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What do we want to know?

Physics questions we have...

— What is its production cross-section?

Does the (SM) Higgs boson exist?

What is its boson mass?

¥

Statistical tests construct
probabilistic statements:
p(theo|data), or p(dataltheo)

Result: Decision based on tests

“As a layman | would now say: | think we have it”

Hypothesis testing (discovery)

(Confidence) intervals
Measurements & uncertainties
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How do we do this?

e All experimental results start with formulation of a (physics) theory

e Examples of HEP physics models being tested
The Standard Model The SM without a Higgs boson

Leptos ] Leptons ]

e Next, you design a measurement to be able to test model

— Via chain of physics simulation, showering MC, detector simulation
and analysis software, a physics model is reduced to a statistical model
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An overview of HEP data analysis procedures

Simulation of “soft physics’
physics progess;..
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An overview of HEP data analysis procedures

Simulation of ‘soft physics’ Simulation of ATLAS LHC data
physics Proggss;, detector =

Simulation of high-energy
physics process
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From physics theory to statistical model

e HEP “Data Analysis” is for large part
the reduction of a physics theory to a statistical model

Physics Theory: Standard Model with 125 GeV Higgs boson

MC Simulated All available
Events (sig.bka) “real data”
Helos,
to define. 2
selection selection.
(cuts, NN, —
BDT) Final Result § " aTLAs 2012012
S [ vecomevfuseson o
! Limit §
Final Event Final Event \
Selection (MC) Selection (data) S

Discovery ;'v TS T
|

Measurement B 4

Statistical Model: Given a measurement x (e.g. an event count)
what is the probability to observe each possible value of x,
under the hypothesis that the physics theory is true.
Once you have a statistical model, all physics knowledge has been abstracted

into the model, and further steps in statistical inference are ‘procedural’
(no physics knowledge is required in principle)



From statistical model to a result

e The next step of the analysis is to confront your model with the
data, and summarize the result in a probabilistic statement of
some form

‘Confidence/Credible Interval’

Final Result "“E ATLAS 2011 - 2012

]
F \s=7TeV: [Ldi=4648f’ (%20

emacssos S5 4 6/0gy (HDZ2) |mperso < 0-3 @ 95% C.L.

95% CL Limit on p

Limit

‘P-value’

Po

“Probability to observed this signal
or more extreme, under the hypothesis
of background-only is 1x10%

Discovery

‘Measurement with variance estimate’

Signal strength (w)

Measurement

e The last step, usually not in a (first) paper, that you,
or your collaboration, decides if your theory is valid
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Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques
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The statistical world

e (Central concept in statistics is the ‘probability model’

e A probability model assigns a probability to each possible
experimental outcome.

N ,-u

ue
e Example: a HEP counting experiment PINTw) ===

—  Count number of ‘events’ in a fixed time interval = Poisson distribution

— Given the expected event count, the probability model is fully specified

=3 (“bkg only”) u=7 (“bkg+signal’)
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Intermezzo on distributions — The binomial distribution

e Simple counting experiment — Drawing marbles from a bowl
— Bowl with marbles, fraction p are black, others are white
— Draw N marbles from bowl, put marble back after each drawing

— Distribution of R black marbles in drawn sample:

Probgbility of a Number of equivalent
specific outcome permutations for that
e.g. ‘BBBWBWW’ outcome
A A
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Basic Distributions — the Poisson distribution

e Sometimes we don’t know the equivalent of the number of
drawings
— Example: Geiger counter
— Sharp events occurring in a (time) continuum

End

Begin
measurement ‘ ‘ measurement

e \What distribution to we expect in measurement
over a fixed amount of time?

— Can be related to Binomial distribution by dividing time interval in fixed number
of small intervals, counting #intervals with a collision

Begin End
meascrement NN I A N O N N e



A probability model for LHC collisions

e [or k expected collisions in measurement, probability of collision
in one of N intervals is k/N = Now back to binomial distribution
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More properties of the Poisson distribution

* Mean, variance: <r> = A

Viry=A = o=+A

e N

P(r;A) =

e (Convolution of 2 Poisson distributions is also a Poisson

distribution with A=A +Ay
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Basic Distributions — The Gaussian distribution

e | ook at Poisson distribution in limit of large N

Take log, substitute, r = | + x,
JSanduse In(r!)=rinr-r+Iny2mr

»
In(P(r;A))=-A+rlnA-(rinr-r)-In~2mr
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Properties of the Gaussian distribution

P(x; u,0) =
270

and

<x> = }oxP(x; u,o)dx = u
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The Gaussian as ‘Normal distribution’

e \Why are distributions often Gaussian”?
e The Central Limit Theorem says
e |[f you take the sum X of N independent measurements X,

each taken from a distribution of mean m;, a variance V=072,
the distribution for x

(@) has expectation value < X > = E U,

(0) has variance  V(X) = EV’ = Eaf
(c) becomes Gaussian as N 2 «

Wouter Verkerke, UCSB



Demonstration of Central Limit Theorem
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< 5000 numbers taken at random from a uniform
distribution between [0,1].

— Mean =1/,, Variance = /.,

< 5000 numbers, each the sum of 2 random
numbers, i.e. X = X{+X,.

— Triangular shape

< Same for 3 numbers,

< Same for 12 numbers, overlaid curve is exact
Gaussian distribution

Important: tails of distribution converge very slowly CLT
often not applicable for ‘5 sigma’ discoveries



The statistical world

e (Central concept in statistics is the ‘probability model’

e A probability model assigns a probability to each possible
experimental outcome.
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Statistical methods 1

Hypothesis testing, p-values, odds ratios (demonstrated on simple
Poisson counting experiments)

Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties
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Probabilities vs conditional probabilities

e Note that probability models strictly give conditional probabilities
(with the condition being that the underlying hypothesis is true)

u=3 (“bkg only”) u=7 (“bkg+signal”)
§oa[-

Definition:
P(datalhypo) is called
the likelihood

P(N)— P(N | kug) P(N)— P(N | Hsig+bkg)
e Suppose we measure N=7 then can calculate

L(N= 7|kug 2.2% L(N=7|H
e Data is more likely under sig+bkg hypothesis than bkg-only hypo

S|g+bkg =14.9%

e |s this what we want to know? Or do we want to know L(Hg,,|N=7)?

Wouter Verkerke, NIKHEF



Inverting the conditionality on probabilities

e Do L(7|H,) and L(7|H,) provide you
enough information to calculate P(H,|7) and P(H,|7)

e No!
e |mage the ‘whole space’ and two subsets A and B
O O
P(A) = P(B) = -
B
SN _ L
P(AIB) = "gp P(BIA) = '

P(A|B) # P(B|A)

P(7|Hp) # P(Hyl7)

Wouter Verkerke, NIKHEF



Inverting the conditionality on probabilities

O O
"
B
(=N_..) ¢ Q
obs P(A[B) = D P(BIA) = T
P(A|B) # P(B|A)
but you can deduce
0 0 0 their relation
P(A) x P(BJA) = - X . = i = P(AnB)
= P(B|A) =P(A|B) x P(B) / P(A)
-« ‘ ‘ P(A A B)
P(B) x P(A|B) = X = —— = A
N e BN
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Inverting the conditionality on probabilities

e This conditionality inversion relation is known as Bayes Theorem

P(B|A) = P(A|B) x P(B)/P(A)

Essay “Essay Towards Solving a Problem in the Doctrine of
Chances” published in Philosophical Transactions of the
Royal Society of London in 1764

e And choosing A=data and B=theory - Bayes (1702-61)
omas bayes -

P(theo|data) = P(data|theo) x P(theo) / P(data)

e Return to original question:

Do you L(7|H,) and L(7|H,) provide you
enough information to calculate P(H,|7) and P(H,|7)

e No! > Need P(A) and P(B) > Need P(H,), P(H,,) and P(7)

Wourter Verkerke, NIKHEF



Inverting the conditionality on probabilities

e What is P(data)? P(theo|data) = P(dataltheo) x P(theo) / P(data)

e |t is the probability of the data under any hypothesis

— For Example for two competing hypothesis H, and Hy,

P(N) = L(N|H,)P(H,) + L(N|H.,)P(H,)

and generally for N hypotheses
P(N) = Zi P(NlHi)P(Hi)

e Bayes theorem reformulated using law of total probability

P(theo|data) = L(dataltheo) x P(theo)
. L(data|theo-i)P(theo-i)

e Return to original question: Do you L(7|H,) and L(7|Hy,) provide you
enough information to calculate P(H,|7) and P(H,|7)
No! - Still need P(H,) and P(H,,)

Wouter Verkerke, NIKHEF



Prior probabilities

e \What is the meaning of P(H,) and P(H,)?

— They are the probability assigned to hypothesis H,, prior to the experiment.

e What are the values of P(H,) and P(Hg,)?

— (Can be result of an earlier measurement

— Or more generally (e.g. when there are no prior measurement)
they quantify in the hypothesis

e Example — suppose prior belief P(Hy,)=50% and P(H,)=50%

P(Hy |IN=7) = P(N=7|H,,) x P(Hy,)
P(N=7[Hg,)P(Hg,)+P(N=7|H,)P(H) ]

- 0.149 x 0.50 - 87%
[0.149x0.5+0.022x0.5 ]

e (Observation N=7 strengthens belief in hypothesis H,
(and weakens belief in H, = 13%) Wouter Verkerke, NIKHEF



Interpreting probabilities
e \We have seen

probabilities assigned observed experimental outcomes
(probability to observed 7 events under some hypothesis)

probabilities assigned to hypotheses
(prior probability for hypothesis Hy, is 50%)

which are conceptually different.

e How to interpret probabilities — two schools

. . L , P(theo|data)
Bayesian probability = (subjective) degree of belief P(dataltheo)

Frequentist probability = fraction of outcomes in P(dataltheo)
future repeated identical experiments

“If you’d repeat this experiment identically many times,
in a fraction P you will observe the same outcome” wouter Verkerke, NIKHER



Interpreting probabilities

Frequentist:
Constants of nature are fixed — you cannot assign a probability to
these. Probability are restricted to observable experimental results

— “The Higgs either exists, or it doesn’t” — you can’t assign a probability to that

— Definition of P(data|hypo) is objective (and technical)

Bayesian:

Probabilities can be assigned to constants of nature
— Quantify your belief in the existence of the Higgs — can assign a probablity

— But is can very difficult to assign a meaningful number (e.g. Higgs)

Example of weather forecast

Bayesian: “The probability it will rain tomorrow is 95%”

— Assigns probability to constant of nature (“rain tomorrow”)
P(rain-tomorrow|satellite-data) = 95%

Frequentist: “If it rains tomorrow,
95% of time satellite data looks like what we observe now”

— Only states P(satellite-data|rain-tomorrow) Wouter Verkerke. NIKHEE



Back to H,/Hy, - Formulating evidence for discovery of Hy,

e (Given a scenario with exactly two competing hypotheses

¢ |n the Bayesian school you can cast evidence as an odd-ratio

- _P(H,)_ P(H,)
e P(H, 1-P(H,)

If p(Hy,)=p(H,) = Odds are 1:1

‘Bayes Factor’ K multiplies prior odds
[ | k 1
_ LG H)P(H,) L& Hy)

posterior L(x | Hb )P(Hb) L(x | Hb) prior

P(data|H,)=10"

. P(data]H,,)=0.5

K=2.000.000 = Posterior odds are 2.000.000 : 1

Wouter Verkerke, NIKHEF



Formulating evidence for discovery

e |n the frequentist school you restrict yourself to P(data|theory)
and there is no concept of ‘priors’

— But given that you consider (exactly) 2 competing hypothesis,
very low probability for data under Hb lends credence to ‘discovery’ of Hsb
(since Hb is ‘ruled out’). Example

P(data|H,)=10"
P(data|H,,)=0.5

j> “H, ruled out” > “Discovery of H,.”

e (Given importance to interpretation of the lower probability, it is
customary to quote it in “physics intuitive” form: Gaussian o.

— E.g. ‘6 sigma’ - probability of 5 sigma Gaussian fluctuation =2.87x10-7

e No formal rules for ‘discovery threshold’

— Discovery also assumes data is not too unlikely under Hg,. If not, no discovery,
but again no formal rules (“your good physics judgment”)

— NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)

Wouter Verkerke, NIKHEF



Taking decisions lbased on your result

e \WVhat are you going to do with the results of your measurement?

e Usually basis for a decision

— Science: declare discovery of Higgs boson (or not), make press release,
write new grant proposal

— Finance: buy stocks or sell
e Suppose you believe P(Higgs|data)=99%.

e Should declare discovery, make a press release?
A: Cannot be determined from the given information!
e Need in addition: the utility function (or cost function),

— The cost function specifies the relative costs (to You) of a Type | error

(declaring model false when it is true) and a Type Il error (not declaring model
false when it is false).

Wouter Verkerke, NIKHEF



Taking decisions lbased on your result

e Thus, your decision, such as where to invest your time or money,
requires two subjective inputs:

Your prior probabilities, and

the relative costs to You of outcomes.

e Statisticians often focus on decision-making;
in HEP, the tradition thus far is to communicate experimental
results (well) short of formal decision calculations.

e (Costs can be difficult to quantify in science.
— What is the cost of declaring a false discovery?
— Can be high (“Fleischman and Pons”), but hard to quantify

— What is the cost of missing a discovery (“Nobel prize to someone else”),
but also hard to quantify
Wouter Verkerke, NIKHEF



How a theory becomes text-book physics

Frequentist Bayesian
Information from experiment Po.ten tla//y f uezy Information from experiment
P(atalH)=107 information -

P(datalH.)=0.5 Prior belief in theory P(data|H)=10
so/— (can be hard to quantify) P(data|H,)=0.5

P-value threshold from “prior”

(udgment call - no formal theory!) Posterior from expt and prior

following Bayesian paradigm

A: P(H,,|data)=0.9999998
B: P(H,.|data) = 83%

A: declare discovery at 30
B: declare discovery at 50

Cost of wrong decision
(can be hard to quantify)

Recent judgements
on of 50 effects:
Higgs — text book

v(3>1) — rejected

Press release, accept as new Press release, accept as new
‘text book physics’ ‘text book physics’
OR or

Wait for more data Wait for more data




Summary on statistical test with simple hypotheses

e So far we considered simplest possible experiment we can do:
counting experiment

e [ora set of 2 or more completely specified (i.e. simple) hypotheses
u=3 (“bkg only”) u=7 (“bkg+signal”)

a
803
803

Q E
CE045(-
c E
S
9.04F
o

§035

5 [
o025/
@

0.03 0.02—

0.025] L
0.015
0.02]

| [RARRN I | I

0.015 0.01F

0.005[-

AP PP BT P
o 2 4 6 8 10 12 14 16 18 20 %2 4 6 8 10 12 14 16 18 20
N N

- Given probability models P(N|bkg), and P(N|sig)
we can calculate P(N....|HX) under either hypothesis

obs

- With additional information on P(Hi) we can also calculate P(Hx|Nobs)

e |n principle, any potentially complex measurement (for Higgs, SUSY,
top quarks) can ultimately take this a simple form.
But there is some ‘pre-work’ to get here — examining (multivariate)

discriminating distributions = Now try to incorporate that
Wouter Verkerke, NIKHEF
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Discriminating observables & counting experiments

e HEP experimental data usually has many discriminating olbservables
that carry information that can distinguish signal from background
hypothesis

e |n principle can use them all directly in an elaborate hypothesis test.

— But would need to formulate a model that describe the expected distribution of all
of these - Complicated

— If expectations are uncertain (from simulation or theory) process of modeling
lbbecomes even more complex

e A pragmatic solution to reduce complexity is to split task in two

— Define empirical selection of events enriched in signal using one or more
observable properties of the event (invariant masses, distributions, angles etc)

— Perform statistical test (hypothesis test, parameter estimation etc) on sample that
reduced in size and in dimensionality of discriminating observables that are

modeled

— Most extreme reduction of dimensionality is to zero = counting experiment

Wouter Verkerke, NIKHEF



Discriminating observables & counting experiments
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Example 1 — Discrimination in selection stage only
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NB1: All discriminating power in selection step,
none in inference step. This is a design choice!

NB2: Selection must be tuned on a ‘figure of merit’
usually a simplified statistical inference test
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Modeling discriminating observables

e Example 2 — Discrimination in inference stage

-
n
o

NB1: Most discrimination power in inference step.
This is again design choice!

Events/(0.5)

100

80

NB2: Optimal selection less critical

NB3: Correct description of selected sample
more complex

40

20

........................... Statistical inference:
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Modeling discriminating observables

e Example 2 — full dataset has one discriminating observable: x

120 NB1: Most discrimination power in inference step.

/]

Q: Which strategy is better?

Events/(0.5)

A: Depends on now ‘better’ is defined? o
' ing ‘di f a new article’
sis testing ‘discovery O | b
- ‘hypothEB f the test can be the same, but doesn t need |
the ‘power O .
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ples are important?

Choice is real life lar
e How easy isitto
e How many observa
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Formulating probability models for discriminating observables

e For counting experiments could derive Poisson(N|u) from first
principles (‘random discrete events measured in fixed time interval)

e [or experiments with discriminating observables, description should
ideally also derive from underlying (physics) hypothesis/theory

— In many cases this is possible, but not always without assumptions.

— Assumptions lead to uncertainties in predictions = we’ll revisit later how to deal
with those.

e Example: common underlying principle in (signal) model is that
discriminating observable is sum/average of many components
— E.qg. light collected by photomultiplier has contributions from >>1 photons
— Tracks reconstructed in detector have contributions >>1 hits
— Central Limit Theorem: for large N = Can be analytically described by Gaussian

e |n case there is No easy analytical solution - empirical models
(polynomial) or numerical solution (simulation-based histogram)

Wouter Verkerke, NIKHEF



Mathematical formulation of models for observables

e Mathematical description for counting expt is probability model

0

P(N)=0 VN P(N)=1

N=

¢ Mathematical description for distribution
of discriminating observable is a probability density model.

f(X)=0 Vx [r@di=1

RooPlot of "x"
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Mathematical formulation of models for observables

e Mathematical description for counting expt is probability model

P(N)=0 VN iP(N)E1

e Mathematical description for distribution
of discriminating observable is a probability density model.

f(X)=0 Vx ff()‘c’)d)‘c’51

t a probability, but a probability density.

s a probability (for x to be in [a,b])

Note that f(x) itself is nO

b
However any integral f f(x)dx 1

ff(x)dXEl : , _



Some examples of physics-inspired probability density models

Gaussian Landau
(anything in CLT regime) (energy loss in matter)
Breit-Wigner Exponential
(resonant mass) (decay time)

Wouter Verkerke, NIKHEF



Signal models are often convolutions!

e (bservable distributions are often well described by convolutions
of physics distributions with (experimental) resolution functions.

— Often can be calculated analytically, otherwise numerically use FFT

e Example 1: Resonance mass (x) detector resolution

II|IIIITIIllllllllHH‘HH‘HH‘HH‘\

I I
—————————————————
x

e Example 2: Decay life time (x) detector resolution

A RooPlot of "t

[ERLR RARRI RN AR RRRR) L LU L

IR R AR R R RN RN

N
3
° ° ° °
8 © 3 2 & g 3 ¢
8 3 2 5 B &5 8 o
| AR RRRRN RRALY LLARY LR LR AL




PDFs with multiple process contributions

e Analogous to the counting model Poisson(N|S+B), probability
density models can describe the distribution of such hypothesis
through simple addition

f(x) = 5y Gaussian(x) + (1-f;;) Uniform(x)

&

If Gaussian(x) and Uniform(x)

are pdfs, then their sum is also
a pdf, provided the sum of the

coefficients is also 1

Events/(0.5)
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e (Given a data sample D(x) of N =\
independent identically distributed L (x ) - n f (xi)

observations of x, the Likelihood is i=0..N

Wouter Verkerke, NIKHEF



PDFs with multiple process contributions

e Note that the Likelihood L(x) of a probability density function f(x)
for a data sample D(x) with N entries only exploits the differential
distribution in x, but not the event count N of the data

e |n many cases the event count can also distinguish the S/B
hypothesis (more events expected if signal is present). If so,
the probability model for the event count can be explicitly included
in the Likelihood (often called ‘extended likelihood’)

f(x) = f;;, Gaussian(x) + (1-f;,) Uniform(x)
- P(N) = Poisson(N | N, )
bbbt Sous, LEN)= | ] f(x,|£,,) Poisson(N |N,)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
%O 82 84 86 88 90 92 94 96 98 100 .
x i=0...N

e |nthe common case of a signal and background, with a
respective expected event S and B,

one can reparameterize (f5q,Ng,,) 2 (S,B)

Wouter Verkerke, NIKHEF



PDFs with multiple process contributions

Note that the Likelihood L(x) of a probability density function f(x)
for a data sample D(x) with N entries only exploits the differential
distribution in x, but not the event count N of the data

In many cases the event count can also distinguish the S/B
hypothesis (more events expected if signal is present). If so,

the probability model for the event count can be explicitly included
in the Likelihood (often called ‘extended likelihood’)

f(x) = S/(S+B)Gaussian(x) + B/(S+B)Uniform(x)

P(N) = Poisson(N | S+B)

Bttt Moty L(%,N)= | | f(x,]S,B)" Poisson(N|S+B)

.......................................
%O 82 84 86 88 90 92 94 96 98 100
X .
i=0...N

In the common case of a signal and background, with a
respective expected event S and B,

one can reparameterize (fgq,Ng,,) 2 (S,B)
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Empirical probability models

e |n case no description from first principles exists for a differential
distribution, empirical or simulation-based models can be deployed

Empirical models Simulation-based models

Events/(0.2)
Events/(0.5)
N
o

o
=]

IlIlIIIIII[]IIIIIIIII

80

60

40

20

B(x) = ag+a;x+a,x?+as;x3... B(x) = histogram

Drawbacks: Drawbacks:

* Arbitrariness in parameterization, « Quantization of model prediction in bins
e.g. which order to choose » Poor modeling in regions
for a polynomial with low simulation statistics

Wouter Verkerke, NIKHEF



Modeling low-statistics simulation predictions

e [or low-statistics simulation predictions,
kernel estimation techniques can improve modeling substantially
e Procedure:
— Assign a Gaussian probability density distribution to each simulated event.
— Sum Gaussian probability densities of all events

— Started from unbinned data - no binning effects

Gaussian S_l_Jmm_ed_ .
probability distributions probability distribution
Sample of events for each event for all events in sample
E"'I'"‘I""I""I“"I""I“": g35""I""I""I""I""I""I""_ §‘.’E"'[""]‘"'I""l""l"“l"“_
25 = §asf 3 Bash -
ER ER 0 ]

1.5 3 15 3 15 -

Wouter Verkerke, NIKHEF



Modeling low-statistics simulation predictions

e Technique does not require that all Gaussian kernels have same
width

e |mproved procedure: ‘adaptive kernel’

— Adjust with of Gaussian kernels depending on local event density

Projection of sum

w

N
o

N

15

High density = narrow kernels = preserve more detall

Low density = wide kernels - promote smoothness

Static Kernel
(with of all Gaussian identical)

Adaptive Kernel

(width of all Gaussian depends
on local density of events)




Binned vs unbinned likelihoods

* Analytical probability density functions describe  :
data vectors x = unbinned ‘raw’ distribution of x

— (Constructs statistical tests with the highest power,
in particular at low event counts

LEN)= || f(x|f,,) Poisson(N|N__)

i=0..N

e |n the limit of large N unbinned likelihoods become
very CPU consuming with diminishing returns

— Can approximate unbinned likelihood with a binned likelihood
(calculation time will scale with N(bin) rather N(data))

L(n)= n Poisson(n. | u,)

i=0...N

xigh

u. = iff(x)a’x-Nexp

low

X 202

~ l mid high _ __low\ | et
Wouter Verkerke, NIKHEF

(Exact for binned models)



Statistical methods 2

Adapting statistical methods to use with distributions:
test statistics as ordering principle, likelihood ratios,
contrast with Bayesian methods, the likelihood principle.
Practical aspects of toy MC sampling

Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Signal parameterization strategies

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques




Working with Likelihood functions for distributions

e How do the statistical inference procedures change
for Likelihoods describing distributions?

e Bayesian calculation of P(theo|data) they are exactly the same.

— Simply substitute counting model with binned distribution model

L(NIH_,)P(H_,)

P(H_,, IN)=— -
LINIH,)PH,,)+LNIH,)P(H,)
Simply fill in new Likelihood function
Calculation otherwise unchanged
HPoisson(Ni 5. +b)P(H_,,)
P(H_, IN)= ‘

| [ Poisson(N,15,+b)P(H.,,)+ | | Poisson(N,15,)P(H,)

Wouter Verkerke, NIKHEF



Working with Likelihood functions for distributions

e Frequentist calculation of P(datalhypo) also unchanged,
but question arises if P(datalhypo) is still relevant?

Events/(0.5)

L(NIH,)= HPoisson(N,- 15,)

L(N| H_, )= HPoisson(Ni |5, + l;l.)

20

%O 82 84 86 88 90 92 94 96 98 100
X

e L(N|H) is probability to obtain exactly the histogram observed.

e /s that what we want to know? Not really.. We are interested in
probability to observe any ‘similar’ dataset to given dataset,
or in practice dataset ‘similar or more extreme’ that observed data

e Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
Wouter Verkerke, NIKHEF



Working with Likelihood functions for distributions

e Definition: a test statistic T(x) is any function of the data x

e \We need a test statistic that will classify (‘order’) all possible
observations in terms of ‘extremity’ (definition to be chosen by
physicist)

e NB: For a counting measurement the count itself is already
a useful test statistic for such an ordering (i.e. T(x) = Xx)

=
a
T

Test statistic T(N)=Nobs orders observed
events count by estimated signal yield

rojegtion & p
o
=
|||]‘[||

2
|

Low N = low estimated signal
High N = large estimated signal

dedel. | - l Ll ] Ll | Ll
8 10 12 14 16 18 20
N

Wouter Verkerke, NIKHEF



P-values for counting experiments

Now make a measurement N=N_, . (example N ..=7)

obs

Definition: p-value:
probability to obtain the observed data, or more extreme
in future repeated identical experiments

— Example: p-value for background-only hypothesis

s=0

D, = fPoisson(N;b +0)dN | (=0.23)
N,

obs

Projection of
(=} ’ [=) c?
o
(e 4]
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Ordering distributions by ‘signal-likeness’ aka ‘extremity’

e How to define ‘extremity’ if observed data is a distribution

Counting Histogram
Observation o1 ﬂ}ﬂ»ﬂ# +

Median expected Neyp(8=0) = 5 l IAJ_LHI
N : : ]

by hypothesis

preee Arespas ampasse  amemew ARweadr

Predicted distribution
of observables

T[T T[T [T T TT7T

Which histogram is more ‘extreme’?



The Likelihood Ratio as a test statistic

e (Given two hypothesis H, and H,,, the ratio of likelihoods
is a useful test statistic

- L(NIH
A(N) — ( _ s+b)
L(NH,)
¢ |ntuitive picture:

- If data is likely under H,,, - If data is likely under Hg,,,
L(NH,) is large, L(N|H,,,) is large,
L(N|H,,,) is smaller L(N|H,) is smaller

~  small -
A(N) = = small A(N) = large _ large
large small

Wouter Verkerke, NIKHEF



Visualizing the Likelihood Ratio as ordering principle

e The Likelihood ratio as ordering principle

=f  L(NJHg,p)=small L(N|H,.p)=s0s0 - T L(N|H,,,)=large
o L(N|Hp)=large . L(NJH,)=s0s0 T LINJH)=small

obri il P N NN N R oliiliil N I W N oluils
0 8 6 4 2 0 2 4 6 8 10 0 8 6 -4 -2 0 2 4 6 8 10 0 8 6 -
X X

0 2 4 6 8 10
X

A(N)=0.0005 AN)=0.47 AN)=5000

e Frequentist solution to ‘relevance of P(dataltheory’) is to order all
observed data samples using a (Likelihood Ratio) test statistic

— Probability to observe ‘similar data or more extreme’ then amounts to
calculating ‘probability to observe test statistic A(N) as large or larger than the
observed test statistic A(N,,,,)

Wouter Verkerke, NIKHEF



The distribution of the test statistic

e Distribution of a test statistic is generally not known

e Use toy MC approach to approximate distribution

— Generate many toy datasets N under H, and H,,,
and evaluate A(N) for each dataset

-
=
——

Distribution of A for
data sampled under H,

Distribution (
data sample

0.03

0.025

0.02

0.015

0.01

0.005

OIIIIIIIII|IIII|IIII|IIII|IIII|I

pf A for
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log(A)
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The distribution of the test statistic

e Definition: p-value:
probability to obtain the observed data, or more extreme

in future repeated identical experiments

(extremity define in the precise sense of the (LR) ordering rule)

—
L
—

Distribution of A for
data sampled under H,

0.03

0.025

0.02

0.015

0.01

0.005

Distribution ¢
data sample

pf A\ for
d under H,,

o IIIIIIIII|IIII|IIII|IIII|IIII|I

p—value = jf(AIHb)

obs

log(A)
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Likelihoods for distributions - summary

e Bayesian inference unchanged

- simply insert L of distribution to calculate P(H|data)

B L(NIH_,)P(H_,)
L(NIH_,)P(H_,)+L(N|H,)P(H,)

P(H_,|N)

¢ Frequentist inference procedure modified

- Pure P(datalhypo) not useful for non-counting data
- Order all possible data with a (LR) test statistic in ‘extremity
- Quote p(datalhypo) as ‘p-value’ for hypothesis

Probability to obtain observed data, or more extreme, is X%

e Definition: p-value

)

Distribution of A for

‘Probability to obtain 13 or more 4-lepton events g;gg;;opqeozéigm
under the no-Higgs hypothesis is 10"

‘Probability to obtain 13 or more 4-lepton events
under the SM Higgs hypothesis is 50%’

log(d)

p—-value = f f(ALH)




The likelihood principle

e Note that ‘ordering procedure’ introduced by test statistic
also has a profound implication on interpretation

e Bayesian inference only uses the Likelihood of the observed data

P(Hs+b l N) = = =
L(NIH_,)P(H_, )¢ L(NIH,)P(H,)
* While the observed Likelihood Ratio also ™
only uses likelihood of observed data. *
. L(NIH
A(N) — (Ai s+b) 3
L(NIH,)

e Distribution f(A|N), and thus p-value, also uses likelihood of
non-observed outcomes (in fact Likelihood of every possible
outcome is used) Wouter Verkerke, NIKHEF



Likelihood Principle

e |n Bayesian methods and likelihood-ratio based methods, the
probability (density) for obtaining the data at hand is used (via the
likelihood function), but probabilities for obtaining other data are
not useq!

e |n contrast, in typical frequentist calculations (e.g., a p-value which
is the probability of obtaining a value as extreme or more extreme
than that observed), one uses probabilities of data not seen.

e This difference is captured by the Likelihood Principle*.
If two experiments yield likelihood functions which are

proportional, then Your inferences from the two experiments
should be identical.

Wouter Verkerke, NIKHEF



Generalizing to multiple dimensions

e (Can also generalize likelihood models to distributions in multiple
observables

a
:%5 o l'f il
o153 12"! '

oBor] i 'f:‘l "ﬂ;rf"{l!
’#U

*"”ff "f& }

Covv b v b b v b by by BBy vy 1y
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X

L(.;C») = Hf(x,) L()_é 5;) - nf(xlayz

e Neither generalization (binned->continuous, one->multiple
observables) has any further consequences for Bayesian or

Frequentist inference procedures
Wouter Verkerke, NIKHEF



The Likelihood Ratio test statistic as tool for event selection

e Note that hypothesis testing with two simple hypotheses for
observable distributions, exactly describes ‘event selection’ problem

e |n fact we have already ‘solved’ the optimal event selection problem!
Given two hypothesis H,,, and H,, that predict an complex
multivariate distribution of observables, you can always
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)
with a likelihood ratio

Distribution of A for
data sampled under H_ .,

Distribution of A for
data sampled under H,,

0.015F

p—value=ff()L|Hb) oo

e So far we have exploited A to calculate a frequentist p-value
now explore properties ‘cut on A’ as basis of (optimal) event
selection Wouter Verkerke, NIKHEF



The distribution of the test statistic

e Distribution of a test statistic is generally not known

e Use toy MC approach to approximate distribution

— Generate many toy datasets N under H, and H,,,
and evaluate A(N) for each dataset

-
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Distribution of A for
data sampled under H,
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data sample
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Intermezzo — Generating toy data

e w0 approaches to obtaining simulated data

e First approach is
¢ . . An overview of HEP data analysis procedures
PhyS!CS Mont.e Carlo Chaln ’ Simulation of 'soft physics’ Simulation of ATLAS : LHC data
described earlier ohcs pogess. - S
— Time consuming, but o
injects detailed knowledge ' G
about phyS|CS, deteCtOF, SLmu]ation of high-energy
output is full collision O ol s
information, and relation j> i Observed m c Reconstruction
. . W ! a £ of ATLAS detector
to underlying theory details ‘ | Bamek =
e Alternative approach is . — 8
sample sampling the M <

probability model ‘toy MC’
— Fast (generally), only requires access to probability model

— Can only produce datasets with observables that are described by the
probability model - Sufficient to study distribution of test statistics

Wourter Verkerke, NIKHEF



How do you efficiently generate a toy dataset from a probability model?

e Simplest method is accept/reject sampling

—L

Determine maximum of function f, .,

Throw random number x

KL =

Throw another random number vy

£

If y<f(x)/f, ... kEep X,
otherwise return to step 2)

— PRO: Easy, always works

— CON: It can be inefficient if function
is strongly peaked.
Finding maximum empirically M:
through random sampling can
be lengthy in >2 dimensions

Events /(1)
3
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Toy MC generation — Inversion method

e [astest: function inversion

Given f(x) find inverted function F(x)
so that f( F(x) ) = x

Throw uniform random number x
Return F(x)

PRO: Maximally efficient

CON: Only works for invertible functions

( o.ozgs )

Fventsy

100 _:

“‘*% ++* g %ﬁ#* *

150:— -

v b b b b b b v bysa eyl
01 0.2 03 04 05 06 0.7 0.8 09 1

X
Take -log(x) ‘ ‘

- Events {{0.25)

E ) ]
- Exponential]

= . distribution‘;

1 2 3 4 5 6 7 8 9 10

-In(x)



Toy MC Generation — importance sampling

e Hybrid: Importance sampling

1)

.45 0
Find ‘envelope function’ g(x) go_ME_ E
that is invertible into G(x) g -
and that fulfills g(x)>=f(x) g E
for all x G E

Generate random number x
from G using inversion method

Throw random number ‘y’

If y<f(X)/g(x) keep X,
otherwise return to step 2

IlllI

0‘- d
AN 3 5 4

P
i
(x)

PRO: Faster than plain accept/reject sampling
Function does not need to be invertible

CON: Must be able to find invertible envelope function

Wouter Verkerke, UCSB



Toy MC Generation — importance sampling in >1D

e (General algorithms exists that can construct empirical envelope
function

— Divide observable space recursively into smaller boxes and take uniform
distribution in each box

— Example shown below from FOAM algorithm
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| |
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Toy MC Generation — importance sampling in >1D

e [or binned distributions, can generate content of each bin on toy
dataset independently, using a Poisson process

Events/(0.5)

LINIH_,)= HPoisson(Nl. 15.+b,)

60

40

©
o
III|IIIIIIIIIII|III|I

20

e Note that efficient generation of Poisson random number relies
combination of importance sampling (for small p, using

exponential envelope, for large p using Cauchy distribution)
Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Signal parameterization strategies

Parameter estimation, confidence intervals

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques




DeCId | n Oﬂ a S | I_t Discriminating observables & counting experiments
g p e Example 1 — full dataset has one discriminating observable: x
& ) NB1: All discriminating power in selection step,
ol ) none in inference step. This is a design choice!
I b NB2: Selecti t be tuned fi f merit’
e HEP data analysis often a /\ SHecton st e o e et
2-step process: bttt S Nt
ET/enj s;e/eé;fon:
reduce sample size 009
. . and dimensionality o []8=0
first selection, oo
~s=15
then inference TN
Formulation of probability model of reduced sample:
’ Poisson(N|s+b)

e Focus in this course on inference, but Likelihood Ratio as test
statistics shows that there is a general optimal solution for any event
selection problem: the ratio will order all event by signal-likeness

LG,5,7,..1H_,)
L(Z,5.,7,...|H,)

e Hence if we can construct A, a selection defined by A>A, will always
be optimal for some stated level of desired purity

AMX,Y,Z,...) =

Wouter Verkerke, NIKHEF



The Likelihood Ratio test statistic as tool for event selection

e Note that hypothesis testing with two simple hypotheses for
observable distributions, exactly describes ‘event selection’ problem

e |n fact we have already ‘solved’ the optimal event selection problem!
Given two hypothesis H,,, and H,, that predict an complex
multivariate distribution of observables, you can always
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)
with a likelihood ratio

Distribution of A for
data sampled under H_ .,

Distribution of A for
data sampled under H,,

0.015F

p—value=ff()L|Hb) oo

e So far we have exploited A to calculate a frequentist p-value
now explore properties ‘cut on A’ as basis of (optimal) event
selection Wouter Verkerke, NIKHEF



Event selection

e The event selection problem:
— Input: Two classes of events “signal” and “background”
— QOutput: Two categories of events “selected” and “rejected”

e (oal: select as many signal events as possible,
reject as many background events as possible

e Note that optimization goal as stated is ambiguous.

— But can choose a well-defined by optimization goal by e.g. fixing desired
background acceptance rate, and then choose procedure that has highest
signal acceptance.

e Relates to “classical hypothesis testing”
— Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)

— Here null = background, alternate = signal

Wouter Verkerke, NIKHEF



Terminology of classical hypothesis testing

o Definition of terms Actual condition

— Rate of type-| error = a Guilty Not guilty
— Rate of type-ll error = False Positive
— Power of test is 1- Verdict of True Positive (i.e. guilt Ireported
'guilty’ unfairly)
Type | error
Decision
False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
e [reat hypotheses Type Il error

asymmetrically

True Negative

— Null hypo is usually special = Fix rate of type-| error

— Criminal convictions: Fix rate of unjust convictions

— Higgs discovery: Fix rate of false discovery

— Event selection: Fix rate of background that is accepted

¢ Now can define a well stated goal for optimal testing
— Maximize the power of test (minimized rate of type-Il error) for given a

— Event selection: Maximize fraction of signal accepted
Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

e |n 1932-1938 Neyman and Pearson developed a
theory in which one must consider competing hypotheses

— Null hypothesis (H;) = Background only
— Alternate hypotheses (H,) = e.g. Signal + Background

and proved that

e The region W that minimizes the rate of the type-Il error (not
reporting true discovery) is a contour of the Likelihood Ratio

P(CE H1>
P(QL‘ H())

> Ko

e Any other region of the same size will have less power

Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

e Example of application of NP-lemma with two observables

fix.ylHe) >c
f(X,y|HS) X y|H f(x,y|HS+h)

N A O a4 N W B o
NN RN RRARE RERRE LLARE LR

&
T

A
T

e (Cut-off value ¢ controls type-| error rate (‘size’ = bkg rate)
Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff.

e So why don’t we always do this? (instead of training neural
networks, boosted decision trees etc)

Wouter Verkerke, NIKHEF



Why Neyman-Pearson doesn’t always help

e The problem is that we usually don’t have explicit formulae for the
pdfs f(Z|s), f(Z[b) .

e |nstead we may have Monte Carlo samples for signal and
background processes

— Difficult to reconstruct analytical distributions of pdfs from MC samples,
especially if number of dimensions is large

e |f physics problem has only few observables can still estimate
estimate pdfs with histograms or kernel estimation,

— But in such cases one can also forego event selection and go straight to
hypothesis testing / paramater estimation with all events

n
(=]

Events/(0.5)

o
o

Approximation of true f(x|s)

/

Approximation of true f(x|b)
/

80
60
40

20
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Hypothesis testing with a large number of observables

e \When number of observables is large follow different strategy

e |nstead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to
approximate decision boundary with an empirical parametric form

A (F) = ffx 1) ol = A (%) =c(%,0)
f(xls+b)
f( ,y|HS}
foxyIH) f(x?ylHSm) B

A L N LA © 4 N w & o

T T [ [ T T T

L)

Wouter Verkerke, NIKHEF



Empirical parametric forms of decision boundaries

e (Can in principle choose any type of Ansatz parametric shape

Rectangular cut Linear cut Non-linear cut
Hl
> Ly
G
t(x) = 0(x; —c;)0(x; - ¢;) Hx)=a; x;+a;x Hx)=a-X+XAx +...

e (Goal of Ansatz form is estimate of a ‘signal probability’ for every
event in the observable space x (just like the LR)

e (Choice of desired type-| error rate (selected background rate), can
be set later by choosing appropriate cut on Ansatz test statistic.



Machine learning and all that

e A wide range of modern tools exist to perform supervised learning
of a multivariate discriminant with the aim to approximate the
optimal Neyman-Pearson discriminant.

— Deep Learning, Boosted Decision Trees, GAN’s etc etc.

T | T T | T T T T I T T T T |

e Variation in

T

= urhd e, VBF ATLAS Preliminary -
= - ]
. . g 4| Ldt=20.3fb" —¢— Dat -
— Ansatz (empirical parametric form 5 0 gj (=203 e 28 -
. . c - \s=8TeV Z— 1t CR E
of discriminant) S W 2
m 10°¢ Il Others 3
_ i c [ Fake t
Learning process | | ol et
(error back propagation, Bayesian) 07
e Commonality in 10
— Input (labeled simulation samples) 1
— QOutput (single function that maps = 130-1
signal probability) s 00

BDT score

e [n all cases output functions is functionally comparable to
likelihood ratio discriminant (modulo some trivial transformations)
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Event selection as dimensionality reduction

¢ |n the limit of an optimal discriminant — the event selection step is
effectively (and only) a reduction of dimensionality of the data without
loss of information (in the optimal case)

~ 2 . \‘/E.;F‘ — P(ZB|H1)
. ‘g ~— » e
Input to ML = Observable collision characteristics. S [ HThaa * ©Thag —— >k,
N = 104?JLdt:2O.3fb'1 P(J,’|H())
** Momentum (Rg) aaddzrs‘ag.ﬂoﬂ«o.f‘ = F ls—8TeV Z— ttCR S
¢ - Electrons, muans, faus in callision [} r Z— 1t .
e - Jets in gollision Lﬁ 10° 3 Il Others E
* - Flavor-tagged jets in collision F Fake t ]
* - Bhotons in callision. = 1021 gl o Uncert. B
* - Missing energy/ * Opening angle between.obiecls. 97 g E
ingolision S * Invariant mass.of ehieals.
(Using, angles and mementa) i
oo oBg 10 E 3
4 XY E
Global ¢ollision. charactersucsy E
- Total energy (§Wr vacto, -
- Energy flow an“gfmgm 2 1 0.1 L

Broperties.of benm’sgﬁé[éw\\géftc .

BDT score

* Incase the full discriminant distribution 2=
is tested > no loss of information

— But need for pdf that model distribution

e But can also select high-signal region
and perform simplified inference . 4 . B

. . . - p 2
— e.g. counting model in that region L I B

60

40

20




Choosing the ‘best’ high-signal region

e A common scenario for searches in a low-statistics
regime is to perform a simplified analysis

1.
2. Apply acutonD

Events /0.17

Train MVA to obtain discriminant D

3. Perform only a counting analysis | " BDT score

e And a common question is then — what is the ‘optimal cut on D’*?

NB: the question arise due to choice for simplified counting in step 3).
If a probability density model is used for the analysis the answer is always
‘the full range of the discriminant’

To answer question a ‘figure of merit’ (FOM) must be chosen that quantifies
the optimality of the selection. The ideal FOM for a search is usually the
expected signal significance.

A ‘traditional’ choice is FOM=s/,/b. For low-statistic searches this is a bad
choice! It assumes Gaussian distribution, whereas the true distribution is
Poisson, which is quite unlike Gaussian especially in the tails at low N

A better, and equally easy to use, equation exists based on a Poisson
calculation

Wourter Verkerke, NIKHEF



Choosing the ‘best’ high-signal region

Significance in Gaussian sigma's

The estimated significance assuming a Poisson process modeled
by Poisson(N|S+B) is /2 ((s +b)In(1 + s/b) —s) .

E.g. for ‘discovery FOM’ s/ /b illustration of approximation for
s=2,5,10 and b in range [0.01-100] shows significant deviations of
s/\Jb from actual significance at low b

8—
Vaox =1/2((s +b)In(1 +s/b) — 5) .
S
= (14 O(s/b)) .
\/5( (s/b))
107 1 10 10° Wouter Vierkerke, NIKHEF






Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques




Introduce concept of composite hypotheses

e |n most cases in physics, a hypothesis is not “simple”,
but “composite”

e Composite hypothesis = Any hypothesis which does not specity
the population distribution completely

e Example: counting experiment with signal and background,
that leaves signal expectation unspecified

g
o
©

Simple hypothesis

L = Poisson(N | s + I;)

L(s) = Poisson(N | s +b) o=

Composite hypothesis

=0 With b=5

o
o
®©

T IIII]IIIIIIIIIIIIIIIIIIIIIIII|IIII|IIII|

Projection of p

=)
o
<

S=5
s=10

1 ) - Ll 1 i | Ll L L I Ll Ll
0 5 10 15 20 25 30 35 40 45 50
N

(My) notation convention: all symbols with ~ are constants Wouter Verkerke, NIKHEF




A common convention in the meaning of model parameters

e A common convention is to recast signal rate parameters into a
normalized form (e.g. w.r.t the Standard Model rate)

g
o
©

Simple hypothesis

L = Poisson(N | s + l;)

=0 With b=5

I
o
©

Projection of p

=)
o
<

s=5

o
o
>

T IIIIIIIIIIIIII]IIIIIIIIIIIIIIIIIIIIIIIII

s=10

v
L(s)= Poisson(N |s+b)

Composite hypothesis

o

03
0.02

0.01

Ll I Ll L L I Ll Ll
@ 00 5 10 15 20 25 30 35 40 45 50
N

‘Universal’ parameter interpretation

L(M) =P OiSSOVZ(N | U: S + b) makes it easier to work with your models
_ . pu=0 - no signal
| Compo'sﬂe hypothesis u=1 = expected signal
with normalized rate parameter u>1 > more than expected signal

Wouter Verkerke, NIKHEF



What can we do with composite hypothesis

e \With simple hypotheses — inference is restricted to making
statements about P(D|hypo) or P(hypo|D)

e \With composite hypotheses — many more options

e 1 Parameter estimation and variance estimation
— What is value of s for which the observed data is most probable? ]_ =55 +173
— What is the variance (std deviation squared) in the estimate of s?

e 2 Confidence intervals

— Statements about model parameters using frequentist concept of probability
— s<12.7 at 95% confidence level

— 4.5 <s < 6.8 at 68% confidence level

e 3 Bayesian credible intervals

— Bayesian statements about model parameters
— s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF



Model building for discovery, X-section = vyield parameter

O-dimensional (counting)

20.09 —
] E

s E
20.08F

s F
a0.07F

Poisson(N|S+B)

1-dimensional (discriminant)

MVA discriminant

~ L s e B
- WTpoq + €Thaq VBF ATLAS Preliminary E
e JLdt=2031" —+- Data 4
0 = — 50 x H(125)— 1t 3
g \s=8TeV Z— 1t CR P 1
Lﬁ I Others 3
I Fake t 1

777 Uncert.

1
BDT score

S*sig(x)+B*bkg(x)

Physics-inspired discriminant

*

i

|

Cov b bo v b U b b b o w Lo
80 82 84 86 88 90 92 94 96 98 100
X

S*sig(x)+B*bkg(x)
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Models for discovery, X-section = yield parameter

1-dimensional (discriminant) 2-dimensional?

MVA discriminant
T Q: Whe_n_ is it useful_ to build
JLa-zow! 4D o probability models in =2
\s=8TeV Z— ttCR ;Z:‘n( ) T ] . . b bl >

Il Others _g S SIg(X)+B bkg (X) O Serva eS H

I Fake ©
777 Uncert.

Events /0.17

A1: When you have a physics
model with a clear prediction
for the full 2D model..

1
BDT score

Often you don’t and then you

let an MVA reduce the n-Dim
space to 1-dimension

Physics-inspired discriminant

But sometimes you have clear
models described 2 or more
observables = No point in
letting an MVA approximate
what you know analytically.

S*sig(x)+B*bkg(x)

Wouter Verkerke, NIKHEF



Case study — dependence of 1-D model on another observable

e A common scenario for 2D modelling is the following: You
observe that the mean reconstructed mass of some particle
depends on another observable

Model for mass at (y=0) Model for mass at (y=3)
sig(m)=Gaussian(m,92, 1) sig(m)=Gaussian(m, 94, 1)

T TR TR

Solution: ]
introduce a i 'YW \\\\\ _ Q: Is sig(m,y) a proper
function mean(y) = WN W)MM(M‘! i .,jj 2-dimensional model?
that describes ol N m['[ WM MN NN
dependence L W ’ W} ‘
of mean of y ""’"

Wourter Verkerke, NIKHEF



Case study — dependence of 1-D model on another observable

sig(m,y)=Gaussian(m, mean(y), 7)

Solution: ]
introduce a g "‘f(” \\\\\ Q: Is sig(m,y) a proper
function mean(y) 2 ooos. IN “IM ”' i 2-dimensional model?
that describes O ok ' N WW[ m ‘
dependence D HW' M’, / )
of mean of y 0 "' I 15 A: No!

Distribution iny is
unlikely to be flat...

e (Challenge for 2D models: distributions in x,y and all correlations
must all be correct! Seems intractable, but solutions exists

e |nstead of immediately defining a 2D model f(x,y),
define first the conditional probability density function f(x|y)

f(x,y) f(x]y) This is really what
= = we meant when we
2D model for 1D model for x formulated this:
both x and y at a given value of y Gaussian(m, mean(y), 7)

[ fCxy)dedy =1 [f(ey)de=1 ¥y Wouter Verkerke, NIKHEF




Events/(0.2x0.2)

Case study — dependence of 1-D model on another observable

e Given a conditional model f(x|y) can build full 2D model by
multiplying with a model g(y)

sig(m.,y) = sig,,(mly) *sig,(y)

N

m i il w =
N}l""'»“ﬂ"i':l m’/})’%’l’w L

, ;

Gaussian(m, mean(y), 7) Gaussian(y)

Wouter Verkerke, NIKHEF



Case study — per-event errors
e Another common variant of this type of modeling
problem is the so-called ‘per-event’ error

e [Example: observable = decay time distribution,
measured from reconstructed vertex.

— In absence of a detector resolution, exponential decay distribution

— Inreal life, distribution is convoluted with (Gaussian) reconstruction resolution

A RooPlot of "t

o o o o o
5 5 5 o &
3 8 8
[ “!HT!H!lllllTllll'HH“H

||H|||||||||||||Tr||[rrrwrwr
TITTT

T

e But vertex reconstruction gives also estimate of uncertainty
for every reconstructed vertex - the ‘per-event error’

— (Can take this into account: well-reconstructed events carry more information
e How? Scale assumed resolution with per-event error
f(t|0t)= Decay(t)® Gaussian(t,0}o - Ot




Case study — per-event errors

e \isualization of decay function with variable resolution

Slices of decay(dt|dterr) at various dterr

Decay function (symmetrized)
convoluted with Gaussian resolution
at 4 different values of per-event error

f(t]|6t) = Decay(t) ® Gaussian(t,0,0 - Ot)

0.3
0.00257

0.25 0.0024~""

Projection of decay

0.00154"""

0.0013-"

0.0005

||TIII||||||IIT||||||]ITII|II

Events/{0.2)

FuII 2D- model'
F(t,dt) = F,(t|dt)*F,(dt)

Shown here: ,orojecz‘/on ont
F(t) = Int [ F,(t|dt)*F,(dt) ] dt

Jter Verkerke, NIKHEF



Model building for measurements - shape parameter

e Beyond discovery/rate measurements, can also build models to
measure properties of particles (e.g mass)
- introduce shape parameters

e (Often trivial for analytical models,
less so for simulation-based models

F(x|m) = Gaussian(x,m,0)+bkg

Events/(0.2)
Events/(0.5)
N
o

100:
80:
60:
40:

20
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Modeling of shape variations in the likelihood

e |f underlying simulation has free parameter 6, can assess impact on
reconstructed shapes by rerunning simulation at different values

— Obtain histogram templates for distributions at ‘+10’ and ‘-1¢’
settings of systematic effect

1 ) 1 H )
-10 nominal
c 2 E
9‘00— 400 E i
2 B S r o L
[ ST Aool-
g 8. 5 r
S8 o8- § T
[$] [~ o = 6 -
'% L L .%80—
o [~ L i L
60— 60— C
i i 60—
40— a0 L
- L 40|~
20— 20— 20—
TN I e ET Lot b Db B 1 T R T T R
80 82 84 86 86 90 02 94 96 98 100 %0 82 84 86 88 90 92 94 96 98 100 @6 82 84 86 86 90 92 94 96 88 100
X X X

e (Challenge: construct an empirical response function based on
the interpolation of the shapes of these three templates.

Wouter Verkerke, NIKHEF



Projection of hsig_plus

Need to interpolate between template models

e Need to define ‘morphing’ algorithm to define

distribution s(x) for each value of a S(X) | gzt
'§|oo_—
S(X)la=0
Hoof- :
/ s(x,a=+1)
S(X) [ a=-1 :

,\ouuazu ‘84”‘86”‘88‘ I90”|92“94|”96”|g!3”‘ —O
/ X S(XIG_ )

y T celvaaleg ' NS NN R N
0 @ 54 8 6 9 62 94 % 95 100 S(X,G='1)
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Projection of hsig_min

Piecewise linear interpolation

e Simplest solution is piece-wise linear interpolation for each bin

P 2] o] (=]
o (=] o (=]
T LI T

n
o

%0 82 84 86 88 90 92 94 96 98 100

X

60

Piecewise linear

interpolation %
response model 0
for a one bin
30
20
10
3

Projection of hsig
S D © o
2 T 2 T T T 2 T T T 2

n
o
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X

96 98 100

Projection of hsig_plus
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Extrapolation to |a|>1

Kink at a=0 /
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1

5 Wouter Verkerke, NIKHEF



Visualization of bin-by-bin linear interpolation of distribution
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Other morphing strategies — ‘horizontal morphing’

e (Other template morphing strategies exist that are less
prone to unintended side effects
¢ A ‘horizontal morphing’ strategy was invented by Alex Read.
— Interpolates the cumulative distribution function instead of the distribution
— Especially suitable for shifting distributions
— Here shown on a continuous distribution, but also works on histograms
— Drawback: computationally expensive, algorithm only worked out for 1 NP

1

legral of g

Integrate

0B

o O
B.08F
c

§F
Bo7fF

ifferent

- o
0.03F

Interpolate

tegral of g

Integrate

41—

0.2

o
o
IS &

T [T T [T [T T T T
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Yet another morphing strategy — ‘Moment morphing’

M. Baak & S. Gadatsch
e (Given two template model f (x) and f,(x) the strategy of moment

morphing considers first two moment of template models
(mean and variance)

po= [ x- f(x)dx
V.= [(r-p) - f(0dx

u=fx filadx
V, = [(r=p, ) f,(x)dx

e The goal of moment morphing is/to construct an interpolated function
that has linearly interpolated moments
u(a)=au_+(I-au, 1
Vie)=aV_+(-a)V, ]
e |t constructs this morphed function as combination of linearly
transformed input models
fx,a)—=af (ax+b)+(1-a)f (cx—-d)

— Where constants a,b,c,d are chosen such so that f(x,q) satisfies conditions [1]

Wouter Verkerke, NIKHEF



Yet another morphing strategy — ‘Moment morphing’

Intagral

e For a Gaussian probability model with linearly
changing mean and width, moment morphing
of two Gaussian templates is the exact solution

e But also works well on ‘difficult’ distributions

90

ATLAS

8011, .= 570

70-m, =1140

ATLAS 50-ArTLAS

m,,= 690 m,.= 750
@ 40-m, =1140
model

m, =1140
model

Events / ( 40000 )

Events / ( 40000 )
=3
Events / ( 40000 )

o
§™%00 1000 1500 2000 2500 3000 3500 4000 08 570001800 2000 2300 3000 3500 2000
M effective M effective M effective

e (Good computational performance

— (Calculation of moments of templates is expensive,
but just needs to be done once, otherwise very fast (just linear algebra)
f(x,a)=af (ax+b)+(1-a)f.(cx-d)

e Multi-dimensional interpolation strategies exist o
Wouter Verkerke, NIKHEF



There are other morphing algorithms to choose from

Vertical Horizontal Moment
Morphing Morphing Morphing
Gaussian Sl
varying
width oF
Gaussian LE
varying N3
mean of Wi
Gaussian i :_
to o wl
Uniform : E
(this is " <
conceptually ambigous!) k.. D s

" orphing? v/ X v/

Wouter Verkerke, NIKHEF, 114






RooFit — Focus: coding likelihood functions

e [ocus on one practical aspect of many data analysis in HEP: How
do you formulate your likelihood functions in ROOT

— For ‘simple’ problems (gauss, polynomial) this is easy

Events /(0.2)
g 8

g
RARRNRARRERERRNRRRRE

o[ TTT

— But if you want to do unbinned ML fits, use non-trivial functions, or work with
multidimensional functions you quickly find that you need some tools to help
you



RooFit core design philosophy

e Mathematical objects are represented as C++ objects

Mathematical concept RooFit class
variable X RooRealVar
function f(.X) RooAbsReal
PDF f (x) RoOAbsSPAf
space point )_é RooArgSet
integral ff(x)dx RooRealIntegral

list of space pomts RooAbsData



RooFit core design philosophy - Workspace

¢ |nstead of ‘double Likelihood(double paramVec[])’,
a flexible modular structure of ‘programmed’ functions

- Gauss(X,,6)

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit

code RooRealVar x(“x”,”x”,-10,10) ;
RooRealvar m(“*m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;



Basics — Creating and plotting a Gaussian p.d.f

Setup gaussian PDF and plot

// Create an empty plot frame
RooPlot* xframe = w::x.frame () ;
// Plot model on frame
model.plotOn (xframe) ;

// Draw frame on canvas
xframe->Draw() ;

| A RooPlot of "x" |

g,aussmng’DF
= [\V]
N [+/]
I l

Projedion of
2
o
l

Axis label from gauss titles -

0.01—

Unit
A RooPlot is an empty frame normalization
capable of holding anything

plotted versus it variable
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14
Basics — Generating toy MC events

Generate 10000 events from Gaussian p.d.f and show distribution

// Generate an unbinned toy MC set
RooDataSet* data = w::gauss.generate(w::x,10000) ;

// Generate an binned toy MC set
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;

// Plot PDF [ ARooPlot of "x" |
RooPlot* xframe = w::x.frame() 5
data->plotOn (xframe) ; gwo; % é
xframe->Draw () ; %2505_ w‘ﬂ{'ﬁd }Hﬁ
w -
200— H.}f{
Can generate both binned and 150 H*# {"H{
unbinned datasets = i t
100:— ﬁﬂi E&
- ’
S e
Q'M.l..l...l..l. | |...|.“i‘g~
“0 8 6 4 2 0 2 4 6 8 10



Basics — ML fit of p.d.f to unbinned data

A RooPlot of "x” |

(A
7

Events /(0.2) [
[\V]
3
|

n
T

// ML fit of gauss to data
w: :gauss.fitTo(*data) ; -
(MINUIT printout omitted)

g
|

PDF
automatically
normalized

// Parameters if gauss now to dataset
Lo v b v v by vy

// reflect fitted values P
w::mean.Print ()

RooRealVar: :mean = 0.0172335 +/- 0.0299542
w::sigma.Print()

RooRealVar::sigma = 2.98094 +/- 0.0217306

g
|

o
2
|

// Plot fitted PDF and toy data overlaid
RooPlot* xframe = w::x.frame() ;
data->plotOn (xframe) ;

w: :gauss.plotOn (xframe) ;



RooFit core design philosophy - Workspace

e The workspace serves a container class for all
objects created

—_— Gauss(X,u,6)

RooWorkspace

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit RooRealVar x(“x”,”x”,-10,10) ;

code RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;
RooWorkspace w(“w”) ;
w.import(g) ;



The workspace

e The workspace concept has revolutionized the way people share and
combine analysis

— Completely factorizes process of building and using likelihood functions

— You can give somebody an analytical likelihood of a (potentially very complex)
physics analysis in a way to the easy-to-use, provides introspection, and is easy to
modify.

/- - ™
/' RoohddPdt ‘)
sum p

RooWorkspace w(“w”) ;
w.import (sum) ;

/ RooGaussian \ [ RooGaussian /" RoofirgusBG \ RooRealVar RooRealVar
\ gauss2  / \gaussl )/ \ argus gifrac g2frac - - AN Y74
A - VLN w.writeToFile (“model.root”) ;

o

\ ™,
RooRealVar RooRealVar RooRealVar / RooConstVar |
nean? cutoff \@ar/ o 0.500000 /
\7_\7 /_;/

model.root

Wouter Verkerke, NIKHEF




Using a workspace

(  RoohddPar
/\*/ oo Rookeatar
T \/x;w/ 1
*":’:: ;;;; ) (o § ) (o) (o ) D,
,/h‘\,
/" RooddPa )
Rooﬁaussxan A Rooﬁausman \ Rooﬁr\zusBG \“ RooRealVar [ RooRealVar ‘)
\\ gauss? /,‘" \,\ gaussl /,/ argus / gifrac / @ac/

( RooRealVar ‘] [ RooRealVar ) RooRea]Var \ RooRealVar N/ RooRealVar / RooRea]Var \ RooConsWar “
\ mean? signa \ meant /’ \ X @ \ argpar // \ 0500000
\ \

v d \_/ 7/’/

// Resurrect model and data

TFile f(“model.root”) ;
RooWorkspace* w = f£.Get (“w”) ;
RooAbsPdf* model = w->pdf (“sum”) ;
RooAbsData* data = w->data (“xxx”

// Use model and data
model->fitTo (*data)

RooPlot* frame =

w->var (“dt”) ->frame () ;
data->plotOn (frame) ;
model->plotOn (frame) ;

1
= T

&vents
[~}
(=]

600|
400}

200[

outer Verkerke, NIKHEF
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Factory and Workspace

One C++ object per math symbol provides
ultimate level of control over each objects functionality, but results
in lengthy user code for even simple macros

Solution: add factory that auto-generates objects from a math-like
language. Accessed through factory() method of workspace

Example: reduce construction of Gaussian pdf and its parameters
from 4 to 1 line of code

RooRealVar x(“x”,”x”,-10,10)
RooRealVar mean (“mean”,”mean”,5) ;
RooRealVar sigma(“sigma”,”sigma”, 3) ;
RooGaussian f(“f”,”f” ,x,mean,sigma) ;

. ]

w.factory (“"Gaussian: :£f(x[-10,10] ,mean[5] ,sigma[3]) ")



RooFit core design philosophy - Workspace

e The workspace serves a container class for all
objects created

ath Gauss(x,u,0)

RooWorkspace

RooGaussian g

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit RooRealVar x(“x”,”x”,-10,10) ;

code RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;
RooWorkspace w(“w”) ;
w.import(g) ;



Populating a workspace the easy way - “the factory”

e The factory allows to fill a workspace with pdfs and variables using
a simplified scripting language

ath Gauss(x,u,0)

RooWorkspace

RooAbsReal £

RooFit
diagram

RooRealVar x RooRealVar y RooRealVar z

RooFit

code
RooWorkspace w(“w”)

w.factory (“RooGaussian::g(x[-10,10] ,m[-10,10],=z[3,0.1,10])");



Model building — (Re)using standard components

e RooFit provides a collection of compiled standard PDF classes

<j:| Physics inspired

ARGUS,Crystal Ball,

RooPolynomial Breit-Wigner, Voigtian,
/ B/D-Decay,....

RooBMixDecay

RooHisthff [1

RooArgusBG ¢

1 Non-parametric
Histogram, KEYS

RooGaussian 4 6 8 X

| I |
7 8 9

i

| Basic

\+=+—  Gaussian, Exponential, Polynomial,...
Chebychev polynomial

L1
T~

[FETRI ETRTHIRTN
275.285.29 !ix

RN R RN R AR RN RR R R R

Easy to extend the library: each p.d.f. is a separate C++ class

20



Model building — (Re)using standard components

List of most frequently used pdfs and their factory spec

Gaussian
Breit-Wigner
Landau
Exponential
Polynomial
Chebychev
Kernel Estimation
Poisson

Voigtian
(=BWQRG)

Gaussian: :g(x,mean,sigma)
BreitWigner: :bw (x,mean,gamma)
Landau: :1(x,mean,sigma)
Exponental: :e(x,alpha)
Polynomial: :p(x,{a0,al,a2})
Chebychev: :p(x, {a0,al,a2})
KeysPdf: :k (x,dataSet)
Poisson: :p(x,mu)

Voigtian: :v(x,mean,gamma, sigma)

21
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The power of pdf as building blocks — Advanced algorithms

e Example: a ‘kernel estimation probability model’

— Construct smooth pdf from unbinned data, using kernel estimation technique

Adaptive Kernel:

Gaussian pdf Summed pdf width of Gaussian depends
Sample of events for each event for all events on local event density

) H

k] @

s

§2. H
fz Ez
1 1

ion of

T T T e
b b b by b
T T T
v b b bl
T T T

@)
Xl b b b b b
rojecti k
e d
e o - N o w
T T [T T T
1 | 1 1 |

e [Example

Events /(1)

w.import (myData,Rename (“myData”)) ;
w.factory ("KeysPdf: :k (x,myData) ”) ;

4

e Also available for n-D data

:l 11 I L1l l 111 I 11 11 l 111 l 11 1
00 2 4 6 8 10 12 14 16 18 20
X




The power of pdf as building blocks — adaptability

e RooFit pdf classes do not require their parameter arguments to be
variables, one can plug in functions as well

e Allows trivial customization, extension of probability models

class RooGaussian also class RooGaussian!

Gauss(x | u,o) Gauss(xlu-(1+2a),0)

Introduce a response function for a systematic uncertainty

// Original Gaussian
w.factory (“Gaussian: :gl(x[80,100] ,m[91,80,100],s[1])")

// Gaussian with response model in mean
w.factory(“expr: :m response (“m*(l+2alpha)”,m,alpha[-5,5])")
w.factory(“Gaussian::gl(x,m response,s[1])”)

NB: “expr” operates builds an intepreted function expression on the fly



25
The power of building blocks — operator expressions

e (Create a SUM expression to represent a sum of probability models

.factory (“Gaussian: :gaussl (x[0,10] ,meanl[2] ,sigma[1l]")
.factory (“"Gaussian: :gauss2 (x,mean2[3] ,sigma) ")
w.factory ("ArgusBG: :argus (x,k[-1],9.0) ")

4
4

4

.factory ("SUM: :sum(glfrac[0.5] *gaussl, g2frac[0.1]*gauss2, argus)”)

¢ |n composite model visualization 00
components can be accessed by name =

// Plot only argus components %0
w: :sum.plotOn (frame,Components (“argus”),
LineStyle (kDashed))

.
4
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Powerful operators — Morphing interpolation

e Special operator pdfs can interpolate existing pdf shapes

— Ex: interpolation between Gaussian and Polynomial

w.factory (“Gaussian::g(x[-20,20],-10,2)") ;
w.factory (“Polynomial::p(x, {-0.03,-0.001})") ;
w.factory (“IntegralMorph: :gp(g,p,x,alpha[0,1])”)

4

A RooPlot of "x"

[ Histogram of hh__x_alpha |

A RooPlot of "x"

+ 0.008

Events /(0.4)

-

Fit to data

Three morphing operator classes available
— IntegralMorph (Alex Read).
—  MomentMorph (Max Baak).

— Piecewiselnterpolation (via HistFactory)



Powerful operators — Fourier convolution

e (Convolve any two arbitrary pdfs with a 1-line expression

w.factory (“Landau: :L(x[-10,30],5,1)")
w.factory (“"Gaussian::G(x,0,2) ")

w: :xX.setBins (“cache”,10000)

e [Exploits power of FFTW
package available via ROOT

— Hand-tuned assembler code
for time-critical parts

— Amazingly fast: unbinned ML fit to
10.000 events take ~5 seconds!

4

; // FFT sampling density
w.factory ("FCONV: :LGf (x,L,G) ")

; // FFT convolution

| la

ndau (x) gauss convolution |

Events / (0.4)

\‘
(=3
o
T T

o
(=
o
TT T

5oof
4oof
3000
zoof

100

-2
T
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Working with the likelihood function

e Plot the likelihood function
VEersus a parameter

RooAbsReal* nll = w::model.createNLL(data) ;

IIIIlll]llll]llll]lllllllIl ]III

RooPlot* frame = w::param.frame() ;
nll->plotOn (frame,ShiftToZero())

I

= =y N w &~ (2] ) ~ o
TTIT

B Lo T T T o Lo Lo T T
01 -0.08 -0.06 004 002 0 002 004 006 008 01
m

e Maximum Likelihood estimation of parameters and variance

RooMinimizer m(*nll) ;

// ML Parameter estimation
m.minimize (“Minuit2”,”migrad”) ;

// Variance estimation
m.hesse () ;

// Alternatively - all this in one line
pdf->fitTo(*data) ;



Working with covariance and correlation matrices

e Detailed information on parameter and covariance estimates can
be saved for detailed information

| correlation_matrix |

bkgfrac
mean
slgifrac

sigmait

RooMinimizer m(*nll) ; sigma2

m.minimize (“Minuit2”,”migrad”) ; 41
h ( ) a0 bkgfrac mean  gigifrac  sigmal  sigma2
m.nesse ’

RooFitResult* r = m.save () ;

// Visualize correlation matrix
r->correlationHist->Draw(“colz”) ;

// Extract correlation,covariance matrix
TMatrixDSym cov = fr->covarianceMatrix() ;
TMatrixDSym cov = fr->covarianceMatrix(a,b) ;
Wouter Verkerke, NIKHEF
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Use covariance matrices for correlated error propagation

e (Can (as visual aid) propagate errors in covariance matrix of a fit
result to a pdf projection

w: :model .plotOn (frame,VisualizeError (*fitresult)) ;
w: :model .plotOn (frame,VisualizeError (*fitresult, £fsiqg)) ;

—_ I_I n ear p rO p ag at I O n O n _ P.d.f with visualized 1-sigma error band | Visualization of 2-sigma partial error from (m,m2) |
pdf projection A= EV'E 1 Food

Events/(0.8)

e Propagated error can be
calculated on arbitrary function i »

- E'g fraCtion Of events in Signal range [ Visualization of 2-sigma partial error from (s.s2) | [ visualization of 2-sigma partial error from fsig |

RooAbsReal* fracSigRange =
w: :model.createlIntegral (x,x,”sig”) ;

Projection of model
Projection of model

Double t err =
fracSigRange.getPropagatedError (*£fr) ;

q0-8-5-420246810 “0-8-6-420246810



Some RooFit practical examples — from start to end

F Nbkg = 972 + 34
Nsig = 128 £17
alpha =-0.03915 + 0.0016

(0.9)

e Signal + Background (analytical)

Events /

RooWorkspace w("w") ; ?

o

// Construct exponential background model 10
w.factory("Exponential: :bkg(x[10,100],alphal[-0.04,-0.1,-01)") ;

I||||]||||III‘I’I

I ST
o b b b b by v by by P

// Construct Gaussian signal model
w.factory("Gaussian::sig(x,mean[40],width[3])") ; 20 30 40 50 60 70 80 %0 100

o

// Construct extended ML model of sum of signal and background
w.factory("SUM: :modeTsum(Nsig[100,0,200]*sig,Nbkg[1000,0,2000] *bkg)") ;

// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count
RooDataSet* d = w.pdf("modelsum™)->generate(*w.var("x")) ;

// Fit model to toy data
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;

// Plot data
RooPlot* frame = w.var("x")->frame() ;
d->plotOn(frame) ;

// Plot model (background component separately) and visualization of uncertainties from fit
w.pdf("modeTsum")->plotOn(frame,VisualizeError(*r3)) ;

w.pdf("modeTsum")->plotOn(frame) ;
w.pdf("modelsum")->pTotOn(frame,Components('bkg"),LineStyle(kDashed)) ;
w.pdf("modeTsum")->paramOn(frame) ;

frame->Draw() ;



Some RooFit practical examples — from start to end

e Two-dimensional signal: f(x|y)*g(y) -
& 0.005- |
S 0-004_2,,. N
% 0.0031
wo0.0024" l
RooWorkspace w("w") ; Oﬂoﬁwwﬂ“
// Construct g(x|fy,0.5) where the mean of the gaussian g;;

// is a polynomial fy=aO+al*y
w.factory(“Polyvar::fy(y[-5,5],{a0[-0.5,-5,5],a1l[-0.5,-1,11})") ;
w.factory("Gaussian: :gx(x[-5,5],fy,sigmax[0.5])") ;

// Construct g(y)
w.factory("Gaussian::gy(y,0,3)™) ;

// Construct the conditional product g(x|y)*g(y)
w.factory("PROD: :model(gx|y,gy)"™) ;

// Generate 1000 events in x and y from model
RooDataSet *data = w.pdf("model")->generate(RooArgSet(*w.var("x"),*w.var("y")),10000) ;

// Plot x distribution of data and projection of model on x = Int(dy) model(x,y)
RooPlot* xframe = w.var("x")->frame() ;

data->plotOn(xframe) ;

w.pdf("model")->plotOn(xframe) ;

// Make two-dimensional plot in x vs y

TH1* hh_model = w.pdf("model")->createHistogram("hh_model",*w.var("x"),Binning(50),
YVar(*w.var("y"),Binning(50))) ;

hh_mode1->SetLineColor(kBlue) ;

VVOULST VEIKEIKE, ININTIET



Some RooFit practical examples — from start to end

=90 Nbkg = 981 + 34
- Nsig= 119 +17
8

e Signal + Background (templates)

Method 1: Construct unit-normalized pdf from histograms
Model parameters are absolute event counts

RooWorkspace w("w") ;

// Import template histograms into workspace
w.import(*h_bkg,Rename("histo_bkg")) ;
w.import(*h_sig,Rename("histo_sig")) ;

// Construct sum of histogram-shaped templates
w.factory("SUM: :modeTsum(Nsig[100,0,200] *HistPdf::sig(x[10,100],histo_sig),
Nbkg[1000,0,2000] *HistPdf: :bkg(x,histo_bkg))") ;

// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ;

// Fit model to toy data
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;

// Plot data
RooPlot* frame = w.var("x")->frame() ;
d->plotOn(frame) ;

// Plot model (background component separately) and visualization of uncertainties from fit
w.pdf("modeTsum")->plotOn(frame,VisualizeError(*r3)) ;

w.pdf("modeTsum")->plotOn(frame) ;
w.pdf("modelsum")->pTotOn(frame,Components('bkg"),LineStyle(kDashed)) ;
w.pdf("modeTsum")->paramOn(frame) ;

frame->Draw() ;



Some RooFit practical examples — from start to end

140 kappa_bkg = 0.0991 * 0.0025
kappa_sig = 0.0109 + 0.0012

e Signal + Background (templates)

Method 2: Construct event-count scaled pdf from histograms 100
Model parameters are scale factors relative histogram counts

Events/(1.8)
)
o

RooWorkspace w("w") ;

_||III|III|III|III|]II|II

// Import template histograms into workspace

coa b b v b b b by by by gy

w.import(*h_bkg,Rename("histo_bkg")) ; 10 20 30 40 50 60 70 80 90 100
w.import(*h_sig,Rename("histo_sig")) ; X

// Construct sum of histogram-shaped templates
w.factory("ASUM: :modeTsum(kappa_sig[0.01,-0.1,1]*HistFunc::sig(x[10,100],histo_sig),
kappa_bkg[0.1,-0.1,1]*HistFunc: :bkg(x,histo_bkg))") ;

// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ;

// Fit model to toy data
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;

// Plot data
RooPlot* frame = w.var("x")->frame() ;
d->plotOn(frame) ;

// Plot model (background component separately) and visualization of uncertainties from fit
w.pdf("modeTsum")->plotOn(frame,VisualizeError(*r3)) ;

w.pdf("modeTsum")->plotOn(frame) ;
w.pdf("modelsum")->pTotOn(frame,Components('bkg"),LineStyle(kDashed)) ;
w.pdf("modeTsum")->paramOn(frame) ;

frame->Draw() ;



Some RooFit practical examples — from start to end

. « E alpha = -0.250 + 0.11
e Signal + Background (templates) = kappa_bkg = 0.0988 * 0.0026
With morphing shape parameter g 00 kappa_sig = 0.0112 +0.0014
80;—
so;—
RooWorkspace w("w") ; 40i
// Import template histograms into workspace B
w.import(*h_bkg,Rename("histo_bkg")) ; 20
w.import(*h_sig_lo,Rename("histo_sig_10")) ; N
W'-import(":h—s-ig—nom’Rename("h-iSto—s-ig—nom")) ; 0:1 11 I 1111 l | I - I 1111 I L1 11 I 11 1 1 I 1111 I 11 11 I L1 11
w.import(*h_sig_hi,Rename("histo_sig_hi")) ; 10 20 30 40 50 60 70 80 90 100

X

=

.factory("Piecewiselnterpolation::sig_morph(HistFunc::sig_nom(x,histo_sig_nom),
HistFunc::sig_lo(x,histo_sig_1l0),
HistFunc::sig_hi(x,histo_sig_hi),alphal[-5,5])") ;

// Construct sum of histogram-shaped templates
w.factory("ASUM: :modeTlsum(kappa_sig[0.01,-0.1,1]*sig_morph,
kappa_bkg[0.1,-0.1,1]*HistFunc: :bkg(x,histo_bkg))") ;

// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ;

// Fit model to toy data
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;

// Plot data

RooPlot* frame = w.var("x")->frame() ;
d->plotOn(frame) ;

VVOULET VEIKCIKE, ININTIE!



Statistical
methods 3

Inference with parameters:
maximum likelihood, confidence
iNtervals, upper Imits, likelhood ratio
and asymptotic formulae

Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques




Parameter estimation using Maximum Likelihood

6

(0

Likelihood is high for values of p that result in distribution similar to

data

— log L=139
- logL=189

(®)

0

—— log L=412 (ML fit) (a)

- log L=41.0 (true parameters)

-02

T

0.2 0.4 06

X

Define the maximum likelihood (ML) estimator to be the procedure
that finds the parameter value for which the likelihood is maximal.

Wouter Verkerke, NIKHEF



Parameter estimation — Maximum likelihood

e Practical estimation of maximum likelihood performed
by minimizing the negative log-Likelihood

L(p) =] | FG:;P)

~InL(p)== ), InF(%;:p)

— Advantage of log-Likelihood is that contributions from events can be summed,
rather than multiplied (computationally easier)

e |n practice, find point where derivative of —logL is zero
dInL(p)
dp Pi=p;

e Standard notation for ML estimation of p is 6

=0

Wouter Verkerke, UCSEB



Example of Maximum Likelihood estimation

e |llustration of ML estimate on Poisson counting model

L(N |s)= Poisson(N | s+ 15)

-log L(N|s) versus N [s=0,5,10,15] -log L(N|s) versus s [N=7]
.,;E0.0Q_— § E
%008;— S:O % g—
gom;— §» 3

voeé— g g
vosé— § g_
0‘042— ;_
oiosé— é_
oiozé— E_
0.01% i—

00_. .410. I I4I5I 50 3

S=D

e Note that Poisson model is discrete in N, but continuous in s!

Wouter Verkerke, NIKHEF



Properties of Maximum Likelihood estimators
e |n general, Maximum Likelihood estimators are

— Consistent (gives right answer for N> )
— Mostly unbiased (bias «1/N, may need to worry at small N)

— Efficient for large N (you get the smallest possible error)

N
— Invariant: (a transformation of parameters (f? )z _ (pz)

will Not change your answer, e.g

e MLE efficiency theorem: the MLE will be unbiased and efficient if
an unbiased efficient estimator exists

— Proof not discussed here

— Of course this does not guarantee that any MLE is unbiased and efficient for
any given problem



Relation between Likelihood and 2 estimators

e Properties of 2 estimator follow from properties of ML estimator
using Gaussian probability density functions

v, — f(x;;p) ; Gaussian Probability Density Function
- o. in p for single measurement y+o

from a predictive function f(x|p)
Take log,
Sum over all points (x;,¥;,0;)

.....

F(x,.,yl.,O,-;ﬁ) = nexp

A The Likelihood function in p
R = f(x;; g ) ,
~InL(p)= %E(y’ ACT) )= Lx° 1 for given points x(s)
i of and function f(x;p)

.....

e The % estimator follows from ML estimator, i.e it is

— Efficient, consistent, bias 1/N, invariant,



Estimating parameter variance

e Note that ‘uncertainty’ on a parameter estimate is an ambiguous
statement

e (Can either mean an interval with a stated confidence or credible,
level (e.g. 68%), or simply assume it is the square-root of the
variance of a distribution

For a Gaussian distribution
Mean= mean and variance

map to parameters

for mean and sigma?

o
4
[

o
o
=

<X>

o Projectiogof g

o
w
(S

W IIIIIllll|IIIIIlIIIIIIIIIlllllllllllllllllllllll

0.03 \ariance = and interval defined by

JV contains 68%
of the distribution
(=1 sigma’ by definition)

0.025
<XZ>-<X>2
0.02

0.015

0.01 Thus for Gaussian distributions

all common definitions of

s o ‘error’ work out to the same
-10 5 0 5 10 15 20 numeric value

Wouter Verkerke, NIKHEF
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Estimating parameter variance

e Note that ‘error’ or ‘uncertainty’ on a parameter estimate is an
ambiguous statement

e (Can either mean an interval with a stated confidence or credible,
level (e.g. 68%), or simply assume it is the square-root of the

variance of a distribution

Projection of block3
o o
o o
(&)] (e2]

g
o
=

0.03

0.02

0.01

For other distributions
intervals by /V do

not necessarily contain
68% of the distribution

A | Mean=

= <X>

- <> | Variance =

— <XP>-<X>2

- T R | T .

5 -10 10 15 20

Wourter Verkerke, NIKHEF



Estimating variance on parameters

e \ariance on of parameter can also be estimated from Likelihood

using the variance estimator
A 2 5
o(p) =V(p)=

if estimator is and

d*InL N
dzp

From Rao-Cramer-Frechet
inequality

e |llustration of Likelihood Variance estimate on a Gaussian distribution

35

Projection of f2

1
| u,0) =
f(“m)@Jﬂ

In (x| u,0)= -h@-m@%(x'“)

exp

_l(x-u)2
2\ O

o
1

0,2

x=u
Wouter Verkerke, NIKHEF



Bayesian parameter estimation

e Bayesian parameter estimate is the posterior mean

e Bayesian variance is the posterior variance

o
n
(¢4

o Projectiog,of g
¢ S

o

S

o
w
(4]

(&) IlII||III|IIIIIIIIIlIIIIIIIII|I|II|I|II|IIII|III

0.03

0.025

0.02

0.015

0.01

0.005

o

Variance =
<XZ>-<X>2

uP(ulIN)du

V=[(@-w P(uI Ny

10 15

Wouter Verkerke, NIKHEF



What can we do with composite hypothesis

e \With simple hypotheses — inference is restricted to making
statements about P(D|hypo) or P(hypo|D)

e \With composite hypotheses — many more options

e 1 Parameter estimation and variance estimation
— What is value of s for which the observed data is most probable? ]_ =55+ 13
— What is the variance (std deviation squared) in the estimate of s?

e 2 Confidence intervals

— Statements about model parameters using frequentist concept of probability
— s<12.7 at 95% confidence level

— 4.5 <s < 6.8 at 68% confidence level

e 3 Bayesian credible intervals

— Bayesian statements about model parameters
— s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF



