Dark Matter with KM3NeT

Camiel Pieterse Supervisor: Prof. dr. W.J.P. Beenakker Department of High Energy Physics

6-12-2018

Radboud Universiteit Nijmegen

Outline

Dark Matter

Simulation and Methods

Results

Conlusion and Outlook

Dark Matter

Gravitational Lensing

Galactic Rotation Curves

CMB

Dark Matter Detection

- Production: LHC
- Direct detection: XENON
- Indirect detection: IceCube

Dark Matter Annihilation

The number of dark matter particles depends on:

- Capture
- Annihilation
- Evaporation

$$\frac{dN(t)}{dt} = \Gamma_c - 2\Gamma_a - \Gamma_e$$

$$\Gamma_a = \frac{1}{2} \int d^3x \ n^2(\vec{x},t) \langle \sigma v \rangle$$

$$\Gamma_a = \frac{1}{2} \int d^3x \ n^2(\vec{x},t) \langle \sigma v \rangle$$

$$N(t) = \int d^3x \ n(\vec{x}, t)$$

$$\Gamma_a = \frac{1}{2} \int d^3x \ n^2(\vec{x},t) \langle \sigma v \rangle$$

$$N(t)=\int d^3x \ n(\vec{x},t)$$

$$n(r,t) = n_0(t) \exp\left(-\frac{M_{DM} \phi(r)}{T_{\odot}}\right)$$

$$\Gamma_a = rac{1}{2}\int d^3x \; n^2(ec{x},t)\langle\sigma v
angle$$

$$N(t)=\int d^3x \ n(\vec{x},t)$$

$$n(r,t) = n_0(t) \exp\left(-\frac{M_{DM} \phi(r)}{T_{\odot}}\right)$$

$$M_{DM}\phi(r) = \int_0^r dr' \frac{GM_{DM}M(r')}{r'^2}$$

Assume ρ_{\odot} is constant near the core of the sun

$$n(r,t) = n_0(t) \exp\left(-\frac{r^2}{r_{DM}^2}\right)$$

Assume ρ_{\odot} is constant near the core of the sun

$$n(r,t) = n_0(t) \exp\left(-\frac{r^2}{r_{DM}^2}\right)$$
$$r_{DM} = \left(\frac{3T_{\odot}}{2\pi G\rho_{\odot}M_{DM}}\right)^{1/2} \approx 0.01R_{\odot}\sqrt{\frac{100\text{GeV}}{M_{DM}}}$$

Assume ρ_{\odot} is constant near the core of the sun

$$n(r,t) = n_0(t) \exp\left(-\frac{r^2}{r_{DM}^2}\right)$$
$$r_{DM} = \left(\frac{3T_{\odot}}{2\pi G\rho_{\odot}M_{DM}}\right)^{1/2} \approx 0.01R_{\odot}\sqrt{\frac{100\text{GeV}}{M_{DM}}}$$

Find Γ_a :

$$\Gamma_{a} = \frac{1}{2} \int d^{3}x \ n^{2}(\vec{x},t) \langle \sigma v \rangle = \frac{1}{2} C_{a} N(t)^{2}$$

Assume ρ_{\odot} is constant near the core of the sun

$$n(r,t) = n_0(t) \exp\left(-\frac{r^2}{r_{DM}^2}\right)$$
$$r_{DM} = \left(\frac{3T_{\odot}}{2\pi G\rho_{\odot}M_{DM}}\right)^{1/2} \approx 0.01R_{\odot}\sqrt{\frac{100\text{GeV}}{M_{DM}}}$$

Find Γ_a :

$$\Gamma_{a} = \frac{1}{2} \int d^{3}x \ n^{2}(\vec{x}, t) \langle \sigma v \rangle = \frac{1}{2} C_{a} N(t)^{2}$$
$$C_{a} = \langle \sigma v \rangle \left(\frac{GM_{DM}\rho_{\odot}}{3T_{\odot}} \right)^{3/2}$$

Write the differential equation as a function of N:

$$\frac{dN}{dt} = C_c - C_a N^2 \Rightarrow N(t) = \sqrt{\frac{C_c}{C_a}} tanh(\sqrt{C_c C_a} t)$$

Write the differential equation as a function of N:

$$\frac{dN}{dt} = C_c - C_a N^2 \Rightarrow N(t) = \sqrt{\frac{C_c}{C_a}} tanh(\sqrt{C_c C_a}t)$$
$$\tau_{EQ} = \frac{1}{\sqrt{C_c C_a}}$$

Write the differential equation as a function of N:

$$\frac{dN}{dt} = C_c - C_a N^2 \Rightarrow N(t) = \sqrt{\frac{C_c}{C_a}} tanh(\sqrt{C_c C_a}t)$$
$$\tau_{EQ} = \frac{1}{\sqrt{C_c C_a}}$$

When $t \gg \tau_{EQ} \quad \Rightarrow \quad N = \sqrt{\frac{C_c}{C_a}}$

$$\Gamma_a = \frac{1}{2}C_a N^2 = \frac{1}{2}C_c$$

Cherenkov Detection

Cherenkov Detection

Dark Matter Models

Supersymmetry:

- Neutralino as dark matter candidate
- DarkSUSY to calculate neutrino flux

Simulation consists of four steps:

- Event generation
- GEANT4 detector simulation
- ► Trigger Efficiency
- ▶ Track reconstruction

Energy Distribution

 $m_{\chi}=85~{
m GeV}$ and annihilates through the WW-channel

- ▶ MC signal: events before simulation
- ▶ Signal: events after simulation

Energy Distribution

 $m_{\chi} = 175$ GeV and annihilates through $t\bar{t}$ -channel

Energy Reconstruction

 $m_{\chi}=$ 46 GeV, 89.7% between -10 and 10 GeV

Energy Reconstruction

 $m_{\chi}=85$ GeV, 27.1% between -10 and 10 GeV

Poor energy resolution

Angular Reconstruction

 $m_{\chi} = 46$ GeV, 51.1% smaller than 0.1 radians

Angular Reconstruction

 $m_{\chi}=$ 85 GeV, 76.3% smaller than 0.1 radians

Search Cone

- Measure a night
- Assume all signal events come from same direction
- ► Assume background event rate equal in all directions: $n(\alpha) = N_{bg}\Omega(\alpha)/4\pi$

All events with $\theta \leq \alpha$ are included

Angular distribution of different models

Distribution moves left with higher dark matter mass

Significance

Maximum of significance determines optimal angle

Smallest Detectable Event rate

Example of the smallest detectable flux with a significance of 2

Detector Area

Area perpendicular to the sun: $A\cos\beta$ $\varphi-\epsilon\leq\beta\leq\varphi+\epsilon$

Detector Area

The cross-section limit can be calculated using: $\sigma = \kappa(m_{\chi}) \frac{F(m_{\chi})}{A_{eff}}$

- \blacktriangleright κ : conversion factor
- ► F: smallest detectable event rate
- ► A_{eff}: detector area

Cross-section Limits

Spin-dependent cross-section

Limits for all Models

Low angular resolution for model with small dark matter mass

Comparison with IceCube

Detector Modifications

Two additions:

- Ring: Improve energy resolution
- ► Core: Copy IceCube

Detector Comparison

Detector Modifications

The detector is duplicated several times:

Other modifications:

- ARCA detector layout
- Stretching the ORCA detector

Detector Comparison

Conclusion and Outlook

- Energy resolution is problematic
- ▶ Good angular resolution to filter background and signal
- Cross-section limits comparable to IceCube
- ▶ Core and Ring modifications too similar to original detector
- Extra detectors improved limits less than expected

Conclusion and Outlook

- More dark matter models required
- Simulate orientation of detector
- More different designs

Dark matter detection may be viable in the future with the ORCA detector

Thank you for your attention