limit’ interval



Physical boundaries frequentist confidence intervals

e Putting everything together — the confidence with modified t,

e (Confidence belt ‘pinches’ towards physical boundary

e (ffsetting of likelihood curves for measurements that prefer u<0

parameter

~

2

3 4 5 6

Likelihood Ratio

7

u<0 -
‘upper limit’ interval



Physical boundaries frequentist confidence intervals

e Example for unconstrained unit Gaussian measurement

L =Gauss(x|u,l)
t,(X,L) 'x

(0¢]

parameter y
|

parameter
o

TN

N ¢
3 .
2 —
——— — 2:
1 -
0_~= L e bl ] 00
9?5 3 4 5 6 7 > 2
E—— | ikelihood Ratio y

Gauss(x|p,1)

95% Confidence belt in (x,u)
defined by cuton t



Physical boundaries frequentist confidence intervals

 First map back horizontal axis of confidence belt from t,,(x)=>X

“Feldman-Cousins”

u

t (X, ) X
7 e | || I |;| 1 I -
e . -
— e ] —
ORI - B &
E s = -
© N o
@ : ®
C)_ 4 if —_ Q

3 4 sl 6 -7 " = 0 é/ .
Likelihood Ratio FJ observable x
Gauss(x|p,1)

95% Confidence bglt in (X,H)
defined by cut on t,




Comparison of Bayesian and Frequentist limit treatment

e Bayesian 95% credible upper-limit interval with flat prior p>0

-
-
”

t (X, ) T X
P\ ‘\\
~
7 T T T[T TT] N
5 — ] — \|
R 3 [ L -
o = = !
E s B = '
S : o ]
: : S /
Q_ 4 i —_ Q l'
— . = l'
3 B — - 1
= — ]
/)
v

Likelihood Ratio

h Gauss(x|p,1)
95% Confidence belt in (x,H)
defined by cut on t, for



Recap on test statistics

e The ‘default’ frequentist test statistic
s the likelihood ratio t,

Confident belt (t, vs p) is asymptotically a box
Observed value t, depends on y
Confidence intervals as reported by MINOS

No notion of boundaries in parameters

e The 'modified’ frequentist test statistics
S likelihood ration t,

Confident belt will pinch near boundary in p

Observed value t, identical to t, in the
physical region

Reported interval will by construction be
contained in the physical region

Built-in procedure that changes from 2-sided
to 1-sided interval with increasing signal yield

Best known as ‘Feldman-Cousins’

;M(x)=<

parameter y

=) — [§) w IS w =N <

I

o 1 L L 1)

Likelihood Ratio

L(xlu) N

=21 A4
o8 L(x|a) a
“2log L(xlu)
L(x10)

RIS SN NS N

Likelihood Ratio

< Small u>0

‘upper limit’ interval




The order of things

e The goal of the ‘ordering’ is to sort potential olbservations by
signal extremity. Let’s reexamine discovery counting experiment

e [or a Poisson counting distribution this is was trivial

— Larger observed event count = more extreme

Poisson Example: B=20, N_,.=25

distribution

o A Likelihood-Ratio test statistic generalizes this concept to
measurement of any type, but note that it quantifies the
(incompatibility) of the data with a fixed hypothesis

X2 (n=1) Example: B=20, N_,=25

distribution

t =-2log

u

Poisson(N | S +20) _114
Poisson(N | S +20) .

po=J 1)

\Wouter Verkerke, NIKHEF



The order of things

e \Why do we get a different answer?

e Because in the Likelihood Ratio test for discovery we
order observations by compatibility with the hypothesis B=20

a -
w5 0.045 E

c —

o -
5 0.04—

Q0 -
o c
o 0.035—
0.03—
0.025—
0.02—
0.015—
0.01—

0.005—

Compatible -}

with B=20

For upward fluctuations

Incompatible
with B=20

\Wouter Verkerke, NIKHEF



The order of things

e \Why do we get a different answer?

e Because in the Likelihood Ratio test for discovery we
order observations by compatibility with the hypothesis B=20

a =
5 0.045-

R For upward fluctuations
§ 00355

005 But also for downward fluctuations!
0.025—
0.025
0.0152

we intended for

0.01F

This is clearly not what
e 5 discovery test!

0.005F

then
Id be

patible

If the goal is discovery,

| observations N<B shou
considered maximally gom
with the null-hypothesis

al

Incompatible

with B=20
% Wouter Verkerke, NIKHEF

Compatible «|
with B=20 |




Formulating a test statistic for discovery

e \We can formulate a new test statistic g,

L(x
which all negative fluctuations are (x) =1 -2log LEx : M; Vi=0
considered to be maximally compatible H

0 Via<0

with the background

0.045/—

Projection of p
o
o
5
\

=}
o
@
53}

|

Asymptotically half of fluctuations around
null hypothesis are negative

(for small N, actual distribution may deviate from asymptotic)

Now very close to Poisson result (0.156)

(remaining difference due to discreteness of Poisson distribution)

Example: B=20, N_,;=25

Poisson(N |S+20)) _
Poisson(N | S+ 20)

po= [40)+1f .t )ar, = [ %fxz(tu)dtu

u u

at 9,=0
\\ F(qo) = 126(qo)+72X2(qp, 1

t =-2log

u

Compatible *F
withB=20 | = S




Formulating a test statistic for discovery

e \We can formulate a new test statistic g,

. . , L(x|u) .
which all negative fluctuations are Vi=0
<0
Note that g is in fact not a new test statistic, but rather
a special case of the Feldman-Cousins test statistic t, !
210 ZEB) g2 0
L(x | @)
0 Via<0
It (0.156)
L( x| M) son distribution)

L(x! @)

Compatible *f
withB=20 | = S

J1o)+is . )ar, = [ %fxz(tu)dtu

u u




But wait... there is more

e A similar problem of dilution of sensitivity applies when considering
results in the form of upper limits

Incompatible DISCOVery
with Hy (N<bkg) ~ P(u=0) = ...

1074

| ey
10

Compatible Incompatilgixéa
with H, with H, (N>bkg)
- logL(x—“f) Yi=0
q,(x) = L(x|w)
0 VYia<0

\When considering d'\sco;/reery
fluctuations pelow Hg "
not counted against hypo

Measurement
Ulow<u<uhigh (68% CL)

Projection of ¢

T
9 1
lambda

Incompatible

0

Comgatible ¢
with p with p (both dir.)

t,(x)=2log ﬁiz : Z;

Exclusion limit
u<X (95% C.L.)

Projection of ¢

T
9 1
lambda

Incompatible

0

Compatible
with p(limit) with p(limit)
both directions

t,(x)=2log ig : g

When considering \'\m'\tH p<X
fluctuations above ph .
counted against hypothe

are



But wait... there is more

e A similar problem of dilution of sensitivity applies when considering
results in the form of upper limits

Discovery
pE=0) = ...

Incompatible
with H, (N<bkg)

1074

| ey
10

Compatible Incompatilgixéa
with H, with H, (N>bkg)
- logL(x—“f) Yi=0
q,(x) = L(x|w)
0 VYia<0

\When considering d'\sco;/reery
fluctuations bglovv Ho "
not counted against hypo

Measurement
Ulow<u<uhigh (68% CL)

Projection of ¢

T
9 1
lambda

Incompatible

0

Comgatible ¢
with p with p (both dir.)

t,(x)=2log ég : Z;

Exclusion limit
Incompa;\ible) U<X (95% CL)

with H, (u>p

L
9 10

Compatible Observed pi
with p(limit) below p(limit)
logL(x“f) Vis
q,(x)= L(x|u)
0 Yia>u

When considering limit g:ex
fluctuations apove H,

not counted against hypothesiS




Summary of likelihood ratio test statistics

All LR test statistics have a calibrated coverage

— ‘Size of the test’ — generalization of concept of fixed ‘false positive rate’

The power of the LR test statistics depends on underlying question

— Discovery (exclusion of Hy) = Use g,

— Signal exclusion (exclusion of H)) 2 Use q, } These suppress influence of

fluctuations in the ‘wrong’ direction
— Measurement (Conf. Interval on p) 2 Use t,

For maximum sensitivity choose the correct one

The discovery statistic g, is a special case of
the ‘Feldman-Cousins’ test statistic t,,

- Bonus of feature of FC is that it automatically transitions from
the optimal formulation for discovery g, to
the optimal formulation for measurement (t,)
as the signal strength increases (without spoiling coverage)

- Note that while FC deals with downward fluctuations,
it does not deal with upward fluctuations like g

~

= limit setting power with FC (t ) is weaker tha% q,

\Wouter Verkerke, NIKHEF



Summary of likelihood ratio test statistics

e All LR test statistics have a calibrated coverage
— ‘Size of the test’ — generalization of concept of fixed ‘false positive rate’

e The power of the LR test statistics depends on underlying question

— Discovery (exclusion of Hy) = Use g,
— Signal exclusion (exclusion of H)) > Use q,

} These suppress influence of
— Measurement (Conf. Interval on p) 2 Use t,

fluctuations in the ‘wrong’ direction

For maximum sensitivity choose the correct one

o Features of FC and g, can be combined into a new test statistic g,

Improved limit setting power
(upward fluctuations not counted
against hypothesis p

that is being excluded)

Exclusion limit is guaranteed to be >0
(avoid all signal strengths being
excluded on fluctuation below bkg-only level)

\Wouter Verkerke, NIKHEF



Summary of likelihood ratio test statistics

e All LR test statistics have a calibrated coverage

‘Size of the test’ — generalization of concept of fixed ‘false positive rate’

e The power of the LR test statistics depends on underlying question

— Discovery (exclusion of Hy) = Use g,

— Signal exclusion (exclusion of H)) 2 Use q, } These suppress influence of

fluctuations in the ‘wrong’ direction
— Measurement (Conf. Interval on p) 2 Use t,

For maximum sensitivity choose the correct one for your purpose!

A popular (but less formal) approach to ensuring that exclusion limits

do not report an empty interval in case of a fluctuation below the background-only
expectation is the so-called CLg technique

Essence: instead of setting limit at 95% C.L. using test statistic g,
one aims for the 95% target in a ratio of p-values

AN . . . )
< _ Idea: if a (negative) fluctuation is as
CL,(u)= p(w) Pl r R<p improbable under H(0) as under Hi(u)

1- p(O) <— p-value for p<0 it is considered to carry no information
(since p(0) is p-value for p>0)  on Hi(u) that value of p is not excluded

\Wouter Verkerke, NIKHEF



Bayesian intervals using priors to exclude unphysical regions

e Priors provide simple method to exclude unphysical regions

e Simplified example situations for a measurement of m, 2
1. Central value comes out negative (= unphysical).
2. Even upper limit (68%) may come out negative, e.g. m2<-5.3,

3. What is inference on neutrino mass, given that is must be >07?

p(HlX,) with flat prior of(V) P(ulxo) with p’(u)

" 5 T g2¢
ofral §220-
e Do
08121 ®1sf
fof- im_
o T 14F
0.0081- -
o.oosf— 0‘:;:
0.0045— 0.06F
C 0.04F
0.002(- o0zk-

0: vl Ly by Laa g o;|||||lll IRERE SEERIRRERENTE: Ly

40 20 0 20 40 60 80 100 5 0 5 10 15 20 25 30 35 40

m2 m2

— Introducing prior that excludes unphysical region ensure limit in physical range of
observable (Mm?<6.4)

e Beware of apparent simplicity — strong entanglement with ill-defined
concept of “flat prior’! Wouter Verkerke, NIKHEF



Numeric comparison Bayes/FC limit results for Gaussian measurement

e Bayesian 95% credible upper-limit interval with flat prior u>0

-
-
”

~ ~

S
t,(X,L) .. X
7&&Ill|l;ll| ] 8 ; '\\
O — ] O \‘
ol N ® 1 /|
L ] © :
— = E 6
% = . © ,"
T 4 f : ] /
— N ]
d— ; /
) 1'7::&= . II
= . *’
Note that tu/ Feldman-Cousins automatically

switches from ‘upper limit’ to ‘two-sided’
- “unified procedure”

Note that Bayesian and Frequentist intervals h Gauss(xlu,1)
at x>2 would agree exactly for Gaussian example 95% Confidence belt in (x,u)
)

if both would be taken as ‘two-sided’ .
defined by cut on t, for



Using priors to exclude unphysical regions

e Do you want publish (only) results restricted to the physical region?
— It depends very much to what further analysis and/or combinations is needed...

e Aninterval / parameter estimate that in includes unphysical still
represents the best estimate of this measurement

— Straightforward to combined with future measurements,
new combined result might be physical (and more precise)

— You need to decide between ‘reporting outcome of this measurement’ vs
‘updating belief in physics parameter’

e Procedures exist to guarantee that procedures result in non-empty
intervals in physics domain
— Frequentist confidence intervals = Modified test statistics
— Bayesian credible intervals = Priors that exclude unphysical regions
e \When reporting results constrained to physical region
always aim to also report unconstrained results

— Unconstrained results carry more information for future combination/
interpretation \Wouter Verkerke, NIKHEF



Expected results

e An important part of experimental design is being able to quantify
the expected sensitivity of your proposed analysis

Briefly touched on this already when discussing connection between LR and

1.

optimal event selection

— Only considered simplest analysis design (Poisson counting)
and one metric (p-value of background-only hypothesis)

Will now generalize in 2 ways

Type of statistical models:
calculate sensitivity for
any type of statistical model

Via a LR test statistic

Types of output statement

Discovery (p0), Signal Exclusion,
and Measurement

In addition to median expectation
(of pO etc) also calculate
uncertainty interval due to
expected statistical fluctuations

Choosing the ‘best’ high-signal region

* A common scenario for searches in a low-statistics 5 .27 L2
o 107

regime is to perform a simplified analysis
1. Train MVA to obtain discriminant D
2. ApplyacutonD
3. Perform onlv a countina analvsis.

e Anda

. Choosing the ‘best’ high-signal region

If

‘thae e The estimated significance assuming a Poisson process modeled
- To by Poisson(N|S+B) is /2((s +b)In(1 +s/b) —s) .

g:(e e E.qg. for ‘discovery FOM’ s/\/b illustration of approximation for

f) s=2,5,10 and b in range [0.01-100] shows significant deviations of

- éh; s/\Jb from actual significance at low b

Poig
- Ab VoA =/2((s+b)In(1 +s/b) — 5) .

calc

(=2}

n

Significance in Gaussian sigma's
»

qo
-
INCENE,
%o
2

10

L
= 5L+ 06/) .

Wouter Verkerke, NKHEF




Expected sensitivity distributions - Poisson

Given a Poisson counting experiment
P(N|S+B) with B=5 events

Q: What is the median expected p-value e
for a hypothetical signal S=157

A: P, = Y, Poisson(i|5)=2.11-10" = Z =5.00

i=20

Q: What is spread in p-values for a
hypothetical signal S=157

A: To obtain 68% (95%) intervals for p-values,
map 68%(95%) intervals of observable
distribution (N) to p/Z-value intervals
68% interval p-values: [ 6.09 10° - 8.07 10°9], Z [ 3.8-6.0 |
95% interval p-values: [ 1.37 107 - 1.70 102 |, Z [ 2.2-7.2 ]

\Wouter Verkerke, NIKHEF




Expected sensitivity — comparison with Likelihood Ratio

e (Compare distributions of counting experiment, direct vs LR

2o0. = = - - -
N Expression for Poisson distributions

s
a0.07F

Fo(N)=Poisson(N|0+5)

0.06

F..(N)=Poisson(N|15+5)

0.02F

0.015

() 3 ' B 45 50
N

f=Poisson

0.3

Expression for discovery test statistic q,
asymptotic distributions

Projection of f1

025}

FolQlo) = 0.58(q) + 0.5f4(00, 1)

F15(Q0)= (1-D(A5)0(Ap) + 0.5 cxo(os 1,/\15)

[=]
-
[3)
[ ol o o o o e e e e e e

IIII|IIII|Il

\Wouter Verkerke, NIKHEF



Expected sensitivity — comparison with Likelihood Ratio

e (Compare distributions of counting experiment, direct vs LR

Projection of f1

S20.09—
o =

s F
50.08F
2 -
=
a0.07F
0.06
0.05F
0.04f
0.03F
0.02F

0.01F

0.3

Expression for Poisson distributions

Fo(N)=Poisson(N|0+5)

faoxe (6K /\) = non-central X2 distribution for k d.o.f.
with impact parameter A\

$0i0) = gy e o (=5 (V- ') o (=5 (V- ')

025}

IIII|IIII|Il

F15(Q0)= (1-O(A5)0(Ap) + 0.5fcxo(os 1,/\15)

= Qp(19)

30 35 40 45 50

. : . Wouter Verkerke, NIKHEF
d(x) = Cumulative of unit Gaussian



Expected sensitivity — Poisson Likelihood Ratio asymptotics

If you have sufficient statistics in your measurement asymptotic
expressions for distributions of q,(0) and g,(u) allow for
direct calculation of median significance and its statistical uncertainty

0.3

Q distribution for S=0 observed

025

Projection of f1

o2}

P 0
e

015

e(\j @d

o1

‘D\S\ 5 O‘OS

6/

s Lo L

0.05-

q distribution for S=15 observed

Median[dg 15| = Ao(15)

Median[Z,(15)] = yMed[q, {s]= 5.00

68% interval = [ JMed[q 15]-1, yMed[q, 1s]+1 ] =[ 4.0, 6.0 ]
95% interval = [ JMed[qg 15]-2, yMed[q, 15]+2 ] = [ 0]

P e
20 25 30 35 40 45

50
q

Direct calculation of median upper limit and it's statistical uncertainty

Q5 distribution for S=0 observed

on¥
SGNG

d

Q45 distribution for S=15 observed

To obtain 95% excl. limit on S, find value of X that
for which a test statistic q,_, for S=0 observed yields 0.05

—~ No analytical solution - must scan q,_ for X=0...15

\Wouter Verkerke, NIKHEF




Expected sensitivity — Asymptotic upper limits

¢ \isualization of scanning process

: 5 distribution for S=15 observed
Sozs- (5 distribution for S=0 observed

, On\)ed,

T —— F(a,l1) 2 Med[q,|1]=0.18
F(a,l2) 2 Med[q,|2]=0.63

F(q,|8.8) > Med[q,|8.8]=2.7

§ F(a,/15) > Med[q,|1]=16.0

Result s<8.8 at 95% C.L.

\\ L7

§§ =
% §§ SSSS
/ \ N \ Asymptotically:
107 | / \ ™ \ HuLose,=0 @ 71(0.95) = 0= g50,/1.67=5.27
7/ / \ % HuLes9sno=0"(@(0.95)£N)

)/ N\

I N\

S '1|0N'12' EV T
\ /

10 band =[3.5,14.1]

Sl ) 20 band = [-1.8,19.4]

o

N

Ny .
O N

p-value = 0.05 for q,>2.7 (defined by f(q,|u) Wouter Verkerke, NKHER



Expected sensitivity — Asymptotic vs Toys

med[Z I1]

Demonstrated asymptotic formulas for

expected discovery p0O and

expected signal exclusions

along with N sigma uncertainty bands for Poisson counting model

Use of asymptotic formulas only valid in [imit of sufficient statistics!

(0]

Easy to verify numerically
for counting experiments

(o)
° _,‘J"

Decent results already for N>=10!

If outside validity regime
> obtain f(g, |u’) from simulation
- very CPU intensive because
* For 50 discovery need, O(109) toys
to model tail of f(g,|0) far out
* For 95% limits need repeatedly generate
O(10¢) toys to remodel distribution f(g,[1’)
at every scan point of H\’A/o

uter Verkerke, NIKHEF



Expected sensitivity — Asymptotic vs Toys

Numeric limit scan: las for
For every line in this plot

bands for Poisson counting model

valid in limit of sufficient statistics!

e o Easy to verify numerically
for counting experiments

Make a toy MC run to make a histogram

. - Decent results already for N>=10!
medlan[qu 0]

: If outside validity regime
> obtain f(g, |u’) from simulation
- very CPU intensive because
* For 5o discovery need, O(109) toys
to model tail of f(q,|0) far out
* For 95% limits need repeatedly generate
O(10¢) toys to remodel distribution f(g,[1’)

0= 2 i ’
10 1 10 10 at every scan point of Hivouter Verkerke, NIKHEF




Expected sensitivity — Beyond counting experiments

¢ NB: Asymptotic formulas make use of concept
‘expectation value data’ sets

: ] Expression for discovery test statistic q,
g ozt asymptotic distributions

F15(00)= (1-®(\15))8(00) + 0.5f\cxa(Qos 1,/ 15)

Wouter Verkerke, NKHEF

e [or counting experiments this trivial, e.g. dataset N=20,
represent exactly expectation value of Poisson(N|20)

20,09
5 E

e

I [T T[T

\Wouter Verkerke, NIKHEF



Expected sensitivity — Beyond counting experiments

Expression for discovery test statistic q,

e NB: Asymptotic formulas make use | e
of concept ‘expectation value data’ | o 5 05 A

sets

e [or generic data (e.g. with distributions) an analogous concept
can defined — the ‘so-called Asimov dataset’

— For example for Gaussian distribution in an observable X,
the Asimov dataset is a dataset without any statistical fluctuations

‘regular’ sampled dataset ‘Asimov’ dataset

Events /(0.2)
5 8 8 8
[TTTTPITTr rreey
D
—
e
— e,
————
.
Events /(0.2)
5 8 8
| | |
r—.—q!
i
=
—y——i
%
"
e
e

- - N
(=] w (=]
[TTTTTTeT
o
i
——

o
|ll|||[l T

CO
N
S
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e Asymptotic formulas can thus be used for
measurements of any shape and form (given enough statistics)



Expected results

e Example plot from
Higgs boson discovery
o FUATLAS 20112012
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Everything starts with the likelihood

Frequentist statistics  Bayesian statistics Maximum Likelihood
_ L(N ) 5
b (N ) =B Py Lxlw) () dInL(p)|  _,
L(N | w) 7 =
D .
. Pi=P;
%"’4% — 1@,_ju=0) fms;—
: 3 — 1§ _ln=1) %m;
g served vaiue i:i

07‘ - 5I - ‘1H0h‘ ‘ ‘1|5' ' ﬂﬂjzo
Test Statistic q, )
Confidence interval Posterior on s S=XzxY

or p_va|ue or BayeS faCtor \Wouter Verkerke, NIKHEF



Praycton of |

How is Higgs discovery different from a simple fit"?

Gaussian + polynomial

Events /(0.2)
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‘inside ROOT” i

ML estimation of
parameters u,0 using MINUIT
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u=53=x1.7

Higgs combination model
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How is Higgs discovery different from a simple fit?

Gaussian + polynomial Likelihood Model
orders of magnitude more

SoE complicated. Describes
i - O(100) signal distributions
- O(100) control sample distr.
- O(1000) parameters
representing
syst. uncertainties

Events /(0.2)

ROOT TH1 ROOT TF1

L(N | M,Q) = HPOiSSOYl(Nl | f(xi, M,@) L(N NNy Iu.li)-nI’rli\'mn(N',/..A.)'I_[I’ui.\sml(N',,.‘..)']_[I’ai.\'.wn(Nu‘m~---)‘.‘.
‘inside ROOT” i

i

ML estimation of Frequentist confidence interval
parameters y,0 using MINUIT construction and/or p-value
(MIGRAD, HESSE, MINOS) calculation not available
as ‘ready-to-run’ algorithm
‘ in ROOT

u=53=x1.7



Praywcton of

How is Higgs discovery different from a simple fit"?

Gaussian + polynomial Higgs combination model

Model Building phase (formulation of L(x|H)

H=>ZZ-> Il H=>T1T H>WW=pvjj
e e B B A e
I.e== | ¥ il O I I

ROOT TH1 ROOT TF1 SRS

I
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L(N I M,Q) = POlSSOI’l(N I f(xl,u,e) L(N’,,.N,,.Kl,m I;:.(})-nPuix.\wl(N',,....)'nI’nixxnn(N’"_,,,)-I_[Imi.\'xnn{N,‘,“...‘)-...
“inside ROOT” i

ML estimation of ‘

parameters p,8 using MINUIT B B i Rt
(MIGRAD, HESSE, MINOS)

=53+1.7

Events /(0.2)

r1rrorT

p(H,)= [ fOIH,)dA=..

\Wouter Verkerke, NIKHEF
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How is Higgs discovery different from a simple fit"?

Gaussian + polynomial Higgs combination model
500 £ . |
c 400 .
200:
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parameters p,0 using MINUIT T
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How is Higgs discovery different from a simple fit"?

Gaussian + polynomial Higgs combination model

Design goal:
Separate building of Likelihood model as much as possible
from statistical analysis using the Likelihood model

- More modular software design
- ‘Plug-and-play with statistical techniques

- Factorizes work in collaborative effort
R

L M
£ osr .
L(N,,, NN, | Iu.(;)

L estimation of
parameters y,06 using MINUIT 7T S AT

(MIGRAD, HESSE, MINOS)

¥

p(H,)= [ fOIH,)dA=..

u=53=+1.7 Wouter Verkerke, NIKHEF



The idea behind the design of RooFit/RooStats/HistFactory

e Modularity, Generality and flexibility
e Step 1 - Construct the likelihood function L(x|p)

RooFit, or RooFit+HistFactory

e Step 2 — Statistical tests on parameter of interest p

Procedure can be Bayesian, Frequentist, or Hybrid),
but always based on L(x|p)

RooStats

e Steps 1 and 2 are conceptually separated,
and in Roo™ suit also implemented separately.

\Wouter Verkerke, NIKHEF



The idea behind the design of RooFit/RooStats/HistFactory

e Steps 1 and 2 can be ‘physically’ separated (in time, or user)

e Step 1 — Construct the likelihood function L(x|p)

RooFit, or RooFit+HistFactory

L

Complete description
of likelihood model,
persistable in ROOT file
RooWorkspace (RooFit pdf function)

Allows full introspection
and a-posteriori editing
e Step 2 - Statistical tests on parameter of interest p
RooStats

\Wouter Verkerke, NIKHEF



The benefits of modularity

e Perform different statistical test on exactly the same model

RooFit, or RooFit+HistFactory

$

RooWorkspace
“Simple fit” RooStats RooStats RooStats

(ML Fit with (Frequentist  (Frequentist Bayesian

MINOS) with toys) asymptotic) MCMC

Wouter Verkerke, NIKHEF



Running RooStats interval calculations ‘out-of-the-box’

Confidence intervals calculated with model

RooAbsReal* nll = myModel->createNLL(data) ;
RooMinuit m(*n11) ;

m.migrad() ;

m.hesse() ;

‘Simple
Fit’

Feldman
Cousins
(Frequentist
Confidence
Interval)

Bayesian
(MCMCQ)

FeldmanCousins fc;

fc.
fc.
fc.
fc.
fc.
fc.

SetPdf (myModel) ;

SetData(data); fc.SetParameters(myPOU) ;
UseAdaptiveSampling(true);
FluctuateNumDataEntries(false);

SetNBins(100); // number of points to test per parameter
SetTestSize(.1);

ConfInterval* fcint = fc.GetInterval(Q);

UniformProposal up;
MCMCCalculator mc;

mc.
.SetData(data); mc.SetParameters(s);

mc

mc.
mc.
mc.
.SetNumBins(50); // used in posterior histogram
.SetNumBurnInSteps (40);

mc
mc

SetPdf(w: :PC);

SetProposalFunction(up);
SetNumIters(100000); // steps in the chain
SetTestSize(.1); // 90% CL

ConfInterval®* mcmcint = mc.GetInterval(;



But you can also look ‘in the box’ and build your own

High-level tool that constructs the confidence belt

// create first HypoTest calculator (N.B null is s+b model)
FrequentistCalculator fc(*data, *bModel, *sbModel) ;

parameter u

// configure ToyMCSampler and set the test statistics
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler() ;

ProfileLikelihoodTestStat profll (*sbModel->GetPdf()) ;
// for CLs (bounded intervals) use one-sided profile likelihood

profll.SetOneSided (true) ;
toymcs->SetTestStatistic (&profll) ; observable x

HypoTestInverter calc(*fc);
calc.UseCLs (true) ;

// configure and run the scan
calc.SetFixedScan (npoints,poimin,poimax) ;
HypoTestInverterResult * r = calc.GetInterval();

// get result and plot it
double upperlLimit = r->UpperLimit();
double expectedLimit = r->GetExpectedUpperLimit (0) ;

HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi","",r);
plot->Draw() ;

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries...)



But you can also look ‘in the box’ and build your own

flg, 1)

Tool to construct

// configure ToyMCSampler and set the test statistics test statistic distribution
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler()

ProfilelLikelihoodTestStat profll (*sbModel->GetPdf()) ;

// for CLs (bounded intervals) use one-sided profile likelihood
profll.SetOneSided (true) ;

toymcs->SetTestStatistic (&profll) ;

l
wmmemee 0
The test statistic

to be used for
the calculation
of p-values

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries...)



But you can also look ‘in the box’ and build your own

10—‘&

L/‘/
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Tool to scan over
values of p to find a g,

HypoTestInverter calc(*fc); that results in a p-value
R U () of 0.05 (for 95% C.L.)

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries...)



But you can also look ‘in the box’ and build your own

Optionally choose
a technigue to avoid

/] for CLs (bounded interval e erofile likelihood spurious exclusions
or s (boun intervals) use one-si profile likelihoo (a// at 95% C.L.

profll.SetOneSided (true) ;

signal excluded
HypoTestInverter calc(*fc); due to low ﬂUC'[U&tiOI’I)
calc.UseCLs (true) ;
Options are
1) FC-style test stat g,
2) CLS: calculate
p-value from a,
divide by p-value
of bkg hypothesis

in scan for 95% point.

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries...)



But you can also look ‘in the box’ and build your own

// configure and run the scan .
calc.SetFixedScan (npoints,poimin,poimax) ; Run calculation
HypoTestInverterResult * r = calc.GetInterval() ;

// get result and plot it Extract result
double upperLimit = r->UpperLimit();
double expectedLimit = r->GetExpectedUpperLimit (0) ;

HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi",6"",r); hAake<3ptkn1aIpﬂot
plot->Draw() ;

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries...)



RooStats class structure

\Wouter Verkerke, NIKHEF



Summary

e RooFit and RooStats allow you to perform advanced statistical data

analysis

— LLHC Higgs results a prominent example

e RooFit provides (almost) limitless
model building facilities

— Goncept of persistable model workspace allows to = =&

separate model building and model interpretation

— HistFactory package introduces structured model
building for binned likelihood template models that
are common in LHC analyses

e (Concept of RooFit Workspace has
completely restructured HEP analysis
workflow with ‘collaborative modeling’

e RooStats provide a wide set of statistical
tests that can be performed on RooFit
models

— Bayesian, Frequentist and Likelihood-based test
concepts

/
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Full demo of RooFit/RooStats calculation

e Phase 1 — Build model (here just a Poisson), prepare for use

RooWorkspace w("w") ;

Projection of p

// Construct a single Poisson model P (N|mu*S+B)
w.factory ("Poisson: :model ('mu*S+B',mu[1l,-1,10],S[10],B[20])") ; 0.05
w.factory ("expr: :Nexp( (Nobs[0,100],Nexp)") ; 0.0

b

14
=3
@

// Construct a dataset containing N=25
RooDataSet 4d("d","d", *w.var ("Nobs")) ;
w.var ("Nobs") ->setVval (25) ; 0.0
d.add (*w.var ("Nobs")) ;

w.import (d,RooFit: :Rename ("observed data")) ;

=4
=3
~

_\I|||\II\II\I\II\I\II\I\II\II‘I\II‘I\

=

=)

ol RS NN NI A RTAT AT YA ATArS AT AT A
10 20 30 40 50 60 70 80 90 100
N

Poisson::model(N,, |uS+B)

// Construct interpretatation of model used by RooStats

RooStats: :ModelConfig mc ("ModelConfig", &w) ; f(h]l )
M) = model
// Define the pdf, the parameter of interest and the observables F)()|==p
mc (*w.pdf ("model")) ;
mc.SetParametersOfInterest (*w.var ("mu")) ; r ObS=N0bS

mc.SetObservables.SetPdf (*w.var("Nobs")) ;

// Define the current value mu (1) as an hypothesis H1=m0de|(|.l=1)
.Sets hot (*w. ("mu")) ; . -
e Setenapshot i, var i H,=model(u=0) [ implicit ]

// import model in the workspace
w.import (mc) ;
w.writeToFile ("model.root")

\Wouter Verkerke, NIKHEF



Full demo of RooFit/RooStats calculation

e Phase 2 — Perform limit calculation

// Retrieve components

RooWorkspace* w = (RooWorkspace*) f->Get ("w") ;
RooAbsData* data = w->data("observed data")
RooStats: :ModelConfig* sbModel = (RooStats::ModelConfig*) w->o0bj ("ModelConfig") ;

// Construct B-only model (for CLS) as clone of P(N|muS+B) with B=0
RooStats::ModelConfig* bModel = (RooStats::ModelConfig*) sbModel->Clone ("BonlyModel™) ;
RooRealVar* poi = (RooRealVar*) bModel->GetParametersOfInterest ()->first();
poi->setVval (0) ;

bModel->SetSnapshot ( *poi );

// Use calculator based on asymptotic formulas
RooStats: :AsymptoticCalculator asympCalc(*data, *bModel, *sbModel) ;
asympCalc.SetOneSided (true) ;

// Request 90% C.L. upper limit with CLS technique enabled
RooStats: :HypoTestInverter inverter (asympCalc);
inverter.SetConfidencelLevel (0.90) ;

inverter.UseCLs (true);

// Run interwval calculation

inverter.SetVerbose (false);

inverter.SetFixedScan (50,0.0,6.0); // set number of points , xmin and xmax
RooStats: :HypoTestInverterResult* result = inverter.GetInterval();

// Report results

cout << 100*inverter.Confidencelevel () << "% wupper limit : " << result->UpperLimit () << endl;
std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl;

std::cout << " expected limit (median) " << result->GetExpectedUpperLimit (0) << std::endl;
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit (-1) << std::endl;
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit(l) << std::endl;

, NIKHEF



Full demo of RooFit/RooStats calculation

e Phase 2 — Perform limit calculation

// Retrieve components

HypoTest Scan Result

RooWorkspace* w = (RooWorkspace*)
RooAbsData* data = w->data("obg€rved data") ;
RooStats: :ModelConfig* sbModgl = (RooStats::Mo

// Construct B-only mode
RooStats: :ModelConfigk IiMode

RooRealVar* i . "
pz(i)—izet?/;l ©) ; CLg ratio divides
p(s+b)

bModel->SetSnaps

// Use calculato
RooStats: :Asympt
asympCalc.SetOneSided (true) ;

// Request 90% C.L. upper limit with CLS tech
RooStats: :HypoTestInverter inverter (asympCalc)
inverter.SetConfidencelevel (0.90);

—3— Observed CLs

—}— Observed CLb

- Expected CLs + 1
:I Expected CLs +2 ¢

Observed CLs+b

Expected CLs - Median

inverter.UseCLs (true) ;

// Run interwval calculation

inverter.SetVerbose (false);

inverter.SetFixedScan(50,0.0,6.0); // set nu
RooStats: :HypoTestInverterResult* result = Yter.GetInterval () ;
// Report res
cout << 100*1i
std::cout <<
std::cout <<
std::cout <<
std::cout << '

AsymptoticCalculator
calculates p-values
for given hypothesis p

+

upper 1i
he B (alter
result->Get
result->Get
result->Get

Hypothesis inverter finds
intersection of CLS with
target p-value (0.10) for 90% C.L.

) NIKHE=







Roadmap of this course

e Start with basics, gradually build up to complexity

Model building

Counting models

Statistical methods

Modeling distributions

Statistical tests with counting experiments

Signal parameterization strategies

Test statistics for models describing distributions

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Parameter estimation, confidence intervals & limits

Diagnosing inference on complex models

Inference with nuisance parameters

Advanced signal modeling techniques




So far we’ve only considered the ideal experiment

e The “only thing” you need to do (as an experimental physicist) is to
formulate the likelihood function for your measurement

e F[or an ideal experiment, where signal and background are
assumed to have perfectly known properties, this is trivial

Iy
o
|

L(N 1) = |

H Poisson(N, {u)3, +b,) i3

bins 60
40:—
20:
B .
Ei

_...|...|...|...|..":|...||..|.........
% 82 84 86 88 90 92 94 96 98 100
X

Events/(0.5)

e So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as u

\Wouter Verkerke, NIKHEF



The imperfect experiment

¢ |n realistic measurements many effect that we don’t control
exactly influence measurements of parameter of interest

e How do you model these uncertainties in the likelihood?

Signal and background predictions
are affected by (systematic) uncertainties

\Wouter Verkerke, NIKHEF



Adding parameters to the model

e \We can describe uncertainties in our model by adding new
parameters of which the value is uncertain

L(Nu)= HPoisson(Nl. lw-5.+b,)
\ bins

80—

Events/(0.5)

60—

40—

20

4

o b b b P b b Ly P B
%0 82 84 86 88 90 92 94 96 98 100
X

L(x|f,m,0,a,,a,,a,) = fG(x,m,0)+(1- f)Poly(x,a,,a,,a,)

e These additional model parameters are not ‘of interest’, but we
need them to model uncertainties = ‘Nuisance parameters’

\Wouter Verkerke, NIKHEF



What are the nuisance parameters of your physics model?

e Empirical modeling of uncertainties, e.g. polynomial for background,
Gaussian for signal, is easy to do, but may lead to hard questions

Events /(0.2

o 8 6 4 2

L(x|f,m,0,a,,a,,a,)= fG(x,m,0)+(1- f)Poly(x,a,,a,,a,)

e s your model correct? (Is true signal distr. captured by a Gaussian?)
e |s your model flexible enough? (4 order polynomial, or better 61)?

e How do model parameters connect to known detector/theory
uncertainties in your distribution?

— what conceptual uncertainty do your parameters represent?
Wouter Verkerke, NIKHEF



Events/(0.2)

What information constrains nuisance parameters?

f(x|S,B)=S*Gaussian(x)+B*Uniform(x)

Some datasets contain sufficient information to constrain nuisance
parameters, other do not.

Example 1 - Shape fit

50—
a0~
30—
20—

10—

Sufficient information
in data to constrain both S,B

Projection of p

Example 2 - Counting experiment

f(N|S,B)=Poisson(N|S+B)

=3
o
N

e
o
[

e
o
5}

0.04

0.03

0.02

0.0

_IIII|IIII|IIIIIIIIIIIIII|I[II|IIII|II

OO

60 70 80 90 100

Insufficient information
iN data to constrain both S,B
- Need additional measurement of B

\Wouter Verkerke, NIKHEF



Simultaneous fits / joint likelihoods

e |f >1 measurements exist that constrain (nuisance) parameters,
can combine information by formulating a joint likelihood

L,(x/S,B) Lg(y(B)

L(%,Y[S,B)a.s = LaKXIS,B) Ls(y[B)

¢ No constraints shapes or forms of Likelihood

— (Can combine counting measurement, shape measurement
— Likelihoods can have same observables, different observables, all OK

— Only condition is that parameter have same meaning in all measurements

\Wouter Verkerke, NIKHEF



Constraining a nuisance parameter from a control region

e Solution for Poisson counting measurement P(N|S+B)
with unconstrained B is to join with
measurement in a control region that measures B only

Lsi6(Ng|S,B)=Poisson(Ng,[S+B) Lo =Poisson(Ner [TB)

N /

Loint(Ngie,Ner |S,B) o, 5 = Poisson(N,,,|S+B)*Poisson(Ner, [T°B)

J sig

Sufficient information in joint Likelihood to solve for both S and B

\Wouter Verkerke, NIKHEF



Constraining parameters from >>1 region

e |nference from joint likelihood models combines information from
all measurements that carry information on a given parameter

— Can also combine many measurements that constrain the same parameter

® Socanalso do Lggy+ Lggo +-..+ Lgigy instead of Lgg + Lop,

or any combination of signal and control regions

L L
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8 "} ATLAS Eww e ] 8 %
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Entries /0.05
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Example:

Higgs channels from ATLAS and CMS,
along with the background control regions
All channels measure common
Higgs signal strength modifier
(=deviation of expectation from SM)

] r
140 160 180
my, (GeV)

05 055/06 065 07 074 08 085 09 095
BDT outy

W+b(b) enriched
control region

Z+b(b) enriched
control region

put
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Splitting signal regions by expected purity

e Another common strategy that results in >>1 signal region,
is to split an existing (big) signal region in multiple regions

that have different expected purity
Prototypical problem — MVA classifier sorts observed events by purity

If MVA shape is trusted (well understood in simulation) = fit MVA distribution
But MVA classification is not well trusted, then what?

Train MVA without this observable

Fit ‘invariant mass’ in bins of MVA observable

- Measures signal count independent of MVA prediction

Exploits difference in purity across MVA prediction range
without relying on its predicted distribution

F o, + et VBF
104;—j Ldt=2031"
E \s=8TeV Z— 11 CR
10°¢

Events /0.17

10%

10

Mz n
I Others
Fake ©
Uncert.

If another discriminating observable exists (e.g. invariant mass)

\Wouter Verkerke, NIKHEF



Visualization of signal region splitting

e Split data in regions by BDT score, fit each region with inv. mass

Events /0.17

S

L L L L L I BB L BB~ f‘bin_i (m | S,B) fS (m) + Bbln—lfB (S)
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Visualization of signal region splitting

e Split data in regions by BDT score, fit each region with inv. mass

Sono(m1S,B) == £, (m)+ By, o f,(5)

sig

S
Joint PDF for | J=®$87 e/ Bu i)

S

this model a1 8=~ S )+ B 0165

fb,n_3<m|S,B3>=%fs<m>+3,,m_3f3<s> - ) :

Sf(m,n,, | S,B)=lookup(n - sig

BDT)

S
f sm)+ B, .f.(s)
| 11880 = e L)+ By 1,9 Fitted purity —+
in each bin
// Construct template model (S/j%MJ)

sig

w.factory ("SUM: :fit template (prod(Nsig[30,0,100],frac[1l]) *sigl, PP T ——
(S/ £+ B

Nbkg[1000,0,10000] *bkgl)") ;
——

// Construct joint model from template clones
w.factory ("SIMCLONE: : fitmodel (fit_template,
$SplitParam({Nbkg, frac} ,bdtBin))") ;

——

—

_III|III|III|III|III|III|III|III|HI|III|I
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The imperfect experiment

¢ \When relying on simulation templates to build models, a whole
world of problems awaits when considering that simulation
predictions have many systematic uncertainties associated with
them??

n>
o

0
o
g
2
[ =4
]
>
i}

o
o

—]
_
<
%
E
=

é

D
=]

_...[...I...I...I..":I...I...I...I...I...
%0 82 84 86 88 90 92 94 96 98 100
X

Signal and background predictions
are affected by (systematic) uncertainties

\Wouter Verkerke, NIKHEF



The simulation workflow and origin of uncertainties

Simulation of ‘soft phygs’ Simulation of ATLAS LHC data
physics prog.es,’&\ detector ¢ 5 .
e

Simulation of high—ener%
physics process

Reconstruction
o of ATLAS detector
© [ e Data ATLAS ]
gzsl-Background zz" Ho 77 sal .
g E-Background Z+jets, t ]
320—_ [] Signal (m =125 GeV)

T 7 Syst.Unc.
C\s=7TeV:/Ldt = 4.8 fb

—_
(9)]

[\s=8TeV:/Ldt=5.8 b

10

Analysis Event selection

Nortkor \ orlkearlea C
VOUULOT VOITNCTING, TN~ 1

m, [GedT Wouter Verkerke. NIKHE.

100 150 200




Typical systematic uncertainties in HEP

e Detector-simulation related
— “The Jet Energy scale uncertainty is 5%”

— “The b-tagging efficiency uncertainty is 20% for jets with p;<40”

e Physics/Theory related
— The top cross-section uncertainty is 8%

—  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the
difference the systematic uncertainty”

— “Evaluate the effect of using Herwig and Pythia and consider the difference
the systematic uncertainty”

e MC simulation statistical uncertainty

— Effect of (bin-by-bin) statistical uncertainties in MC samples

\Wouter Verkerke, NIKHEF



What can you do with systematic uncertainties

e As most of the typical systematic prescriptions have no immediately
apparent parametric formulation in your likelihood, common approach
IS ‘vary setting, rerun analysis, observe the difference’

e This common ‘naive’ approach to assess effect of systematic
uncertainties amounts to simple error propagation

e Error propagation procedure in a nutshell

— Make nominal measurement (using your favorite statistical inference procedure)

— (Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1
sigma’ up and down ) Redo measurement procedure for each shift

— Consider propagated effect of shifted setting the systematic uncertainty

_ up down
U=UW,m= Ostat = (lusyst o lusyst )/2 x...
| ' J | ' |

From statistical Systematic uncertainty
analysis from error propagation

Wouter Verkerke, NIKHEF



Pros and cons of the ‘naive’ approach

* Pros

It’s easy to do

It results in a seemingly easy-to-interpret table of systematics

« Cons

Uncorrelated source of systematic uncertainty can have correlated effect on
measurement - Completely ignored

Magnitude of stated systematic uncertainty may be incompatible with
measurement result - Completely ignored

You lost the connection with fundamental statistical techniques

(i.e. evaluation of systematic uncertainties is completely detached from
statistical procedure used to estimate physics quantity of interest) > No
prescription to make confidence intervals, Bayesian posteriors etc in this way

No calibrated probabilistic statements possible (95% C.L.)

e ‘Profiling’ = Incorporate a description of systematic uncertainties
In the likelihood function that is used in statistical procedures

\Wouter Verkerke, NIKHEF



Everything starts with the likelihood

- All fundamental statistical procedures are based on the likelihood
function as ‘description of the measurement’

z°
§o
a0

0.

09

I

s+ b)"
P(n|s+b) = (s+0) e~ (510)

s=0

7

n!
NB: b is a constant in this example

ol AL RARAS RARLS LALLE LALLE LALLE LALAN|

e © o o
B 8 ® & 8 § 8§

Definition: the Likelihood e.g. L(1 5|S=0)

0.015

is P(observed dataltheory) e.g. L(15[|s=10)

¥

C 1
% 5 0

\ [y =
15 20 25 30 35 40 45 50
N

¥

Frequentist statistics  Bayesian statistics Maximum Likelihood

S=XzxYy

¥

Confidence interval on s Posterior on s

¥




Everything starts with the likelihood

Frequentist statistics  Bayesian statistics Maximum Likelihood
_ L(N ) 5
b (N ) =B Py Lxlw) () dInL(p)|  _,
L(N | w) 7 =
D .
. Pi=P;
%"’4% — 1@,_ju=0) fms;—
: 3 — 1§ _ln=1) %m;
g served vaiue i:i

07‘ - 5I - ‘1H0h‘ ‘ ‘1|5' ' ﬂﬂjzo
Test Statistic q, )
Confidence interval Posterior on s S=XzxY

or p_va|ue or BayeS faCtor \Wouter Verkerke, NIKHEF



Introducing uncertainties — a non-systematic example

e The original model (with fixed b)

o
o
©

|

o
o

Projection of p

o
o

0.06

e Now consider b to be uncertain
L(N|s) = L(N|s,b)
e The experimental data contains insufficient to constrain both

s and b 2 Need to add an additional measurement to constrain b
Wouter Verkerke, NIKHEF



The sideband measurement

Events /(0.5)

Suppose your data o
in reality looks like this =» 0

III|I||]III|III|III|I

Can estimate level of background in the ‘signal region’ from event
count in a ‘control region’ elsewhere in phase space

. NB: Define parameter ‘b’ to represents
LSR (s,0) = POlSSOﬂ(NSR |S+D)  ithe amount of bkg is the SR
LCR (b) = POiSSO}/l(NCR | ‘E . b) Scale factor T accounts for difference

in size between SR and CR

“Background uncertainty constrained from the data”
Full likelihood of the measurement (‘simultaneous fit’)

L, (s,b) = Poisson(Ng |'s +b)- Poisson(N g | T b)



Generalizing the concept of the sideband measurement

e Background uncertainty from sidelbband clearly clearly not a
‘systematic uncertainty’

L, (s,b) = Poisson(N g | s +b)- Poisson(N . | T - b)
e Now consider scenario where b is not measured from a sideband,

but is taken from MC simulation with an 8% cross-section
‘systematic’ uncertainty

‘Measured background rate by MC simulation’

L., (s,b) = Poisson(Ng | s +b) - Gauss b1b,0.08)

i
‘Subsidiary measurement’
of background rate

— We can model this in the same way, because the cross-section uncertainty is
also (ultimately) the result of a measurement

Generalize: ‘sideband’ - ‘subsidiary measurement’

Wouter Verkerke, NIKHEF



What is a systematic uncertainty?

e (Concept & definitions of ‘systematic uncertainties’ originates from
physics, not from fundamental statistical methodology.

— E.g. Glen Cowans (excellent) 198pp book “statistical data analysis”
does not discuss systematic uncertainties at all

e A common definition is

— “Systematic uncertainties are all uncertainties that are
not directly due to the statistics of the data”

e But the notion of ‘the data’ is a key source of ambiguity:
— does it include control measurements?

— does it include measurements that were used to perform basic
(energy scale) calibrations?

\Wouter Verkerke, NIKHEF



Typical systematic uncertainties in HEP

e Detector-simulation related Subsidiary measurement
— “The Jet Energy scale uncertainty is 5%” 's an actual measurement
. , . o . —> conceptually similar to
— “The b-tagging efficiency uncertainty is 20% 4 ‘sideband’ fit

for jets with p;<40”

e Physics/Theory related

. L Subsidiary measurement
— The top cross-section uncertainty is 8% i

unclear, but origin of

— “Vary the factorization scale by a factor 0.5 prescription may well
and 2.0 and consider the difference be another measurement
the systematic uncertainty” (if yes, like sideband, if

— “Evaluate the effect of using no, what is source of info?)

Herwig and Pythia and consider the difference
the systematic uncertainty”

* MC simulation statistical uncertainty Subsidiary measurement
is a Poisson counting

experiment (but now in

MC events), otherwise
conceptually identical to

a ‘sidebandfitfer \Verkerke, NIKHE-

— Effect of (bin-by-bin) statistical uncertainties
in MC samples



Typical systematic uncertainties in HEP

e Detector-simulation related Subsidiary measurement

—  “The Jet Energy scale uncertainty is 5%” is an actual measurement
- conceptually to

“Thao htanninn affirianecyv rincartaintyy ie 2004

Almost all systematic uncertainties are similar in nature
o p| to‘sidebands’ measurements of some form or shape

- Can always model systematics like sidebands
In the Likelihood

4/ And even when the are not the (in)direct result of
some measurement (certainty theory uncertainties)
we can still model them in that form

° C simulation statistical uncertainty SubsIdiary measurement

is a Poisson counting
experiment (but now in

MC events), otherwise
conceptually identical to

a ‘sidebandfitler Verkerke, NIKHER

— Effect of (bin-by-bin) statistical uncertainties
in MC samples



Modeling a detector calibration uncertainty
L, (s,b) = Poisson(Ng | s+b)- Gauss(b1b,0.08)

e Now consider a detector uncertainty, e.g. jet energy scale
calibration, which can affect the analysis acceptance in a non-trivial

way (unlike the cross-section example) | o
Nominal calibration

Signal rate (our parameter of interest) \Assum ed calibration

N

L(N,als,o)= POZSson(NIs+b(a/(x) 2)) Gauss(al(x o )

' -\

Observed event count Uncertainty
on nominal
. calibration
Nominal Ibackground Response function (here 5%)
expectation from MC f ES :
(a constant), obtained or JES uncertainty
’ (a 1% JES change

with a=a results in a 2% “Subsidiary measurement”
acceptance change)  Encodes ‘external knowledge’
on JES calibration



Modeling a detector calibration uncertainty

7

e Simplify expression by renormalizing “subsidiary measurement

Signal rate (our parameter of interest)

\

L(N |s,a)= Poisson(N | s+ 15(1 +0.1a)) - Gauss(0 |l a,1)

Observed event count / \
“Normalized

, subsidiary measurement”
Nominal background  Response function

expectation from MC  for normalized JES The scale of parameter

(a constant) parameter a is now chosen such that
a UQIT change in a values +1 corresponds to the
—ao% JESchange - hominal uncertainty

still results in a 10% (in this example 5%)
acceptance change]

Wouter Verkerke, NIKHEF



The response function as empirical model of full simulation

L(N,0ls,a)= Poisson(N |s+b(a))-Gauss(0 |l a,1)
o

¢ Note that the response function is generally not linear, but can in
principle always be determined by your full simulation chain

— But you cannot run your full simulation chain for any arbitrary ‘systematic
uncertainty variation’ = Too much time consuming

— Typically, run full MC chain for nominal and =10 variation of systematic
uncertainty, and approximate response for other values of NP with interpolation

— For example run at nominal JES and with JES shifted up and down by +5%

o) Empirical approximation 11
o of true response Full MC result for JES at +5%
1.0
Full MC result for JES at
0.9

\Wouter Verkerke, NIKHEF



What is a systematic uncertainty?

e [t is an uncertainty in the Likelihood of your physics measurement
that is characterized deterministically, up to a set of parameters,
of which the true value is unknown.

e A fully specified systematic uncertainty defines

— 1: A set of one or more parameters
of which the true value is unknown,

— 2: A response model that describes the effect of those
parameters on the measurement
(sampled from full simulation, and interpolation)

— 3: A subsidiary measurement of the parameters
that constrains the values the parameters can take
(implies a specific distribution: Gaussian (default, CLT),
Poisson (low-stats counting), or otherwise)

\Wouter Verkerke, NIKHEF



Names and conventions — ‘profiling’ & ‘constraints’

e The full likelihood function of the form

L(N,0ls,a)= Poisson(N |s+b(a))  Gauss(0la,1)

IS usually referred to by physicists as a ‘profile likelihood’, and
systematics are said to be ‘profiled’ when incorporated this way

— Note: statisticians use the word profiling for something else

e Physicists often refer to the subsidiary measurement as a
‘constraint term’

— Thisis correct in the sense that it constrains the parameter qQ, but this labeling
commonly lead to mistaken statements (e.g. that it is a pdf for a)

— Butitis not a pdf in the NP

Gauss& 10,1) Gauss(0la,1)

Wouter Verkerke, NIKHEF



Names and conventions

e The ‘subsidiary measurement’ as simplified form of the “full
calibration measurement’ also illustrates another important point
— The full likelihood is simply a joint likelihood of a physics measurement and a

calibration measurement where both terms are treated on equal footing in the
statistical procedure

— In a perfect world, not bound by technical modelling constraints
you would use this likelihood

L(N,y1s,a) = Poisson(N | s + b(1+0.1c0)) L. (¥ 1 1, 6)

where L 5 is the full calibration measurement as performed by the Jet
calibration group, based on a dataset y, and which may have other
parameters 6 specific to the calibration measurement.

e Since we are bound by technical constrains, we substitute L g
with simplified (Gaussian) form, but the statistical treatment and
interpretation remains the same

Wouter Verkerke, NIKHEF



Gamma and logNormal distributions

Gamma distribution
=distribution of u resulting from
a Poisson measurement L(N|p)

logNormal distribution

. 1 1 —(log x — p)?
1 — — £ )= — €
f(x;a’ﬁ)zr(a)ﬁaxa 1.—z/B f(l’“’a) \/'27(-7.‘1:()([)( 202
Elz] = exp(p + 30?)
Elz] = op
""'[.'I:] =
Viz] = af? - 2 2
exp(2p + o) [exp(e”) — 1]
"'5 1 T T T
; e — =0, o=1
=08 G --- u=0,0=15
: \ i 3 —= =0, 0=0.5
08 LN
0.4
0.2
0
< 0 1 2 3 4



MC statistical uncertainties as systematic uncertainty

¢ Another example of modeling a systematic uncertainty:
MC statistical uncertainty

e [ollow same procedure again as before:

— Define response function (this is trivial for MC statistics:
it is the luminosity ratio of the MC sample and the data sample)

— Define distribution for the ‘subsidiary measurement’ — This is a Poisson
distribution — since MC simulation is also a Poisson process

— Construct full likelihood (‘profile likelihood’)

L(N,N,,-1s,b) = Poisson(N | s+ b)- Poisson(N,,. | T D)

Constant factor T = L(MC)/L(data)
¢ Note uncanny similarity to full likelihood of a sidelband measurement!

L(N,N_, |s,b)= Poisson(N |s+b)- Poisson(N_, | T -b)

ctl

Wouter Verkerke, NIKHEF



Modeling multiple systematic uncertainties

¢ [ntroduction of multiple systematic uncertainties presents no
special issues

e Example JES uncertainty plus generator ISR uncertainty

L(N,Ols,a,,0,,)=P(N1s+b(1+0.1a,., +0.050,,)) GOl ot s, 1) GO | 01, 1)
L Y ) \ Y ) \ Y )
Joint response function

for both systematics

One subsidiary
measurement for each
source of uncertainty

e A brief note on correlations

—  Word “correlations” often used sloppily — proper way is to think of correlations
of parameter estimators. Likelihood defines parameters a5, Qigp.

The (ML) estimates of these are denoted 4 ,...a&

JES > ISR

— The ML estimators of @,.0 using the Likelihood of the subsidiary
measurements are uncorrelated (since the product factorize in this example)

— The ML estimators of @,.0%4 using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function

Wouter Verkerke, NIKHEF



Modeling systematic uncertainties in multiple channels

e Systematic effects that affect multiple measurements should be
modeled coherently.

— Example — Likelihood of two Poisson counting measurements

L(N Ny 15,0050)= P(N, Us~ f, +B,(1+0.1ct,5)) P(Ny 15 f 4 by (1-0.301,))- G(O | et 5.1)-
| Y Y

JES response JES response  JES
function for function for  subsidiary
channel A channel B measurement

— Effect of changing JES parameter a g coherently affects both measurement.

— Magnitude and sign effect does not need to be same, this is dictated by the
physics of the measurement

\Wouter Verkerke, NIKHEF



Introducing response functions for shape uncertainties

¢ Modeling of systematic uncertainties in Likelihoods describing
distributions follows the same procedure as for counting models
— Example: Likelihood modeling a

distribution in a di-lepton invariant S op
mass. POl is the signal strength p

0

Events /

100:
80:
LGy 1) = ] ][ - Gauss(mi?, 91,1)+ (1= ) Uniformm)]

40

20

FIRTERTIN SR RN  II
%0 82 84 86 8

e (Consider a lepton energy scale
systematic uncertainty that affects this measurement

— The LES has been measured with a 1% precision
— The effect of LES on m, has been determined to a 2% shift for 1% LES change
LGy, | o0, p5) = | [ [ 1 Gauss(my), 91 (14 2, 5,1)+ (1= ) Uniform(m}) | Gauss(0 | a5, 1)

— Y !
Response function Subsidiary measurement

Wouter Verkerke, NIKHEF



Response modeling for distributions =

e [or a change in the rate, response
modeling of histogram-shaped
distribution is straightforward:
simply scale entire distribution

- g e e A ! 4

P N B RN iR I BRI PR LA B

® 82 84 86 88 90 92 94 9 98 100
X

L(N | u)= HPoisson(Ni | us, +b.)

L(]V lu,o0) = HPoissan(Ni lus. -(1+3.75a) + 15l.) -Gauss(0la,1)

Response function Subsidiary
for signal rate measurement

e But what about a systematic uncertainty that shifts the mean,
or affects the distribution in another way?

\Wouter Verkerke, NIKHEF



Modeling of shape systematics in the likelihood

e [ffect of any systematic uncertainty that affects the shape of a
distribution can in principle be obtained from MC simulation chain

Projection of hsig_min
o ) o
o o o

'S
o

n
o

— Obtain histogram templates for distributions at ‘+10” and ‘-1¢’

‘_105

| [

%_

0 82 84 86 88

L 111
90 92 94

111 | 11 I -
96 98 100
X

settings of systematic effect

‘nominal’

©
o

Projection of hsig

H
o

[o23 o
o o
T T T T

n
o
T T

Lo

|

%OI I ‘82I ‘ l84I I ‘86

e P N S . FEE e
88 90 92 94 96 98 100

X

Projection of hsig_plus

| | | | | L

NEEEEY S FNE SRR N I T A AT
82 84 86 88 90 92 94 96 98 100

e (Challenge: construct an empirical response function based on
the interpolation of the shapes of these three templates.

\Wouter Verkerke, NIKHEF



Projection of hsig_plus

Need to interpolate between template models

Need to define ‘morphing’ algorithm to define
distribution s(x) for each value of a

S(X)|a=-1

S(X)|a=0

S(x)

|o=+1

Projection of hsig_min
[o3 o
o =]
T I T T T I

D
o
T T

S
o
[ T T

1=
3
™

Projection of hsig

[*+3
o
LI

D
o
L .

o
o
T T I T T

20—

n
o
T

| | | |

82 84 86 88 90

o T T T

il il
82 84 86 88

”90”92”'94I“96”'98“1I§)0 S(X,CI='1)

—|||1|||||||||||||||||||| [ R
/0 82 84 86 88 90 92 94 96 98
X

s(x,a=0)

b S(X,a=+1)
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Piecewise linear interpolation

e Simplest solution is piece-wise linear interpolation for each bin

£ 2 @
Qloo— Fook _21 -
2 [ S T o L
s [ s T 400
5] s T 5 |
580— '%80— .5
Q B o o ‘5 o
% L L 2380
o r - @
60— 60— i

i I 60
40— 40—

L L 40
20_— 20_— rIJ' 20

_l LA [ Ll I Ll I Ll ||I|Il||| lllllllllll i

%5 82 84 86 86 90 92 94 96 88 100 %5 82 84 86 86 90 92 94 96 98 100 @G 82 84 86 88 90 92,94 96 98 100

X / X X
60

Extrapolation to |a|p1

Piecewise linear
interpolation %0
response model
for a one bin

[

40
30

20

Kink at a=0 /

Ensyre s,(a)=0
15 \Wouter Verkerke, NIKHEF
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Visualization of bin-by-bin linear interpolation of distribution
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Projection of hsig_plus
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There are other morphing algorithms to choose from

Gaussian

varying
width

Gaussian

varying
mean

Gaussian
to

Uniform
(this is
conceptually ambigous!)

n-dimensional
morphing?

Vertical
Morphing

onaf
anf

anf

Horizontal

Morphing

5 F
§.025

So0e [

Moment
Morphing

A LA R L L LA L R

.....

Wouter Verkerke, NIKHEF, 147
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Shape, rate or no systematic?

¢ Be judicious with modeling of systematic with little or no significant
change in shape (w.r.t MC template statistics)

— Example morphing of a very subtle change in the background model

— Is this a meaningful new degree of freedom in the likelihood model?

T Axzoris fes: between o=l A w!!!.'I!.l"’.'l'!'l'mmunn i
nominal and alternate ,',';;;,';;,‘;ll;"""‘l""l
template can help to decide
if a shape uncertainty is meaningul _

I . ..ffﬁjjf'-~--'-"""'-'-_-;_-_-.ﬁﬁﬁfjffﬁi
“ H| i [ ”H
l

— Most systematic uncertainties
affect both rate and shape, but can make

independent decision on modeling rate (which less likely to affect fit stability)

\Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

e Shape of profile likelihood in NP a clearly raises two points

o o Eyegs/ (0.325x0,1)
o'm‘bb)bo_i\:‘zx'wéxl\‘)

Projection of Profile of -log(likelihood)

—_
o
o

1) IIII|IIII|IIII|IIII|IIII|IIII|IIII

P TR
-1

1.
alpha

e 1) Numerical minimization process will be ‘interesting’

e 2) MC statistical effects induce strongly defined minima that are fake

— Because for this example all three templates were sampled from the same parent
distribution (a uniform distribution)

\Wouter Verkerke, NIKHEF



Recap on shape systematics & template morphing

¢ |mplementation of shape systematic in
likelihoods modeling distributions conceptually
no different that rate systematics in counting

experiments :i e e S

LGy, | w,0,5) = | [[ 10 Gauss(my, 91 (1+ 2, 5,1)+ (1 = ) Uniform(m) | Gauss(0 | a5, 1)

e [or template modes obtained from MC simulation template
provides a technical solution to implement response function

— Simplest strategy piecewise linear interpolation,
but only works well for small changes

of shifting distributions

5 o oReBda323x0Q)
B i G

— Moment morphing better adapted to modelmg :

— Both algorithms extend to n-dimensional
interpolation to model multiple systematic NPs
in response function

— Bejudicious in modeling ‘weak’ systematics: ‘
MC systematic uncertainties will dominate likelihood Woutter Verkerke, NIKHEF



Example 1: counting expt

e Will now demonstrate how to
construct a model for a
counting experiment with
a systematic uncertainty

Putting it all together — a calibration uncertainty in a counting experiment

e Simplify expression by renormalizing “subsidiary measurement”

Signal rate (our parameter of interest)

v
L(N |s,a)= Poisson(N | s +b(1 + OA.la)) -Gauss(0la,1)

=4
Observed event count

Nominal backgrand
expectation from MC
(a constant)

A

Response function
for normalized JES
parameter
[a unit change in a

—-a 5% JES change -

still results in a 10%
acceptance change]

w_

“Subsidiary measurement”

Encodes ‘external knowledge’
on parameter that
controls JES calibration

The scale of parameter
a is now chosen such that
values +1 corresponds to the
nominal uncertainty
(in this example 5%)

Wouter Verkerke, NIKHEF

L(N ls,a) = Poisson(N | s+ b(1+0.1a))- Gauss(0 1 o, 1)

// Subsidiary measurement of alpha

w.faxtory (“Gaussian: :subs(0,alpha[-5,5],1)") ;

// Response function mu (alpha)

w.factory (Vexpr: :mu(‘'s+b(1+0.1*alpha)’ ,s[20] ,b[20] ,alpha)”) ;

// Malin measurement

w.factory (“Poisson: :p(N[0,10000] ,mu)”) ;

// Complete model Physics*Subsidiary

w.factory ("PROD: :model (p,subs) ")
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Example 2: unbinned L with syst.

e Wil now demonstrate how to
code complete example of
the unbinned profile likelihood
of Section 5:

Introducing shape systematic uncertainties

* Modeling of systematic uncertainties in Likelihood describing
distributions follows the same procedure as for counting models
— Example: Likelihood modeling

distribution in a di-lepton invariant
mass. POl is the signal strength p

o}
LUT:,,Iu)-H[u-Guuxa(m;"’.‘)l.lh(l—;4)-Umlbm\(m“,“)] w

L B m i R A
e Consider a lepton energy scale ’
systematic uncertainty that affects this measurement

- The LES has been measured with a 1% precision
- The effect of LES on m, has been determined to a 2% shift for 1% LES change

Ly, | ua,,) = H[;rGauss(lnL”ﬁl (420, D)+ (1-p)- Uniform(m},")}Gmus(O la.1)
i — —_—

Response function Subsidiary measurement

L(7y | 1,0t 5) = | [ e Gauss(my, 91+ (14 201,6),1) + (1 = ) Uniform(my) |- Gauss(01 at,5,1).
i |

// Subsidiary measurement of alpha

w.factory (“"Gaussian: :subs(0,alpha[-5,5],1) ") ;

// Response function m(alpha)

w.factory(Vexpr::m a(“m*(1+2alpha)”,m[91,80,100] ,alpha)”) ;

// Signal model

w.factory(“"Gaussian::sig(x[80,100] ,m a,s[1])")

// Complete model Physics (signal plus background) *Subsidiary
w.factory (“"PROD: :model (SUM(mu[0,1] *sig,Uniform: :bkg(x)) ,subs)”) ;




Example 3 : binned L with syst

e Example of template morphing
systematic in a binned likelihood

s!+a-(si-5)) Va>0
s(a,...)= . .
s;+a-(s; -s;) Va<O0

Visualization of bin-by-bin linear interpolation of distribution

L(N1a,57,5°5%) = | | PN/ 15,(00.s757,57)) GO v, 1)

bins !

// Import template histograms in workspace
w.import(hs O0,hs p,hs m) ;

// Construct template models from histograms
w.factory (“HistFunc::s 0(x[80,100] ,hs _0)") ;

w.factory(“HistFunc::s p(x,hs p)”) ;
w.factory (“"HistFunc::s m(x,hs m)”) ;

// Construct morphing model

w.factory (“"PiecewiseInterpolation::sig(s_0,s ,m,s p,alpha[-5,5])")

// Construct full model

w.factory ("PROD: :model (ASUM(sig,bkg,£f[0,1]) ,Gaussian(0,alpha,l))”) ;




Other uncertainties in MC shapes — finite MC statistics

e |n practice, MC distributions used for template fits have finite
statistics.
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e |imited MC statistics represent an uncertainty on your model
- how to model this effect in the Likelihood?
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Other uncertainties in MC shapes — finite MC statistics

¢ Modeling MC uncertainties: each MC bin has a Poisson uncertainty
e Thus, apply usual ‘systematics modeling’ prescription.

e [or a single bin — exactly like original counting measurement
Fixed signal, bkg MC prediction

el
[=}
e

L, .(u)=Poisson(N,|u-5. +b.)

Signal, bkg
MC nuis.‘ﬁl params

L, .(u,s;,b)=Poisson(N,|u-s +b,)

. MC—-
- Poisson(N," " |s,)
. MC-b
/ - Poisson(N;"~ " | b,)
Subsidiary measurement for signal MC

(‘measures’ MC prediction s; with Poisson uncertainty)

« Projectgon of mod
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Nuisance parameters for template statistics

Repeat for all bins

Projectan of model
2 e

o
3
T T |l T

0.04

0.02

LN 1wy =[ | P(N, 15, +b,)

bins

Binned likelihood
with rigid template

L(N|M,§,5)=HP(N,- |M'S,-+b,-)np(§i |Si)1_[P(5i 15,)

bins
1

bins bins
1 J

Response function
w.r.t. s, b as parameters

|
2X Ny;s SUbsidiary
measurements
of s,b from s~,b~

Result: accurate model for MC statistical uncertainty, but lots of
nuisance parameters (#samples x #bins)...



The effect of template statistics

e \When is it important to model the effect of template
statistics in the likelihood

— Roughly speaking the effect of template statistics becomes
important when N < 10X Ny, (from Beeston & Barlow)

nolmooeé
vler-

o

e Measurement of effect of template statistics in
previously shown toy likelihood model, where
POl is the signal yield

Omodei2 () / Fmogert (0)  Nyo=10N 414 ‘model 1 — plain template likelihood’
(10 bins, o (signal) = 4, #runs = 2000)

‘model 2 — Beeston-Barlow likelihood’
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Reducing the number NPs — Beeston-Barlow ‘lite’

e Another approach that is being used is called ‘BB’ — lite

e Premise: effect of statistical fluctuations on sum of templates is
dominant - Use one NP per bin instead of one NP per
component per bin

‘Beeston-Barlow’

L(NI5,b)= nP(NZ. s, +bl.)HP(§l. Isl.)HP(li. 1b)

bins bins bins
‘Beeston-Barlow lite ’

LN 1) = [PON, 1n)[ [P +B,1m,)

bins bins

el
[=}
-

Projecten of mod
=
&

T 8 T 1 T

Response function ~ Subsidiary measurements

i w.r.t. n as parameters ~ of n from s~+b~
0.04

Pl LN = [PV, 1, +B)] [ PG+ 5,17, +5)

[ N S R R N N RS NS S R bins bins

* Normalized NP lite model (hominal value of all y is 1)




The interplay between shape systematics and MC systematics

e Best practice for template morphing models is to also include effect
of MC systematics

e Note that that for every ‘morphing systematic’ there is an set of two
templates that have their own (independent) MC statistical

uncertainties.

— A completely accurate should model MC stat uncertainties of all templates

s!+a-(sf-s)) Va>0
s(a,...)= . .
T s;+a-(s; -s;) Va<O0

L(Nla,57,5°,5%) = HP(Nl. | Si(a,s{,s?,sl.*))n PG s;)]_[ PG sf’)]—[ PG s
bins bins bins bins

Morphing response function Subsidiary measurements

e But has severe practical problems

— Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous
number of NP models with only a handful of shape systematics...

\Wouter Verkerke, NIKHEF



The interplay between shape systematics and MC systematics

e Commonly chosen si+a-(s;-s') Ya>0
practical solution si(a,..)=y .
T s.+a-(s;-s;) Va<O0

LNI5,b) =] [ P(N, 1y, [s(a.s; 0,5+ bD| | PG+, 17,5, + 5 GO et 1)

bins | bins T

Morphing & MC response function Subsidiary measurements

Models relative MC rate uncertainty for each bin w.r.t the nominal
MC yield, even if morphed total yield is slightly different
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e Approximate MC template statistics already significantly improves
influence of MC fluctuations on template morphing

— Because ML fit can now ‘reweight’ contributions of each bin

\Wouter Verkerke, NIKHEF



Pruning complexity — MC statistical for selected bins

e (Can also make decision to model MC statistical uncertainty on a
bin-by-bin basis
— No modeling for high statistics bins

— Explicit modeling for low-statistics bins

120—

Events/(0.5)
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20

%—Ill 1
1

L(NI7)=HP(Nini(§i+I5i)) H PG +b,17.G +b)) ]_[ 5(r.)

bins low-stats bins hi-stats bins
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Adapting binning to event density

e [Effect of template statistics can also be controlled by rebinning
data such all bins contain expected and observed events

— For example choose binning such that expected background has a uniform
distribution (as signals are usually small and/or uncertain they matter less)

L L N N N N L N o A R N S N N N

160
140
120

140~ —
C 100

llIlIIIlIlIIIIIl_

Illlllllllll'llli'

120 -

Events / 0.33 arbitrary

Events / 10 GeV

100~

/////

.

14_""|""|""|:"'| """" RS RAREESESS A

2 ; ;

08;‘ .................... + ....................................................................................................................... _E
OB =

||||||||||||||||||||||||||||||||||||||||

0 01 0203040506070809 1
Mapped m_ [arbitrary]

Data / SM
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Reducing the number NPs — Beeston-Barlow ‘lite’

Example 4 - BeeSton‘Barlow |ight e Another approach that is being used is called ‘BB’ - lite

e Premise; effect of statistical fluctuations on sum of templates is
dominant = Use one NP per bin instead of one NP per
component per bin

e Beeston-Barlow-(lite) modeling e
of MC statistical uncertainties

‘Beeston-Barlow lite

LN i) = [ [PV 1) [PG,+5,1m)
bins bins

o Projectn of model,

Response function  Subsidiary measurements
w.r.t. n as parameters  of n from s~+b~

LIN1§) = [Py, +B )] [ PG, +5, 17, +5)
bins bins

LN 17) =] [Py, G +b)] | PG +b, 17,5+ )

. . Normalized NP lite model (nominal value of all y is 1)
bins bins

// Import template histogram in workspace
w.import (hs) ;

// Construct parametric template models from histograms
// implicitly creates vector of gamma parameters

w.factory (“ParamHistFunc::s (hs)”) ;

// Product of subsidiary measurement
w.factory (“HistConstraint: :subs(s)”) ;

// Construct full model
w.factory ("PROD: :model (s,subs)”) ;

Wouter Verkerke, NIKHEF



¢ [emplate morphing model

The interplay between shape systematics and MC systematics

Example 5 - BB_llte + mOrphlﬂg * Commonly chosen s’(aw)={sf’+a'(&’-$,ﬂ) Ya>0

practical solution 0 0o -
s;+a(s)-s;) Ya<0

LN15,5) = [PN, 1y, s(cs7,0,5) + b D] [ PG, +B, 1y, (5, +B)GO T 1)
bins L T I bins ¢ T )

Morphing & MC response function Subsidiary measurements

Wit h Beesto n - Barl OW_ I ite Mode/s relative MC rate uncena/nty for each bin mm the nominal
MC statistical uncertainties «rﬂ%

st +a(sf=s') Va>0

0 0 - . A
. — pproximate MC template statistics already significantly improves
S, ta (S' S; ) Va < 0 influence of MC fluctuations on template morphing o e ot

— Because ML fit can now ‘reweight’ contributions of each bin

LN 15,b)=] [ PN, 1, [S(a 57,808 )+b D[ | PGi+5 17,15, +5,DG (Ol 1)

bins bms
Y J

// Import template histograms in workspace
w.import(hs _O,hs p,hs m,hb) ;

// Construct parametric template morphing signal model

w.factory (“"ParamHistFunc::s_p(hs_p)”) ;

w.factory (“HistFunc::s m(x,hs m)”) ;

w.factory (“HistFunc::s_0(x[80,100] ,hs 0)") ;
w.factory(“PiecewiselInterpolation::sig(s_0,s ,m,s p,alpha[-5,5])") ;

// Construct parametric background model (sharing gamma’s with s p)
w.factory (“"ParamHistFunc: :bkg(hb,s p)”)

// Construct full model with BB-lite MC stats modeling
w.factory (“"PROD: :model (ASUM(sig,bkg, £[0,1]),
HistConstraint({s_0,bkg}) ,Gaussian(0,alpha,l))”) ;



