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What do we want to know?


•  Physics questions we have…!
–  Does the (SM) Higgs boson exist?

–  What is its production cross-section?

–  What is its boson mass?"




•  Statistical tests construct!
probabilistic statements:!
p(theo|data), or p(data|theo)!

–  Hypothesis testing (discovery)

–  (Confidence) intervals"

Measurements & uncertainties"



•  Result: Decision based on tests!
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“As a layman I would now say: I think we have it”




How do we do this?


•  All experimental results start with formulation of a (physics) theory!

•  Examples of HEP physics models being tested"
"
"
"
"
"
"
"
"



•  Next, you design a measurement to be able to test model!
–  Via chain of physics simulation, showering MC, detector simulation "

and analysis software, a physics model is reduced to a statistical model
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The Standard Model
 The SM without a Higgs boson


✗ 



An overview of HEP data analysis procedures


Simulation of high-energy"
physics process


Simulation of ‘soft physics’"
physics process


Simulation of ATLAS"
detector


Reconstruction "
of ATLAS detector


LHC data
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HEP workflow: data analysis in practice
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MC Simulated 
Events (sig,bkg)


All available "
“real data”


Event 
selection 
(cuts, NN, 

BDT)


Final Event 
Selection (data)


Final Event 
Selection (MC)


Final Result


Helps"
to define"
selection


Limit


Discovery


Measurement


Statistical"
analysis


N-tuples

Cut-flows,"
Multi-variate analysis (NN,BDT)"
ROOT, TMVA, NeuroBayes


Signal, background models"
Likelihood models,"

MINUIT, RooFit"
RooStats, MCLimit




From physics theory to statistical model


•  HEP “Data Analysis” is for large part "
the reduction of a physics theory to a statistical model!

Physics Theory: Standard Model with 125 GeV Higgs boson


Statistical Model: Given a measurement x (e.g. an event count)"
                              what is the probability to observe each possible value of x,"
                              under the hypothesis that the physics theory is true.

Once you have a statistical model, all physics knowledge has been abstracted "
into the model, and further steps in statistical inference are ‘procedural’ "
(no physics knowledge is required in principle)"





From statistical model to a result


•  The next step of the analysis is to confront your model with the 
data, and summarize the result in a probabilistic statement of 
some form


•  The last step, usually not in a (first) paper, that you, "
or your collaboration, decides if your theory is valid


Final Result


Limit


Discovery


Measurement


σ/σSM (HàZZ) |mH=150 < 0.3 @ 95% C.L.  

“Probability to observed this signal!
or more extreme, under the hypothesis!
of background-only is 1x109”!

σ/σSM (HàZZ) |mH=126 = 1.4 ± 0.3 !

‘Confidence/Credible Interval’


‘p-value’


‘Measurement with variance estimate’




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods
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Model building 1 

Basic distributions: Binomial, Poisson, Gaussian 



Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




The statistical world


•  Central concept in statistics is the ‘probability model’

•  A probability model assigns a probability to each possible 

experimental outcome.

•  Example: a HEP counting experiment


–  Count number of ‘events’ in a fixed time interval à Poisson distribution

–  Given the expected event count, the probability model is fully specified  
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à Experimental outcome
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P(N |µ) = µ
Ne−µ

N!

μ=3 (“bkg only”)
 μ=7 (“bkg+signal”)
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Intermezzo on distributions – The binomial distribution


•  Simple counting experiment – Drawing marbles from a bowl

–  Bowl with marbles,  fraction p are black, others are white


–  Draw N marbles from bowl, put marble back after each drawing

–  Distribution of R black marbles in drawn sample:


Binomial distribution


)!(!
!)1(),;(
RNR

NppNpRP RNR

−
−= −

Probability of a"
specific outcome"
e.g. ‘BBBWBWW’


Number of equivalent"
permutations for that"

outcome 


p=0.5"
N=4


R
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Basic Distributions – the Poisson distribution


•  Sometimes we don’t know the equivalent of the number of 
drawings


–  Example: Geiger counter

–  Sharp events occurring in a (time) continuum"

"
"
"
"



•  What distribution to we expect in measurement "
over a fixed amount of time?


–  Can be related to Binomial distribution by dividing time interval in fixed number 
of small intervals, counting #intervals with a collision


Begin

measurement


End"
measurement


Begin

measurement


End"
measurement




A probability model for LHC collisions


•  For k expected collisions in measurement, probability of collision"
in one of N intervals is k/N à Now back to binomial distribution


•  Now take limit Nà∞ "
(to avoid possibility of >1 collision per interval) 
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Begin "
measurement


End"
measurement


p(r | kN ,N ) =
kr

N r 1−
k
N

"

#
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N−r N!

r!(N − r)!

p(r | k) = e
−kkr

r!



The Poisson distribution for values value of λ

λ=0.1
 λ=0.5
 λ=1


λ=2
 λ=5
 λ=10


λ=20
 λ=50
 λ=200


p(r | k) = e
−kkr

r!

Named after Simeon de Poisson – who was investigating the occurence"
of judgement errors in the French judicial system
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More properties of the Poisson distribution


•  Mean, variance:"



•  Convolution of 2 Poisson distributions is also a Poisson 
distribution with λab=λa+λb


λσλ

λ

=⇒=

=

)(rV

r

!
)(

!
)(

)!(
!

!
)(
)!(!

);();()(

)(

)(

)(

0

0

r
e

r
e

rr
r

r
e

rrr
ee

rrPrPrP

r
BA

r

BA

B

BA

A
r

BA

r

r

rr

BA

B

r

BA

A

A

r
BA

AA

rr
B

r
A

r

r
BAAA

BA

BA

A

AA

BA

AA
BA

A

λλ
λλ

λ
λλ

λλλ

λλ
λ

λλ
λλλ

λλ

λλ

λλ

λλ

λλ

λλ

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
+

=

−
=

−=

+−

+−

−

+−

−
−−

=

∑

∑

∑

=

!
);(

r
erP

rλ
λ

λ−

=



Wouter Verkerke, UCSB


Basic Distributions – The Gaussian distribution


•  Look at Poisson distribution in limit of large N
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Familiar Gaussian distribution, "
(approximation reasonable for N>10)


l=1


l=10


l=200
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Properties of the Gaussian distribution


•  Mean and Variance"



•  Integrals of Gaussian


σσ

σσµµ

µσµ

=

=−=

==

∫

∫
∞+

∞−

∞+

∞−

22 ),;()()(

),;(

dxxPxxV

dxxxPx

68.27% within 1σ 90% à 1.645σ
95.43% within 2σ 95% à 1.96σ
99.73% within 3σ 99% à 2.58σ

99.9% à 3.29σ

22 2/)(

2
1),;( σµ

πσ
σµ −−= xexP



Wouter Verkerke, UCSB


The Gaussian as ‘Normal distribution’


•  Why are distributions often Gaussian?"



•  The Central Limit Theorem says

•  If you take the sum X of N independent measurements xi, "

each taken from a distribution of mean mi, a variance Vi=σi
2,"

the distribution for x"
"
(a) has expectation value"
"
"
(b) has variance"
"
"
(c) becomes Gaussian as N à ∞!
!
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Demonstration of Central Limit Theorem


←  5000 numbers taken at random from a uniform 
distribution between [0,1].


–  Mean = 1/2, Variance = 1/12"



←  5000 numbers, each the sum of 2 random 
numbers, i.e. X = x1+x2.


–  Triangular shape




←  Same for 3 numbers, "
X = x1 + x2 + x3"
"
"
"



←  Same for 12 numbers, overlaid curve is exact 
Gaussian distribution


N=1!

N=2!

N=3!

Important: tails of distribution converge very slowly CLT 
often not applicable for ‘5 sigma’ discoveries!N=12!



The statistical world


•  Central concept in statistics is the ‘probability model’

•  A probability model assigns a probability to each possible 

experimental outcome.

•  Example: a HEP counting experiment


–  Count number of ‘events’ in a fixed time interval à Poisson distribution

–  Given the expected event count, the probability model is fully specified  
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à Experimental outcome
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P(N |µ) = µ
Ne−µ

N!

μ=3 (“bkg only”)
 μ=7 (“bkg+signal”)
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"
Statistical methods 1


Hypothesis testing, p-values, odds ratios (demonstrated on simple 
Poisson counting experiments)




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




Probabilities vs conditional probabilities


•  Note that probability models strictly give conditional probabilities"
(with the condition being that the underlying hypothesis is true)


"


•  Suppose we measure N=7 then can calculate"

"
              L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%


•  Data is more likely under sig+bkg hypothesis than bkg-only hypo

•  Is this what we want to know? Or do we want to know L(Hs+b|N=7)?
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P(N )→ P(N |Hbkg ) P(N )→ P(N |Hsig+bkg )

Definition: "
P(data|hypo) is called "

the likelihood 



Inverting the conditionality on probabilities


•  Do L(7|Hb) and L(7|Hsb) provide you "
enough information to calculate P(Hb|7) and P(Hsb|7)


•  No!!

•  Image the ‘whole space’ and two subsets A and B
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A!
(=Hx)!

B!
(=Nobs)!

P(A|B) ≠ P(B|A)!
!
!
!
P(7|Hb) ≠ P(Hb|7)!



Inverting the conditionality on probabilities
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A!
(=Hx)!

B!
(=Nobs)!

P(A|B) ≠ P(B|A)!
!
!

but you can deduce!
their relation!



Inverting the conditionality on probabilities


•  This conditionality inversion relation is known as Bayes Theorem!
!

•  And choosing  A=data and B=theory"



•  Return to original question:"
 "
Do you L(7|Hb) and L(7|Hsb) provide you "
enough information to calculate P(Hb|7) and P(Hsb|7)"



•  No! à Need P(A) and P(B) à Need P(Hb), P(Hsb) and P(7)!
Wouter Verkerke, NIKHEF


Essay “Essay Towards Solving a Problem in the Doctrine of 
Chances”  published in Philosophical Transactions of the 
Royal Society of London in 1764


Thomas Bayes (1702-61)


P(B|A) = P(A|B) × P(B)/P(A)!

P(theo|data) = P(data|theo) × P(theo) / P(data)!



Inverting the conditionality on probabilities


•  What is P(data)?!

•  It is the probability of the data under any hypothesis

–  For Example for two competing hypothesis Hb and Hsb"

"
"
"
"
and generally for N hypotheses


•  Bayes theorem reformulated using law of total probability


•  Return to original question: Do you L(7|Hb) and L(7|Hsb) provide you "
enough information to calculate P(Hb|7) and P(Hsb|7) "
No! à Still need P(Hb) and P(Hsb)!
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P(N) = L(N|Hb)P(Hb) + L(N|Hsb)P(Hsb)!

P(N) = Σi P(N|Hi)P(Hi)!

P(theo|data) =  L(data|theo) × P(theo)  !
                      Σi L(data|theo-i)P(theo-i)!

P(theo|data) = P(data|theo) × P(theo) / P(data)!



Prior probabilities


•  What is the meaning of P(Hb) and P(Hsb)? 

–  They are the probability assigned to hypothesis Hb prior to the experiment.


•  What are the values of P(Hb) and P(Hsb)?

–  Can be result of an earlier measurement

–  Or more generally (e.g. when there are no prior measurement) "

they quantify a prior degree of belief in the hypothesis"



•  Example – suppose prior belief P(Hsb)=50% and P(Hb)=50%"



•  Observation N=7 strengthens belief in hypothesis Hsb"
(and weakens belief in Hb à 13%)
 Wouter Verkerke, NIKHEF


P(Hsb|N=7) =               P(N=7|Hsb) × P(Hsb) "
                     [ P(N=7|Hsb)P(Hsb)+P(N=7|Hb)P(Hb) ]


                 =             0.149 × 0.50              = 87% "
                       [ 0.149×0.5+0.022x0.5 ]




Interpreting probabilities


•  We have seen "
"
probabilities assigned observed experimental outcomes"
(probability to observed 7 events under some hypothesis)"
"
probabilities assigned to hypotheses"
(prior probability for hypothesis Hsb is 50%)"
"
which are conceptually different."



•  How to interpret probabilities – two schools"
"
Bayesian probability = (subjective) degree of belief "
"
Frequentist probability = fraction of outcomes in "
                                      future repeated identical experiments"
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“If you’d repeat this experiment identically many times, "
 in a fraction P you will observe the same outcome”


P(theo|data)

P(data|theo)


P(data|theo)




Interpreting probabilities


•  Frequentist: "
Constants of nature are fixed – you cannot assign a probability to 
these. Probability are restricted to observable experimental results


–  “The Higgs either exists, or it doesn’t” – you can’t assign a probability to that

–  Definition of P(data|hypo) is objective (and technical)


•  Bayesian:"
Probabilities can be assigned to constants of nature


–  Quantify your belief in the existence of the Higgs – can assign a probablity

–  But is can very difficult to assign a meaningful number (e.g. Higgs)


•  Example of weather forecast"
"
Bayesian: “The probability it will rain tomorrow is 95%”


–  Assigns probability to constant of nature (“rain tomorrow”)"
P(rain-tomorrow|satellite-data) = 95%


     Frequentist: “If it rains tomorrow, "
                 95% of time satellite data looks like what we observe now”


–  Only states P(satellite-data|rain-tomorrow)
 Wouter Verkerke, NIKHEF




Back to Hb/Hsb - Formulating evidence for discovery of Hsb


•  Given a scenario with exactly two competing hypotheses

•  In the Bayesian school you can cast evidence as an odd-ratio
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Oprior ≡
P(Hsb )
P(Hb)

=
P(Hsb )
1−P(Hsb )

If p(Hsb)=p(Hb) à Odds are 1:1


Oposterior ≡
L(x |Hsb )P(Hsb )
L(x |Hb )P(Hb )

=
L(x |Hsb )
L(x |Hb )

Oprior

‘Bayes Factor’ K multiplies prior odds


P(data|Hb)=10-7"
P(data|Hsb)=0.5
If                              K=2.000.000 à Posterior odds are 2.000.000 : 1




Formulating evidence for discovery


•  In the frequentist school you restrict yourself to P(data|theory)"
and there is no concept of ‘priors’


–  But given that you consider (exactly) 2 competing hypothesis,"
very low probability for data under Hb lends credence to ‘discovery’ of Hsb 
(since Hb is ‘ruled out’). Example


•  Given importance to interpretation of the lower probability, it is 
customary to quote it in “physics intuitive” form: Gaussian σ.


–  E.g. ‘5 sigma’ à probability of 5 sigma Gaussian fluctuation =2.87x10-7 


•  No formal rules for ‘discovery threshold’

–  Discovery also assumes data is not too unlikely under Hsb. If not, no discovery,"

but again no formal rules (“your good physics judgment”)


–  NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)    
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P(data|Hb)=10-7"
P(data|Hsb)=0.5
 “Hb ruled out” à “Discovery of Hsb”




Taking decisions based on your result


•  What are you going to do with the results of your measurement?

•  Usually basis for a decision 


–  Science: declare discovery of Higgs boson (or not), make press release,"
              write new grant proposal


–  Finance: buy stocks or sell


•  Suppose you believe P(Higgs|data)=99%.

•  Should declare discovery, make a press release? "

A: Cannot be determined from the given information!

•  Need in addition: the utility function (or cost function), 


–  The cost function specifies the relative costs (to You) of a Type I error 
(declaring model false when it is true) and a Type II error (not declaring model 
false when it is false).
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Taking decisions based on your result


•  Thus, your decision, such as where to invest your time or money, 
requires two subjective inputs: "
"
Your prior probabilities, and "
"
the relative costs to You of outcomes."



•  Statisticians often focus on decision-making; "
in HEP, the tradition thus far is to communicate experimental 
results (well) short of formal decision calculations."



•  Costs can be difficult to quantify in science. 

–  What is the cost of declaring a false discovery? 

–  Can be high (“Fleischman and Pons”), but hard to quantify 

–  What is the cost of missing a discovery (“Nobel prize to someone else”),"

but also hard to quantify
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How a theory becomes text-book physics


P(data|Hb)=10-7"
P(data|Hsb)=0.5
 P(data|Hb)=10-7


P(data|Hsb)=0.5


A: P(Hsb|data)=0.9999998

B: P(Hsb|data) = 83% 


Press release, accept as new 
‘text book physics’"

or"
Wait for more data


A: P(Hsb)=50%"
"

B: P(Hsb)=0.000001%


A: declare discovery at 3σ

B: declare discovery at 5σ


Information from experiment
 Information from experiment


Posterior from expt and prior"
following Bayesian paradigm


P-value threshold from “prior”"
(judgment call – no formal theory!)


Cost(FalseDiscovery)"
= EternalRidicule/Fired"



Cost(UnclaimedDiscovery)


= MissedNobelPrize


Press release, accept as new 
‘text book physics’"

OR

Wait for more data


Prior belief in theory"
(can be hard to quantify)


Cost of wrong decision"
(can be hard to quantify)


Recent judgements"
on of 5σ effects:

Higgs – text book

ν(β>1) – rejected


Frequentist! Bayesian!
Potentially fuzzy"

information




Summary on statistical test with simple hypotheses


•  So far we considered simplest possible experiment we can do: "
counting experiment


•  For a set of 2 or more completely specified (i.e. simple) hypotheses "
"



•  In principle, any potentially complex measurement (for Higgs, SUSY, 
top quarks) can ultimately take this a simple form."
But there is some ‘pre-work’ to get here – examining (multivariate) 
discriminating distributions à Now try to incorporate that  
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à Given probability models P(N|bkg), and P(N|sig) "
    we can calculate P(Nobs|Hx) under either hypothesis"
"
à With additional information on P(Hi) we can also calculate P(Hx|Nobs)
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Model building 2 "
Modelling distributions – "

template based models or 
analytical models




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




Discriminating observables & counting experiments


•  HEP experimental data usually has many discriminating observables 
that carry information that can distinguish signal from background 
hypothesis


•  In principle can use them all directly in an elaborate hypothesis test.

–  But would need to formulate a model that describe the expected distribution of all 

of these à Complicated


–  If expectations are uncertain (from simulation or theory) process of modeling 
becomes even more complex


•  A pragmatic solution to reduce complexity is to split task in two

–  Define empirical selection of events enriched in signal using one or more 

observable properties of the event (invariant masses, distributions, angles etc)


–  Perform statistical test (hypothesis test, parameter estimation etc) on sample that 
reduced in size and in dimensionality of discriminating observables that are 
modeled


–  Most extreme reduction of dimensionality is to zero à counting experiment 
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Discriminating observables & counting experiments


•  Example 1 – Discrimination in selection stage only!

s=0


s=5

s=10


s=15


Event selection: "
reduce sample size "
and dimensionality


Formulation of probability model of reduced sample:"
Poisson(N|s+b)


Statistical inference:"
L(15|5) = 1.5 10-4


NB1: All discriminating power in selection step, "
         none in inference step. This is a design choice!

"

NB2: Selection must be tuned on a ‘figure of merit’"
         usually a simplified statistical inference test




Modeling discriminating observables


•  Example 2 – Discrimination in inference stage


Event selection: "
reduce sample size "
and dimensionality


Formulation of probability model of reduced sample:"
Nbkg*Uniform(x) +Nsig*Gaussian(x) 


Statistical inference:"
L(data|hypo)=something


NB1: Most discrimination power in inference step. "
        This is again design choice!

"

NB2: Optimal selection less critical




NB3: Correct description of selected sample"
         more complex






Modeling discriminating observables


•  Example 2 – full dataset has one discriminating observable: x 


Event selection: "
reduce sample size "
and dimensionality


Formulation of probability model of reduced sample:"
Nbkg*Uniform(x) +Nsig*Gaussian(x) 


Statistical inference:"
L(data|hypo)=something


NB1: Most discrimination power in inference step. "
        This is again design choice!

"

NB2: Optimal selection less critical




NB3: Correct description of selected sample"
         more complex




Q: Which strategy is better?


A: Depends on how ‘better’ is defined?




For hypothesis testing ‘discovery of a new article’"

the ‘power’ of the test can be the same, but doesn’t need to be




Choice is real life largely dictated by practicalities


•  How easy is it to formulate a description of the observables?


•  How many observables are important?




Formulating probability models for discriminating observables


•  For counting experiments could derive Poisson(N|μ) from first 
principles (‘random discrete events measured in fixed time interval)


•  For experiments with discriminating observables, description should 
ideally also derive from underlying (physics) hypothesis/theory


–  In many cases this is possible, but not always without assumptions. 

–  Assumptions lead to uncertainties in predictions à we’ll revisit later how to deal 

with those.


•  Example: common underlying principle in (signal) model is that 
discriminating observable is sum/average of many components


–  E.g. light collected by photomultiplier has contributions from >>1 photons

–  Tracks reconstructed in detector have contributions >>1 hits

–  Central Limit Theorem: for large N à Can be analytically described by Gaussian


•  In case there is no easy analytical solution à empirical models 
(polynomial) or numerical solution (simulation-based histogram)
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Mathematical formulation of models for observables


•  Mathematical description for counting expt is probability model


•  Mathematical description for distribution "
of discriminating observable is a probability density model:


P(N ) ≥ 0 ∀N P(N )
N=0

∞

∑ ≡1

f ( !x) ≥ 0 ∀
!
x f ( !x)d!x ≡1∫

f (x)dx ≡1∫ f (x, y)dxdy ≡1∫



Mathematical formulation of models for observables


•  Mathematical description for counting expt is probability model


•  Mathematical description for distribution "
of discriminating observable is a probability density model:


P(N ) ≥ 0 ∀N P(N )
N=0

∞

∑ ≡1

f ( !x) ≥ 0 ∀
!
x f ( !x)d!x ≡1∫

f (x)dx ≡1∫ f (x, y)dxdy ≡1∫

Note that f(x) itself is not a probability, but a probability density.




However any integral                is a probability (for x to be in [a,b])




Some examples of physics-inspired probability density models
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Gaussian!
(anything in CLT regime)!

Landau!
(energy loss in matter)!

Breit-Wigner!
(resonant mass)!

Exponential!
(decay time)!



Signal models are often convolutions!


•  Observable distributions are often well described by convolutions 
of physics distributions with (experimental) resolution functions.


–  Often can be calculated analytically, otherwise numerically use FFT


•  Example 1: Resonance mass (x) detector resolution"
"
"
 "
"
"
"



•  Example 2: Decay life time (x) detector resolution 
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(x)


(x)
 =


=




PDFs with multiple process contributions 


•  Analogous to the counting model Poisson(N|S+B), probability 
density models can describe the distribution of such hypothesis 
through simple addition


•  Given a data sample D(x) of N "
independent identically distributed"
observations  of x, the Likelihood is "
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f(x) = fsig Gaussian(x) + (1-fsig) Uniform(x)!

If Gaussian(x) and Uniform(x) 
are pdfs, then their sum is also 
a pdf, provided the sum of the 
coefficients is also 1 

L( !x) = f (xi )
i=0...N
∏



PDFs with multiple process contributions 


•  Note that the Likelihood L(x) of a probability density function f(x)"
for a data sample D(x) with N entries only exploits the differential 
distribution in x, but not the event count N of the data


•  In many cases the event count can also distinguish the S/B 
hypothesis (more events expected if signal is present). If so, "
the probability model for the event count can be explicitly included 
in the Likelihood (often called ‘extended likelihood’)


•  In the common case of a signal and background, with a 
respective expected event S and B, "
one can reparameterize (fsig,Nexp) à (S,B)
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f(x) = fsig Gaussian(x) + (1-fsig) Uniform(x)!
!
P(N) = Poisson(N | Nexp)!

L(
!
x,N ) = f (xi | fsig )

i=0...N
∏ ⋅Poisson(N | Nexp )



PDFs with multiple process contributions 


•  Note that the Likelihood L(x) of a probability density function f(x)"
for a data sample D(x) with N entries only exploits the differential 
distribution in x, but not the event count N of the data


•  In many cases the event count can also distinguish the S/B 
hypothesis (more events expected if signal is present). If so, "
the probability model for the event count can be explicitly included 
in the Likelihood (often called ‘extended likelihood’)


•  In the common case of a signal and background, with a 
respective expected event S and B, "
one can reparameterize (fsig,Nexp) à (S,B)
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f(x) = S/(S+B)Gaussian(x) + B/(S+B)Uniform(x)!
!
P(N) = Poisson(N | S+B)!

L( !x,N ) = f (xi | S,B)
i=0...N
∏ ⋅Poisson(N | S + B)



Empirical probability models


•  In case no description from first principles exists for a differential 
distribution, empirical or simulation-based models can be deployed
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Empirical models
 Simulation-based models


B(x) = a0+a1x+a2x2+a3x3…  B(x) = histogram 

Drawbacks: 

•  Arbitrariness in parameterization,"

e.g. which order to choose"
for a polynomial"



Drawbacks: 

•  Quantization of model prediction in bins

•  Poor modeling in regions "

with low simulation statistics"





Modeling low-statistics simulation predictions


•  For low-statistics simulation predictions, "
kernel estimation techniques can improve modeling substantially


•  Procedure: 

–  Assign a Gaussian probability density distribution to each simulated event.

–  Sum Gaussian probability densities of all events

–  Started from unbinned data à no binning effects 
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Sample of events!

Gaussian !
probability distributions !

for each event!

Summed!
probability distribution!
for all events in sample!



Modeling low-statistics simulation predictions


•  Technique does not require that all Gaussian kernels have same 
width


•  Improved procedure: ‘adaptive kernel’

–  Adjust with of Gaussian kernels depending on local event density

–  High density à narrow kernels à preserve more detail

–  Low density à wide kernels à promote smoothness
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Static Kernel!
(with of all Gaussian identical)!

Adaptive Kernel!
(width of all Gaussian depends!

on local density of events)!



Binned vs unbinned likelihoods


•  Analytical probability density functions describe "
data vectors x = unbinned ‘raw’ distribution of x


–  Constructs statistical tests with the highest power, "
in particular at low event counts


•  In the limit of large N unbinned likelihoods become"
very CPU consuming with diminishing returns


–  Can approximate unbinned likelihood with a binned likelihood"
(calculation time will scale with N(bin) rather N(data)) 
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L(
!
x,N ) = f (xi | fsig )

i=0...N
∏ ⋅Poisson(N | Nexp )

L( !n) = Poisson(ni |µi )
i=0...N
∏

µi = f (x)dx ⋅Nexp
xi
low

xi
high

∫

≈ f (xi
mid )(xi

high − xi
low ) ⋅Nexp

(Exact for binned models)
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Statistical methods 2 "

Adapting statistical methods to use with distributions: "
test statistics as ordering principle, likelihood ratios,  

contrast with Bayesian methods, the likelihood principle. 
Practical aspects of toy MC sampling 




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




Working with Likelihood functions for distributions


•  How do the statistical inference procedures change !
for Likelihoods describing distributions?


•  Bayesian calculation of P(theo|data) they are exactly the same.

–  Simply substitute counting model with binned distribution model 
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(Hs+b |
!
N ) =

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )+ Poisson

i
∏ (Ni | "bi )P(Hb )

Simply fill in new Likelihood function

Calculation otherwise unchanged




Working with Likelihood functions for distributions


•  Frequentist calculation of P(data|hypo) also unchanged, "
but question arises if P(data|hypo) is still relevant?!

•  L(N|H) is probability to obtain exactly the histogram observed.!

•  Is that what we want to know? Not really.. We are interested in 
probability to observe any ‘similar’ dataset to given dataset,"
or in practice dataset ‘similar or more extreme’ that observed data


•  Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
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L(
!
N |Hb ) = Poisson(

i
∏ Ni | "bi )

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi )



Working with Likelihood functions for distributions


•  Definition: a test statistic T(x) is any function of the data x

•  We need a test statistic that will classify (‘order’) all possible 

observations in terms of ‘extremity’ (definition to be chosen by 
physicist)


•  NB: For a counting measurement the count itself is already "
       a useful test statistic for such an ordering (i.e. T(x) = x)
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Test statistic T(N)=Nobs orders observed"
events count by estimated signal yield



Low N à low estimated signal"
High N à large estimated signal




•  Now make a measurement N=Nobs (example Nobs=7)

•  Definition: p-value: !

probability to obtain the observed data, or more extreme!
in future repeated identical experiments!

–  Example: p-value for background-only hypothesis


 


P-values for counting experiments


)23.0()0;( =+= ∫
∞

obsN
b dNbNPoissonp

s=0 

s=5 
s=10 

s=15 



Ordering distributions by ‘signal-likeness’ aka ‘extremity’


•  How to define ‘extremity’ if observed data is a distribution

Counting
 Histogram


Observation


Median expected"
by hypothesis


Predicted distribution"
of observables


Nobs=7


Nexp(s=0) = 5

Nexp(s=5) = 10


Which histogram is more ‘extreme’?!



The Likelihood Ratio as a test statistic


•  Given two hypothesis Hb and Hs+b the ratio of likelihoods"
is a useful test statistic


•  Intuitive picture: "
"
à If data is likely under Hb,                à If data is likely under Hs+b"
     L(N|Hb) is large,                                 L(N|Hs+b) is large,"
     L(N|Hs+b) is smaller                            L(N|Hb) is smaller "
"
    "
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λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

λ(
!
N ) = small

large
= small λ(

!
N ) = large

small
= large



Visualizing the Likelihood Ratio as ordering principle


•  The Likelihood ratio as ordering principle


•  Frequentist solution to ‘relevance of P(data|theory’) is to order all 
observed data samples using a (Likelihood Ratio) test statistic!

–  Probability to observe ‘similar data or more extreme’ then amounts to "
calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)!
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L(N|Hs+b)=small"
L(N|Hb)=large


L(N|Hs+b)=soso"
L(N|Hb)=soso


L(N|Hs+b)=large"
L(N|Hb)=small


λ(N)=0.0005
 λ(N)=0.47
 λ(N)=5000




The distribution of the test statistic


•  Distribution of a test statistic is generally not known

•  Use toy MC approach to approximate distribution


–  Generate many toy datasets N under Hb and Hs+b"
and evaluate λ(N) for each dataset
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log(λ)


Distribution of λ for "
data sampled under Hs+b


Distribution of λ for "
data sampled under Hb


λobs


p− value = f (λ |Hb )
λobs

∞

∫



The distribution of the test statistic


•  Definition: p-value: !
probability to obtain the observed data, or more extreme!
in future repeated identical experiments!
(extremity define in the precise sense of the (LR) ordering rule)
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log(λ)


Distribution of λ for "
data sampled under Hs+b


Distribution of λ for "
data sampled under Hb


λobs


p− value = f (λ |Hb )
λobs

∞

∫



Likelihoods for distributions - summary


•  Bayesian inference unchanged!
 !
à simply insert L of distribution to calculate P(H|data)




•  Frequentist inference procedure modified"

"
à Pure P(data|hypo) not useful for non-counting data"
à Order all possible data with a (LR) test statistic in ‘extremity’"
à Quote p(data|hypo) as ‘p-value’ for hypothesis"
    Probability to obtain observed data, or more extreme, is X%   
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

‘Probability to obtain 13 or more 4-lepton events"
under the no-Higgs hypothesis is 10-7’"


‘Probability to obtain 13 or more 4-lepton events"
under the SM Higgs hypothesis is 50%’




The likelihood principle


•  Note that ‘ordering procedure’ introduced by test statistic "
also has a profound implication on interpretation


•  Bayesian inference only uses the Likelihood of the observed data


•  While the observed Likelihood Ratio also "
only uses likelihood of observed data."





•  Distribution f(λ|N), and thus p-value, also uses likelihood of 

non-observed outcomes (in fact Likelihood of every possible 
outcome is used)"
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )



Likelihood Principle


•  In Bayesian methods and likelihood-ratio based methods, the 
probability (density) for obtaining the data at hand is used (via the 
likelihood function), but probabilities for obtaining other data are 
not used!


•  In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.


•  This difference is captured by the Likelihood Principle*: "
"
If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.
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Generalizing to multiple dimensions


•  Can also generalize likelihood models to distributions in multiple 
observables


•  Neither generalization (binnedàcontinuous, oneàmultiple 
observables) has any further consequences for Bayesian or 
Frequentist inference procedures 
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L(!x) = f (xi )
i
∏ L(!x, !y) = f (xi, yi )

i
∏



The Likelihood Ratio test statistic as tool for event selection


•  Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem


•  In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always !
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)!
with a likelihood ratio!
!

•  So far we have exploited λ to calculate a frequentist p-value"
now explore properties ‘cut on λ’ as basis of (optimal) event 
selection! Wouter Verkerke, NIKHEF


λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )



The distribution of the test statistic


•  Distribution of a test statistic is generally not known

•  Use toy MC approach to approximate distribution


–  Generate many toy datasets N under Hb and Hs+b"
and evaluate λ(N) for each dataset
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log(λ)


Distribution of λ for "
data sampled under Hs+b


Distribution of λ for "
data sampled under Hb


λobs


p− value = f (λ |Hb )
λobs

∞

∫

(



Intermezzo – Generating toy data


•  Two approaches to obtaining simulated data

•  First approach is "

‘Physics Monte Carlo Chain’, "
described earlier


–  Time consuming, but"
injects detailed knowledge"
about physics, detector,"
output is full collision"
information, and relation"
to underlying theory details


•  Alternative approach is"
sample sampling the"
probability model ‘toy MC’


–  Fast (generally), only requires access to probability model

–  Can only produce datasets with observables that are described by the 

probability model à Sufficient to study distribution of test statistics


Wouter Verkerke, NIKHEF




How do you efficiently generate a toy dataset from a probability model?


•  Simplest method is accept/reject sampling"



1)  Determine maximum of function fmax


2)  Throw random number x

3)  Throw another random number y

4)  If y<f(x)/fmax keep x, "

otherwise return to step 2)"
"
"



–  PRO: Easy, always works

–  CON: It can be inefficient if function "

         is strongly peaked."
         Finding maximum empirically "
         through random sampling can"
         be lengthy in >2 dimensions
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x 

y 

fmax 



How do you efficiently generate a toy dataset from a probability model?


•  Simplest method is accept/reject sampling"



1)  Determine maximum of function fmax


2)  Throw random number x

3)  Throw another random number y

4)  If y<f(x)/fmax keep x, "

otherwise return to step 2)"
"
"



–  PRO: Easy, always works

–  CON: It can be inefficient if function "

         is strongly peaked."
         Finding maximum empirically "
         through random sampling can"
         be lengthy in >2 dimensions
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x 

y 

fmax 
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Toy MC generation – Inversion method


•  Fastest: function inversion"


1)  Given f(x) find inverted function F(x) "

so that f( F(x) ) = x

2)  Throw uniform random number x

3)  Return F(x)"

"
"
"



–  PRO: Maximally efficient

–  CON: Only works for invertible functions


Take –log(x) 
x 

-ln(x) 

Exponential 
distribution 
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Toy MC Generation – importance sampling


•  Hybrid: Importance sampling"


1)  Find ‘envelope function’ g(x) "

that is invertible into G(x)"
and that  fulfills g(x)>=f(x) "
for all x


2)  Generate random number x "
from G using inversion method


3)  Throw random number ‘y’

4)  If y<f(x)/g(x) keep x, "

otherwise return to step 2"
"
"
"



–  PRO: Faster than plain accept/reject sampling"
        Function does not need to be invertible


–  CON: Must be able to find invertible envelope function


G(x) 

y 

g(x) 

f(x) 



Toy MC Generation – importance sampling in >1D


•  General algorithms exists that can construct empirical envelope 
function 


–  Divide observable space recursively into smaller boxes and take uniform 
distribution in each box


–  Example shown below from FOAM algorithm
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Toy MC Generation – importance sampling in >1D


•  For binned distributions, can generate content of each bin on toy 
dataset independently, using a Poisson process


•  Note that efficient generation of Poisson random number relies on 
combination of importance sampling (for small μ, using 
exponential envelope, for large μ using Cauchy distribution)   
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L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi ))



Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods


Relation of test statistics to event selection




Deciding on a split 


•  HEP data analysis often a "
2-step process: "
"
     first selection, "
     then inference


"


•  Focus in this course on inference, but Likelihood Ratio as test 

statistics shows that there is a general optimal solution for any event 
selection problem: the ratio will order all event by signal-likeness"



•  Hence if we can construct λ, a selection defined by λ>λc will always 
be optimal for some stated level of desired purity
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λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )



The Likelihood Ratio test statistic as tool for event selection


•  Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem


•  In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always !
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)!
with a likelihood ratio!
!

•  So far we have exploited λ to calculate a frequentist p-value"
now explore properties ‘cut on λ’ as basis of (optimal) event 
selection! Wouter Verkerke, NIKHEF


λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )



Event selection


•  The event selection problem:

–  Input: Two classes of events “signal” and “background”

–  Output: Two categories of events “selected” and “rejected”


•  Goal: select as many signal events as possible,"
         reject as many background events as possible"



•  Note that optimization goal as stated is ambiguous. 

–  But can choose a well-defined by optimization goal by e.g. fixing desired 

background acceptance rate, and then choose procedure that has highest 
signal acceptance."



•  Relates to “classical hypothesis testing”

–  Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)

–  Here null = background, alternate = signal
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Terminology of classical hypothesis testing


•  Definition of terms

–  Rate of type-I error = α
–  Rate of type-II error = β
–  Power of test is 1-β�

�

•  Treat hypotheses "
asymmetrically 


–  Null hypo is usually special à Fix rate of type-I error

–  Criminal convictions: Fix rate of unjust convictions 

–  Higgs discovery: Fix rate of false discovery

–  Event selection: Fix rate of background that is accepted


•  Now can define a well stated goal for optimal testing

–  Maximize the power of test (minimized rate of type-II error) for given α
–  Event selection: Maximize fraction of signal accepted
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The Neyman-Pearson lemma


•  In 1932-1938 Neyman and Pearson developed a "
theory in which one must consider competing hypotheses


–  Null hypothesis (H0) = Background only

–  Alternate hypotheses (H1) = e.g. Signal + Background


    and proved that

•  The region W that minimizes the rate of the type-II error (not 

reporting true discovery) is a contour of the Likelihood Ratio


•  Any other region of the same size will have less power
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The Neyman-Pearson lemma


•  Example of application of NP-lemma with two observables"





•  Cut-off value c controls type-I error rate (‘size’ = bkg rate)"

Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff. 

•  So why don’t we always do this? (instead of training neural 

networks, boosted decision trees etc)
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x

y
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x


f(x,y|Hs)
 f(x,y|Hb)

f(x,y|Hs)"

f(x,y|Hs+b)"





>c




Why Neyman-Pearson doesn’t always help


•  The problem is that we usually don’t have explicit formulae for the 
pdfs


•  Instead we may have Monte Carlo samples for signal and  
background processes


–  Difficult to reconstruct analytical distributions of pdfs from MC samples, 
especially if number of dimensions is large


•  If physics problem has only few observables can still estimate 
estimate pdfs with histograms or kernel estimation,


–  But in such cases one can also forego event selection and go straight to 
hypothesis testing / paramater estimation with all events
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Approximation of true f(x|s)


Approximation of true f(x|b)




Hypothesis testing with a large number of observables


•  When number of observables is large follow different strategy

•  Instead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to 

approximate decision boundary with an empirical parametric form 
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Aα (
!x) = f (!x | s)

f (!x | s+ b)
>α

!

"
#

$

%
& ⇒ Aα (

!x) = c(!x,
!
θ )

f(x,y|Hs)
 f(x,y|Hb)

f(x,y|Hs)"

f(x,y|Hs+b)"





>c


c(x,θ)




Empirical parametric forms of decision boundaries


•  Can in principle choose any type of Ansatz parametric shape"
"
"
"
"
"
"
 �
�
�

•  Goal of Ansatz form is estimate of a ‘signal probability’ for every 
event in the observable space x (just like the LR)


•  Choice of desired type-I error rate (selected background rate), can 
be set later by choosing appropriate cut on Ansatz test statistic.


accept 
H0 

H1 

accept 
H0 

H1 

accept 
H0 

H1 

Rectangular cut Linear cut Non-linear cut 

)()()( iijj cxcxxt −−= θθ iijj xaxaxt ⋅+⋅=)( ...)( ++⋅= xAxxaxt !!!!



Machine learning and all that


•  A wide range of modern tools exist to perform supervised learning 
of a multivariate discriminant with the aim to approximate the 
optimal Neyman-Pearson discriminant.


–  Deep Learning, Boosted Decision Trees, GAN’s etc etc.


•  Variation in

–  Ansatz (empirical parametric form "

            of discriminant)

–  Learning process "

(error back propagation, Bayesian)


•  Commonality in

–  Input (labeled simulation samples)

–  Output (single function that maps "

             signal probability)


•  In all cases output functions is functionally comparable to "
likelihood ratio discriminant (modulo some trivial transformations)
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•  In the limit of an optimal discriminant – the event selection step is 
effectively (and only) a reduction of dimensionality of the data without 
loss of information (in the optimal case)"
"
"



•  In case the full discriminant distribution"
is tested à no loss of information


–  But need for pdf that model distribution


•  But can also select high-signal region"
and perform simplified inference


–  e.g. counting model in that region


Event selection as dimensionality reduction




Choosing the ‘best’ high-signal region


•  A common scenario for searches in a low-statistics "
regime is to perform a simplified analysis


1.  Train MVA to obtain discriminant D

2.  Apply a cut on D

3.  Perform only a counting analysis


•  And a common question is then – what is the ‘optimal cut on D’?

–  NB: the question arise due to choice for simplified counting in step 3)."

If a probability density model is used for the analysis the answer is always"
‘the full range of the discriminant’


–  To answer question a ‘figure of merit’ (FOM) must be chosen that quantifies 
the optimality of the selection. The ideal FOM for a search is usually the 
expected signal significance.


–  A ‘traditional’ choice is FOM=s/√b. For low-statistic searches this is a bad 
choice! It assumes Gaussian distribution, whereas the true distribution is 
Poisson, which is quite unlike Gaussian especially in the tails at low N 


–  A better, and equally easy to use, equation exists based on a Poisson 
calculation 
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Choosing the ‘best’ high-signal region


•  The estimated significance assuming a Poisson process modeled 
by Poisson(N|S+B) is                                   


•  E.g. for ‘discovery FOM’ s/√b illustration of approximation for 
s=2,5,10 and b in range [0.01-100] shows significant deviations of 
s/√b from actual significance at low b "
"



•   
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Model building 3 
Models with parameters I - 

analytical parametric models,"
multi-dimensional models


 template morphing approach for 
histogram-based models 



Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




Introduce concept of composite hypotheses


•  In most cases in physics, a hypothesis is not “simple”, "
but “composite”


•  Composite hypothesis = Any hypothesis which does not specify 
the population distribution completely


•  Example: counting experiment with signal and background,"
that leaves signal expectation unspecified
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L = Poisson(N | !s + !b)

L(s) = Poisson(N | s+ !b)

Simple hypothesis 


Composite hypothesis 


s=0


s=5


s=10

s=15


(My) notation convention: all symbols with ~ are constants !

With b=5

~




A common convention in the meaning of model parameters


•  A common convention is to recast signal rate parameters into a 
normalized form (e.g. w.r.t the Standard Model rate)
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L = Poisson(N | !s + !b)

L(s) = Poisson(N | s+ !b)

Simple hypothesis 


Composite hypothesis 


s=0


s=5


s=10

s=15


With b=5

~


L(µ) = Poisson(N |µ ⋅ !s + !b)
Composite hypothesis "

with normalized rate parameter


μ=0 à no signal"
μ=1 à expected signal

μ>1 à more than expected signal




‘Universal’ parameter interpretation "
makes it easier to work with your models




What can we do with composite hypothesis


•  With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)


•  With composite hypotheses – many more options

•  1 Parameter estimation and variance estimation


–  What is value of s for which the observed data is most probable?

–  What is the variance (std deviation squared) in the estimate of s?


•  2 Confidence intervals

–  Statements about model parameters using frequentist concept of probability

–  s<12.7 at 95% confidence level

–  4.5 < s < 6.8 at 68% confidence level


•  3 Bayesian credible intervals 

–  Bayesian statements about model parameters

–  s<12.7 at 95% credibility
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s=5.5 ± 1.3




Model building for discovery, X-section à yield parameter 
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s=0

s=5


s=10

s=15


0-dimensional (counting)
 1-dimensional (discriminant)


MVA discriminant


Physics-inspired discriminant


Poisson(N|S+B)


S*sig(x)+B*bkg(x)


S*sig(x)+B*bkg(x)




Models for discovery, X-section à yield parameter 
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1-dimensional (discriminant)


MVA discriminant


Physics-inspired discriminant


S*sig(x)+B*bkg(x)


S*sig(x)+B*bkg(x)


2-dimensional?


Q: When is it useful to build 
probability models in ≥2  
observables?



A1: When you have a physics 
model with a clear prediction 
for the full 2D model..



Often you don’t and then you 
let an MVA reduce the n-Dim"
space to 1-dimension



But sometimes you have clear 
models described 2 or more"
observables à No point in 
letting an MVA approximate 
what you know analytically. 












Case study – dependence of 1-D model on another observable 


•  A common scenario for 2D modelling is the following: You 
observe that the mean reconstructed mass of some particle 
depends on another observable
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Model for mass at (y=0)
 Model for mass at (y=3)

sig(m)=Gaussian(m,92,1)
 sig(m)=Gaussian(m,94,1)


sig(m,y)=Gaussian(m,mean(y),1)


Solution: "
introduce a "

function mean(y)  
that describes "

dependence "
of mean of y


Q: Is sig(m,y) a proper"
2-dimensional model?




Case study – dependence of 1-D model on another observable 
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sig(m,y)=Gaussian(m,mean(y),1)


Solution: "
introduce a "

function mean(y)  
that describes "

dependence "
of mean of y


Q: Is sig(m,y) a proper"
2-dimensional model?


A: No!"
Distribution in y is"

unlikely to be flat…


•  Challenge for 2D models: distributions in x,y and all correlations 
must all be correct! Seems intractable, but solutions exists


•  Instead of immediately defining a 2D model f(x,y), "
define first the conditional probability density function f(x|y)


f(x,y) 

=


2D model for"
both x and y


f(x|y) 

=


1D model for x "
at a given value of y


f (x, y)dx ≡1 ∀y∫f (x, y)dxdy ≡1∫

This is really what"
we meant when we"
formulated this: 

Gaussian(m,mean(y),1)




Case study – dependence of 1-D model on another observable 


•  Given a conditional model f(x|y) can build full 2D model by 
multiplying with a model g(y)
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Gaussian(m,mean(y),1)


sig(m,y) = sigm(m|y) *sigy(y)


Gaussian(y)


= * 



Case study – per-event errors


•  Another common variant of this type of modeling "
problem is the so-called ‘per-event’ error


•  Example: observable = decay time distribution, "
measured from reconstructed vertex.


–  In absence of a detector resolution, exponential decay distribution

–  In real life, distribution is convoluted with (Gaussian) reconstruction resolution





•  But vertex reconstruction gives also estimate of uncertainty "
for every reconstructed vertex à the ‘per-event error’


–  Can take this into account: well-reconstructed events carry more information


•  How? Scale assumed resolution with per-event error

f (t |δt) = Decay(t)⊗Gaussian(t,0,σ ⋅δt)



Case study – per-event errors


•  Visualization of decay function with variable resolution
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Decay function (symmetrized)"
convoluted with Gaussian resolution"

at 4 different values of per-event error 


f(t|dt) 


Full 2D-model:"
F(t,dt) = F1(t|dt)*F2(dt)




Shown here: projection on t"
F(t) = Int [ F1(t|dt)*F2(dt) ] dt


f (t |δt) = Decay(t)⊗Gaussian(t,0,σ ⋅δt)



Model building for measurements à shape parameter 


•  Beyond discovery/rate measurements, can also build models to 
measure properties of particles (e.g mass) "
à introduce shape parameters


•  Often trivial for analytical models, "
less so for simulation-based models
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F(x|m) = Gaussian(x,m,σ)+bkg
 F(x|m) = ??




Modeling of shape variations in the likelihood


•  If underlying simulation has free parameter θ, can assess impact on 
reconstructed shapes by rerunning simulation at different values


–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ "
settings of systematic effect


•  Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 
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‘-1σ’
 ‘nominal’
 ‘+1σ’




Need to interpolate between template models


•  Need to define ‘morphing’ algorithm to define "
distribution s(x) for each value of α
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s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 



Piecewise linear interpolation


•  Simplest solution is piece-wise linear interpolation for each bin
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Piecewise linear"
interpolation"
response model"
for a one bin


Extrapolation to |α|>1


Kink at α=0


Ensure si(α)≥0




Visualization of bin-by-bin linear interpolation of distribution
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x
α




Other morphing strategies – ‘horizontal morphing’


•  Other template morphing strategies exist that are less "
prone to unintended side effects


•  A ‘horizontal morphing’ strategy was invented by Alex Read. 

–  Interpolates the cumulative distribution function instead of the distribution

–  Especially suitable for shifting distributions

–  Here shown on a continuous distribution, but also works on histograms

–  Drawback: computationally expensive, algorithm only worked out for 1 NP
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Integrate


Integrate


Interpolate

Differentiate




Yet another morphing strategy – ‘Moment morphing’


•  Given two template model f-(x) and f+(x) the strategy of moment 
morphing considers first two moment of template models"
(mean and variance)"
"
"
"
 


•  The goal of moment morphing is to construct an interpolated function 
that has linearly interpolated moments





•  It constructs this morphed function as combination of linearly 
transformed input models


–  Where constants a,b,c,d are chosen such so that f(x,α) satisfies conditions [1]
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f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)

µ− = x ⋅ f−(x)∫ dx

V− = (x −µ− )
2 ⋅ f−(x)∫ dx

µ+ = x ⋅ f+(x)∫ dx

V+ = (x −µ+ )
2 ⋅ f+(x)∫ dx

µ(α) =αµ− + (1−α)µ+

V (α) =αV− + (1−α)V+
[1]


M. Baak & S. Gadatsch




Yet another morphing strategy – ‘Moment morphing’


•  For a Gaussian probability model with linearly "
changing mean and width, moment morphing "
of two Gaussian templates is the exact solution


•  But also works well on ‘difficult’ distributions


•  Good computational performance

–  Calculation of moments of templates is expensive,"

but just needs to be done once, otherwise very fast (just linear algebra)"



•   Multi-dimensional interpolation strategies exist 
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f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)



There are other morphing algorithms to choose from


Wouter Verkerke, NIKHEF, 114


Vertical"
Morphing


Horizontal"
Morphing


Moment"
Morphing


Gaussian"
varying"
width


Gaussian"
varying"
mean


Gaussian

to"

Uniform"
(this is"

conceptually ambigous!)


n-dimensional"
morphing?
 ✔ ✗ ✔ 
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Software tools 1 
Basic RooFit modeling   



RooFit – Focus: coding likelihood functions


•  Focus on one practical aspect of many data analysis in HEP: How 
do you formulate your likelihood functions in ROOT 


–  For ‘simple’ problems (gauss, polynomial) this is easy"
"



–  But if you want to do unbinned ML fits, use non-trivial functions, or work with 
multidimensional functions you quickly find that you need some tools to help 
you


1 



RooFit core design philosophy


•  Mathematical objects are represented as C++ objects




variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 

)(xf

x

x!

dxxf
x

x
∫
max

min

)(

)(xf
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RooFit core design philosophy - Workspace


•  Instead of ‘double Likelihood(double paramVec[])’, "
a flexible modular structure of ‘programmed’ functions


Gauss(x,µ,σ) 

RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 

Math 

RooFit 
diagram 

RooFit 
code 
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Basics – Creating and plotting a Gaussian p.d.f 


// Create an empty plot frame 
RooPlot* xframe = w::x.frame() ; 
 
// Plot model on frame 
model.plotOn(xframe) ; 
 
// Draw frame on canvas 
xframe->Draw() ;  
 

Plot range taken from limits of x 

Axis label from gauss title 

Unit  
normalization 

Setup gaussian PDF and plot 

A RooPlot is an empty frame 
capable of holding anything 
plotted versus it variable 
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Basics – Generating toy MC events


// Generate an unbinned toy MC set 
RooDataSet* data = w::gauss.generate(w::x,10000) ;   
 
// Generate an binned toy MC set 
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;   
 
// Plot PDF 
RooPlot* xframe = w::x.frame() ; 
data->plotOn(xframe) ; 
xframe->Draw() ; 

Generate 10000 events from Gaussian p.d.f and show distribution 

Can generate both binned and"
unbinned datasets
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Basics – ML fit of p.d.f to unbinned data


// ML fit of gauss to data 
w::gauss.fitTo(*data) ; 
(MINUIT printout omitted) 
 
// Parameters if gauss now 
// reflect fitted values 
w::mean.Print() 
RooRealVar::mean = 0.0172335 +/- 0.0299542  
w::sigma.Print() 
RooRealVar::sigma = 2.98094  +/- 0.0217306 
 
// Plot fitted PDF and toy data overlaid 
RooPlot* xframe = w::x.frame() ; 
data->plotOn(xframe) ; 
w::gauss.plotOn(xframe) ; 

PDF 
automatically 
normalized 
to dataset 
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RooFit core design philosophy - Workspace


•  The workspace serves a container class for all"
objects created


RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 
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RooWorkspace


Gauss(x,µ,σ) 



The workspace


•  The workspace concept has revolutionized the way people share and 
combine analysis


–  Completely factorizes process of building and using likelihood functions

–  You can give somebody an analytical likelihood of a (potentially very complex) 

physics analysis in a way to the easy-to-use, provides introspection, and is easy to 
modify.
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RooWorkspace 

RooWorkspace w(“w”) ; 
w.import(sum) ; 
w.writeToFile(“model.root”) ; 

model.root 



Using a workspace 
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Wouter Verkerke, NIKHEF  

RooWorkspace 

// Resurrect model and data 
TFile f(“model.root”) ; 
RooWorkspace* w = f.Get(“w”) ; 
RooAbsPdf* model = w->pdf(“sum”) ; 
RooAbsData* data = w->data(“xxx”) ; 
 
// Use model and data 
model->fitTo(*data) ; 
 
RooPlot* frame =  
         w->var(“dt”)->frame() ; 
data->plotOn(frame) ; 
model->plotOn(frame) ; 



Factory and Workspace


•  One C++ object per math symbol provides "
ultimate level of control over each objects functionality, but results 
in lengthy user code for even simple macros


•  Solution: add factory that auto-generates objects from a math-like 
language. Accessed through factory() method of workspace


•  Example: reduce construction of Gaussian pdf and its parameters 
from 4 to 1 line of code


w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ; 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar mean(“mean”,”mean”,5) ; 
RooRealVar sigma(“sigma”,”sigma”,3)  ; 
RooGaussian f(“f”,”f”,x,mean,sigma) ; 
w.import(f) ; 
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RooFit core design philosophy - Workspace


•  The workspace serves a container class for all"
objects created


RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 

RooWorkspace


Gauss(x,µ,σ) 



Populating a workspace the easy way – “the factory”


•  The factory allows to fill a workspace with pdfs and variables using 
a simplified scripting language


RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 
w.factory(“RooGaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace


Gauss(x,µ,σ) 



Model building – (Re)using standard components


•  RooFit provides a collection of compiled standard PDF classes


RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 
Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,…. 

Non-parametric 
Histogram, KEYS 

Easy to extend the library: each p.d.f. is a separate C++ class 
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Model building – (Re)using standard components


•  List of most frequently used pdfs and their factory spec"



Gaussian 
 
     Gaussian::g(x,mean,sigma) 

Breit-Wigner 
           BreitWigner::bw(x,mean,gamma) 

Landau 
 
         Landau::l(x,mean,sigma) 

Exponential 
             Exponental::e(x,alpha) 

Polynomial 
 
 Polynomial::p(x,{a0,a1,a2}) 

Chebychev 
 
   Chebychev::p(x,{a0,a1,a2}) 

Kernel Estimation              KeysPdf::k(x,dataSet) 

Poisson 
 
      Poisson::p(x,mu) 

Voigtian 
 
    Voigtian::v(x,mean,gamma,sigma) 
(=BW⊗G)
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The power of pdf as building blocks – Advanced algorithms


•  Example: a ‘kernel estimation probability model’

–  Construct smooth pdf from unbinned data, using kernel estimation technique


•  Example


•  Also available for n-D data


Sample of events 
Gaussian pdf  

for each event 
Summed pdf 
for all events 

Adaptive Kernel: 
width of Gaussian depends  
on local event density 

 
   w.import(myData,Rename(“myData”)) ; 
   w.factory(“KeysPdf::k(x,myData)”) ; 
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The power of pdf as building blocks – adaptability


•  RooFit pdf classes do not require their parameter arguments to be 
variables, one can plug in functions as well


•  Allows trivial customization, extension of probability models





 
  // Original Gaussian 
  w.factory(“Gaussian::g1(x[80,100],m[91,80,100],s[1])”) 
 
 
  // Gaussian with response model in mean 
  w.factory(“expr::m_response(“m*(1+2alpha)”,m,alpha[-5,5])”) ;   
  w.factory(“Gaussian::g1(x,m_response,s[1])”) 
 

Gauss(x |µ,σ ) Gauss(x |µ ⋅ (1+ 2α),σ )
class RooGaussian
 also class RooGaussian!


Introduce a response function for a systematic uncertainty


NB: “expr” operates builds an intepreted function expression on the fly




The power of building blocks – operator expressions


•  Create a SUM expression to represent a sum of probability models


•  In composite model visualization"
components can be accessed by name 


 
  w.factory(“Gaussian::gauss1(x[0,10],mean1[2],sigma[1]”) ; 
  w.factory(“Gaussian::gauss2(x,mean2[3],sigma)”) ; 
  w.factory(“ArgusBG::argus(x,k[-1],9.0)”) ; 
 
  w.factory(“SUM::sum(g1frac[0.5]*gauss1, g2frac[0.1]*gauss2, argus)”) 
 

25 

   
  // Plot only argus components 
  w::sum.plotOn(frame,Components(“argus”), 
                LineStyle(kDashed)) ; 
 



Powerful operators – Morphing interpolation

•  Special operator pdfs can interpolate existing pdf shapes


–  Ex: interpolation between Gaussian and Polynomial"
"
"
"
"
"
"
"





•  Three morphing operator classes available


–  IntegralMorph (Alex Read). 

–  MomentMorph (Max Baak).

–  PiecewiseInterpolation (via HistFactory)"




w.factory(“Gaussian::g(x[-20,20],-10,2)”) ; 
w.factory(“Polynomial::p(x,{-0.03,-0.001})”) ; 
w.factory(“IntegralMorph::gp(g,p,x,alpha[0,1])”) ; 

Fit to data


α = 0.812 ± 0.008
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Powerful operators – Fourier convolution


•  Convolve any two arbitrary pdfs with a 1-line expression


•  Exploits power of FFTW"
package available via ROOT


–  Hand-tuned assembler code"
for time-critical parts


–  Amazingly fast: unbinned ML fit to "
10.000 events take ~5 seconds!


 
  w.factory(“Landau::L(x[-10,30],5,1)”) : 
  w.factory(“Gaussian::G(x,0,2)”) ; 
 
  w::x.setBins(“cache”,10000) ; // FFT sampling density 
  w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution 
 

30 



Working with the likelihood function


•  Plot the likelihood function"
versus a parameter"





•  Maximum Likelihood estimation of parameters and variance


RooAbsReal* nll = w::model.createNLL(data) ; 
 
RooPlot* frame = w::param.frame() ; 
nll->plotOn(frame,ShiftToZero()) ; 

 
RooMinimizer m(*nll) ; 
 
// ML Parameter estimation 
m.minimize(“Minuit2”,”migrad”) ; 
 
// Variance estimation 
m.hesse() ; 
 
// Alternatively – all this in one line 
pdf->fitTo(*data) ; 
 



Working with covariance and correlation matrices


•  Detailed information on parameter and covariance estimates can 
be saved for detailed information 
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RooMinimizer m(*nll) ; 
m.minimize(“Minuit2”,”migrad”) ; 
m.hesse() ; 
RooFitResult* r = m.save() ; 
 
// Visualize correlation matrix 
r->correlationHist->Draw(“colz”) ; 
 
// Extract correlation,covariance matrix 
TMatrixDSym cov = fr->covarianceMatrix() ; 
TMatrixDSym cov = fr->covarianceMatrix(a,b) ; 



Use covariance matrices for correlated error propagation


•  Can (as visual aid) propagate errors in covariance matrix of a fit 
result to a pdf projection"



–  Linear propagation on "
pdf projection


•  Propagated error can be "
calculated on arbitrary function


–  E.g fraction of events in signal range


 

  w::model.plotOn(frame,VisualizeError(*fitresult)) ; 
  w::model.plotOn(frame,VisualizeError(*fitresult,fsig)) ; 
 

EVE
!!

1−=Δ

RooAbsReal* fracSigRange = 
     w::model.createIntegral(x,x,”sig”) ; 
 
Double_t err =  
    fracSigRange.getPropagatedError(*fr); 
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Some RooFit practical examples – from start to end 


•  Signal + Background (analytical)
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RooWorkspace w("w") ; 
 
// Construct exponential background model                                                                                                                                                                                                                                          
w.factory("Exponential::bkg(x[10,100],alpha[-0.04,-0.1,-0])") ; 
 
// Construct Gaussian signal model                                                                                                                                                                                                                                                 
w.factory("Gaussian::sig(x,mean[40],width[3])") ; 
 
// Construct extended ML model of sum of signal and background                                                                                                                                                                                                                     
w.factory("SUM::modelsum(Nsig[100,0,200]*sig,Nbkg[1000,0,2000]*bkg)") ; 
 
// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count                                                                                                                                                                               
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ; 
 
// Fit model to toy data                                                                                                                                                                                                                                                           
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ; 
 
// Plot data                                                                                                                                                                                                                                                                       
RooPlot* frame = w.var("x")->frame() ; 
d->plotOn(frame) ; 
 
// Plot model (background component separately) and visualization of uncertainties from fit                                                                                                                                                                                        
w.pdf("modelsum")->plotOn(frame,VisualizeError(*r3)) ; 
w.pdf("modelsum")->plotOn(frame) ; 
w.pdf("modelsum")->plotOn(frame,Components("bkg"),LineStyle(kDashed)) ; 
w.pdf("modelsum")->paramOn(frame) ; 
frame->Draw() ; 
 



Some RooFit practical examples – from start to end 


•  Two-dimensional signal: f(x|y)*g(y)
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RooWorkspace w("w") ; 
   
// Construct g(x|fy,0.5) where the mean of the gaussian  
// is a polynomial fy=a0+a1*y 
w.factory(“PolyVar::fy(y[-5,5],{a0[-0.5,-5,5],a1[-0.5,-1,1]})”) ; 
w.factory("Gaussian::gx(x[-5,5],fy,sigmax[0.5])") ; 
 
// Construct g(y) 
w.factory("Gaussian::gy(y,0,3)") ; 
 
// Construct the conditional product g(x|y)*g(y) 
w.factory("PROD::model(gx|y,gy)") ; 
 
// Generate 1000 events in x and y from model 
RooDataSet *data = w.pdf("model")->generate(RooArgSet(*w.var("x"),*w.var("y")),10000) ; 
   
// Plot x distribution of data and projection of model on x = Int(dy) model(x,y) 
RooPlot* xframe = w.var("x")->frame() ; 
data->plotOn(xframe) ; 
w.pdf("model")->plotOn(xframe) ;  
     
// Make two-dimensional plot in x vs y 
TH1* hh_model = w.pdf("model")->createHistogram("hh_model",*w.var("x"),Binning(50), 
                                                YVar(*w.var("y"),Binning(50))) ; 
hh_model->SetLineColor(kBlue) ; 
   



Some RooFit practical examples – from start to end 


•  Signal + Background (templates)"
Method 1: Construct unit-normalized pdf from histograms"
Model parameters are absolute event counts"
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RooWorkspace w("w") ; 
   
// Import template histograms into workspace 
w.import(*h_bkg,Rename("histo_bkg")) ; 
w.import(*h_sig,Rename("histo_sig")) ; 
   
// Construct sum of histogram-shaped templates   
w.factory("SUM::modelsum(Nsig[100,0,200]*HistPdf::sig(x[10,100],histo_sig), 
                       Nbkg[1000,0,2000]*HistPdf::bkg(x,histo_bkg))") ; 
 
// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count 
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ; 
   
// Fit model to toy data 
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;     
 
// Plot data  
RooPlot* frame = w.var("x")->frame() ; 
d->plotOn(frame) ; 
 
// Plot model (background component separately) and visualization of uncertainties from fit 
w.pdf("modelsum")->plotOn(frame,VisualizeError(*r3)) ; 
w.pdf("modelsum")->plotOn(frame) ; 
w.pdf("modelsum")->plotOn(frame,Components("bkg"),LineStyle(kDashed)) ; 
w.pdf("modelsum")->paramOn(frame) ; 
 
frame->Draw() ; 



Some RooFit practical examples – from start to end 


•  Signal + Background (templates)"
Method 2: Construct event-count scaled pdf from histograms"
Model parameters are scale factors relative histogram counts 
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RooWorkspace w("w") ; 
   
// Import template histograms into workspace 
w.import(*h_bkg,Rename("histo_bkg")) ; 
w.import(*h_sig,Rename("histo_sig")) ; 
   
// Construct sum of histogram-shaped templates   
w.factory("ASUM::modelsum(kappa_sig[0.01,-0.1,1]*HistFunc::sig(x[10,100],histo_sig), 
                           kappa_bkg[0.1,-0.1,1]*HistFunc::bkg(x,histo_bkg))") ; 
 
// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count 
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ; 
   
// Fit model to toy data 
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;     
 
// Plot data  
RooPlot* frame = w.var("x")->frame() ; 
d->plotOn(frame) ; 
 
// Plot model (background component separately) and visualization of uncertainties from fit 
w.pdf("modelsum")->plotOn(frame,VisualizeError(*r3)) ; 
w.pdf("modelsum")->plotOn(frame) ; 
w.pdf("modelsum")->plotOn(frame,Components("bkg"),LineStyle(kDashed)) ; 
w.pdf("modelsum")->paramOn(frame) ; 
 
frame->Draw() ; 



Some RooFit practical examples – from start to end 


•  Signal + Background (templates)"
With morphing shape parameter"
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RooWorkspace w("w") ; 
   
// Import template histograms into workspace 
w.import(*h_bkg,Rename("histo_bkg")) ; 
w.import(*h_sig_lo,Rename("histo_sig_lo")) ; 
w.import(*h_sig_nom,Rename("histo_sig_nom")) ; 
w.import(*h_sig_hi,Rename("histo_sig_hi")) ; 
   
w.factory("PiecewiseInterpolation::sig_morph(HistFunc::sig_nom(x,histo_sig_nom), 
                                             HistFunc::sig_lo(x,histo_sig_lo), 
                                             HistFunc::sig_hi(x,histo_sig_hi),alpha[-5,5])") ; 
 
// Construct sum of histogram-shaped templates   
w.factory("ASUM::modelsum(kappa_sig[0.01,-0.1,1]*sig_morph, 
                           kappa_bkg[0.1,-0.1,1]*HistFunc::bkg(x,histo_bkg))") ; 
   
// Generate a toy dataset (unbinned) from model, data sample size obtained from expected event count 
RooDataSet* d = w.pdf("modelsum")->generate(*w.var("x")) ; 
   
// Fit model to toy data 
RooFitResult* r3 = w.pdf("modelsum")->fitTo(*d,Save()) ;     
 
// Plot data  
RooPlot* frame = w.var("x")->frame() ; 
d->plotOn(frame) ; 
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Statistical 
methods 3 "

Inference with parameters: 
maximum likelihood, confidence 

intervals, upper limits, likelihood ratio 
and asymptotic formulae


 




Roadmap of this course


•  Start with basics, gradually build up to complexity


Counting models


Statistical tests with counting experiments


Signal parameterization strategies 


Inference with nuisance parameters


Modeling distributions


Test statistics for models describing distributions


Parameter estimation, confidence intervals & limits


Models with nuisance parameters, joint models,"
modeling systematic uncertainties


Diagnosing inference on complex models


Advanced signal modeling techniques 


Model building
 Statistical methods




Parameter estimation using Maximum Likelihood


•  Likelihood is high for values of p that result in distribution similar to 
data"
"
"
"



•  Define the maximum likelihood (ML) estimator to be the procedure 
that finds the parameter value for which the likelihood is maximal.
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Parameter estimation – Maximum likelihood


•  Practical estimation of maximum likelihood performed "
by minimizing the negative log-Likelihood"
"
"
"
"
"



–  Advantage of log-Likelihood is that contributions from events can be summed, 
rather than multiplied (computationally easier)


•  In practice, find point where derivative of –logL is zero


•  Standard notation for ML estimation of p is p "



L( !p) = f (!xi;
!p)

i
∏

− lnL( !p) = − lnF(!xi;
!p)

i
∑

0)(ln

ˆ

=
= ii pppd

pLd
!
!

^ 



Example of Maximum Likelihood estimation 


•  Illustration of ML estimate on Poisson counting model"



•  Note that Poisson model is discrete in N, but continuous in s!
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-log L(N|s) versus s   [N=7]


s=2


s=0


s=5

s=10


s=15


L(N | s) = Poisson(N | s+ !b)

-log L(N|s) versus N   [s=0,5,10,15]


^




Properties of Maximum Likelihood estimators


•  In general, Maximum Likelihood estimators are"



–  Consistent                (gives right answer for Nà∞)"



–  Mostly unbiased       (bias ∝1/N, may need to worry at small N)"



–  Efficient for large N  (you get the smallest possible error)"



–  Invariant:                 (a transformation of parameters "
                                  will Not change your answer, e.g                        "
   "
"
                "



•  MLE efficiency theorem: the MLE will be unbiased and efficient if 
an unbiased efficient estimator exists


–  Proof not discussed here

–  Of course this does not guarantee that any MLE is unbiased and efficient for 

any given problem


( ) ( )22ˆ pp =
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Relation between Likelihood and χ2 estimators


•  Properties of χ2 estimator follow from properties of ML estimator 
using Gaussian probability density functions"


"

"



•  The χ2 estimator follows from ML estimator, i.e it is

–  Efficient, consistent, bias 1/N, invariant,

–  But only in the limit that the error on xi is truly Gaussian


F(xi, yi,σ i;
!p) = exp − yi − f (xi;

!p)
σ i

"

#
$

%

&
'

2(

)
*
*

+

,
-
-i

∏

− lnL( !p) = 1
2

yi − f (xi;
!p)

σ i

"

#
$

%

&
'

i
∑ = 1

2 χ
2

Take log, 
Sum over all points (xi ,yi ,σi) 

The Likelihood function in p"
for given points xi(si)"
and function f(xi;p)


Gaussian Probability Density Function"
in p for single measurement y±σ "
from a predictive function f(x|p)




Estimating parameter variance


•  Note that ‘uncertainty’ on a parameter estimate is an ambiguous 
statement


•  Can either mean an interval with a stated confidence or credible, 
level (e.g. 68%), or simply assume it is the square-root of the 
variance of a distribution
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Mean= "
<x>


Variance = "
<x2>-<x>2


For a Gaussian distribution"
mean and variance"
map to parameters"
for mean and sigma2"

 
and interval defined by "
√V contains 68%"
of the distribution"
(=‘1 sigma’ by definition)"
"
Thus for Gaussian distributions"
all common definitions of"
‘error’ work out to the same"
numeric value




Estimating parameter variance


•  Note that ‘error’ or ‘uncertainty’ on a parameter estimate is an 
ambiguous statement


•  Can either mean an interval with a stated confidence or credible, 
level (e.g. 68%), or simply assume it is the square-root of the 
variance of a distribution
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Mean= "
<x>


Variance = "
<x2>-<x>2


For other distributions"
intervals by √V do"
not necessarily contain"
68% of the distribution 




Estimating variance on parameters


•  Variance on of parameter can also be estimated from Likelihood 
using the variance estimator"
"
"
"



•  Valid if estimator is efficient and unbiased!"



•  Illustration of Likelihood Variance estimate on a Gaussian distribution
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From Rao-Cramer-Frechet"
inequality


b = bias as function of p,"
inequality becomes equality"
in limit of efficient estimator
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Bayesian parameter estimation


•  Bayesian parameter estimate is the posterior mean

•  Bayesian variance is the posterior variance 
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Mean= "
<x>


Variance = "
<x2>-<x>2


V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ



What can we do with composite hypothesis


•  With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)


•  With composite hypotheses – many more options

•  1 Parameter estimation and variance estimation


–  What is value of s for which the observed data is most probable?

–  What is the variance (std deviation squared) in the estimate of s?


•  2 Confidence intervals

–  Statements about model parameters using frequentist concept of probability

–  s<12.7 at 95% confidence level

–  4.5 < s < 6.8 at 68% confidence level


•  3 Bayesian credible intervals 

–  Bayesian statements about model parameters

–  s<12.7 at 95% credibility
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s=5.5 ± 1.3



