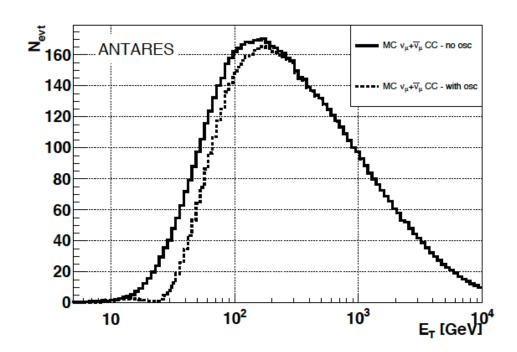
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data

Abstract

The ANTARES neutrino telescope has been optimised to study high energy neutrinos coming from Galactic and extra-galactic astrophysical objects. Additionally, at neutrino energies of the order of a few tens of GeV, the detector allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of a sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of Δm_{32}^2 and θ_{23} has been performed - which is consistent with world best-fit values - and constraints on the 3+1 neutrino model have been derived.

$$P_{\nu_{\mu} \to \nu_{\mu}} \sim 1 - 4|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) \sin^2(\frac{\Delta m_{32}^2 L}{4E})$$


$$U_{\mu 3} = \sin \theta_{23} \cos \theta_{13}$$

$$\Delta m_{32}^2 = m_3^2 - m_2^2$$

If only 2 generations:
$$P = \sin 2\theta \sin(1.27 \Delta m^2 \frac{L}{E})^2$$

(eV, km, GeV)

So for L = 12000 km and Δm^2 = 2.5 x 10⁻³ eV²: max oscillation at E = 25 GeV

Antares paper: look only at muon neutrino disappearance. (Why no showers?)

Neutrino generator: GENHEN Muon generator: MUPAGE

Sensitivity only for E > 20 GeV

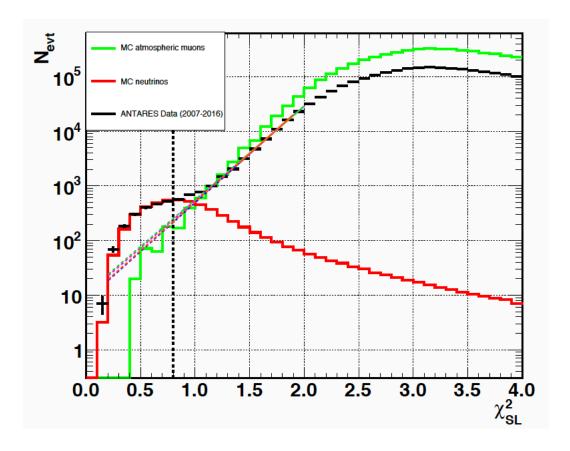
Two neutrino reconstruction methods:

A: χ^2 fit. Events either single-line (SL) or multi-line (ML)

B: chain of fits with a final likelihood fit

Event selection: from method A passing cut, else from method B passing cut

Determine track length L $_{\mu}$, then: $E_{reco} = L_{\mu} imes 0.2 \, {
m GeV/m}$

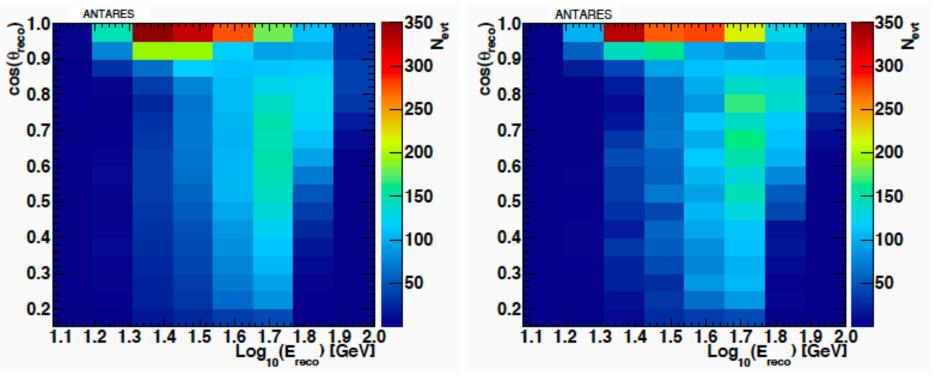

Q: What about tracks that start/end outside Antares? Would it not be better to restrict to contained events?

Is there a difference in resolution (angle/track length) between methods A and B?

How many events are selected by A, and how many by B? How many events are SL, and how many ML?

What is the energy resolution anyway?

Atmospheric muon background is estimated from data:


Using sample A SL only (?)

Extrapolating to A (SL+ML) + B: N_{μ} = 740 ± 120

(How big an extrapolation is this?)

From MC: expect 7590 CC neutrino events if no oscillations (+bg: 8330) 6870 CC neutrino events with oscillations (+bg: 7610)

Data: 7710

(It is really hard to interpret this plot, in my opinion)

MC, no oscillations

Data

Oscillation parameters are extracted from a fit to the above 2D distribution:

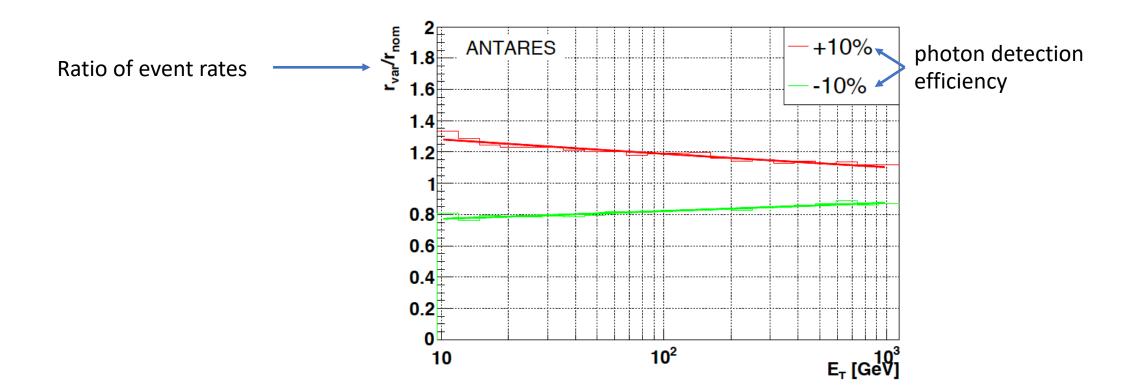
$$-2\log L = 2\sum_{i,j} [N_{i,j}^{MC}(\bar{p},\bar{\eta}) - N_{i,j}^{Data} \cdot \log N_{i,j}^{MC}(\bar{p},\bar{\eta})] + \sum_{k} \frac{(\eta_k - \langle \eta_k \rangle)^2}{\sigma_{\eta_k}^2}$$

p are the oscillation parameters, η the systematic uncertainties (with a prior)

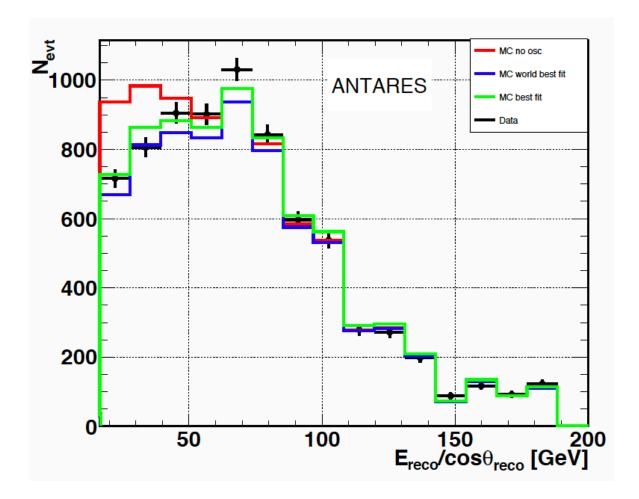
Standard oscillation analysis:

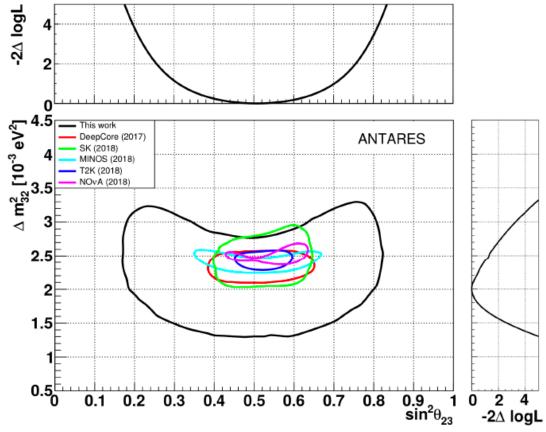
Name	Prior	Fit	_	
$\Delta m_{32}^2 \ [10^{-3} \text{eV}^2]$	FREE	2.0 ± 0.3	-	
$ heta_{23} \ [^\circ]$	\mathbf{FREE}	45 ± 12		
$N_{ u}$	\mathbf{FREE}	0.82 ± 0.09		
$ u/\overline{ u}\ [\sigma]$	$0.0 {\pm} 1.0$	1.1 ± 0.6		
$\Delta\gamma$	$0.0 \pm\ 0.05$	-0.003 ± 0.036		6 sources of
N_{μ}	740 ± 120	415 ± 22		systematics
$ heta_{13}$ [°]	$8.41 \pm\ 0.28$	$8.41 \pm\ 0.28$		
M_A $[\sigma]$	$0.0{\pm}1.0$	0.01 ± 0.98		

Detector uncertainties (photon detection, water absorption) are included in N_{ν} and $\Delta\gamma$


2nd parameter contains both neutrino/antineutrino ratio and upwards/horizontal ratio uncertainties

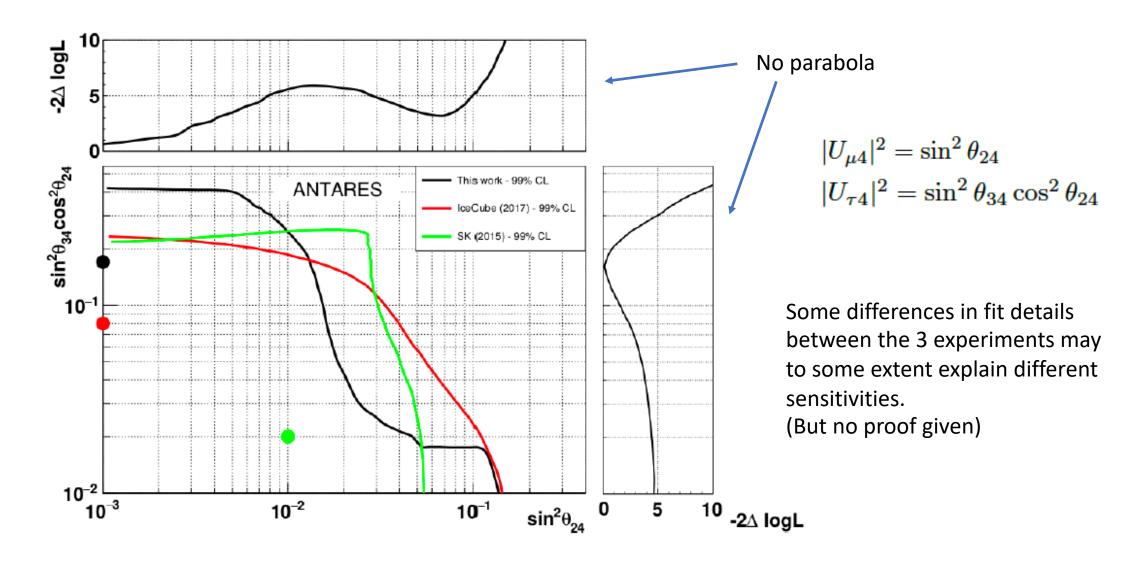
 N_{ν} 20% lower than in prior, 1.1 sigma pull in neutrino/antineutrino ratio, N_{μ} 2.7 sigma lower than in prior


IceCube DeepCore:

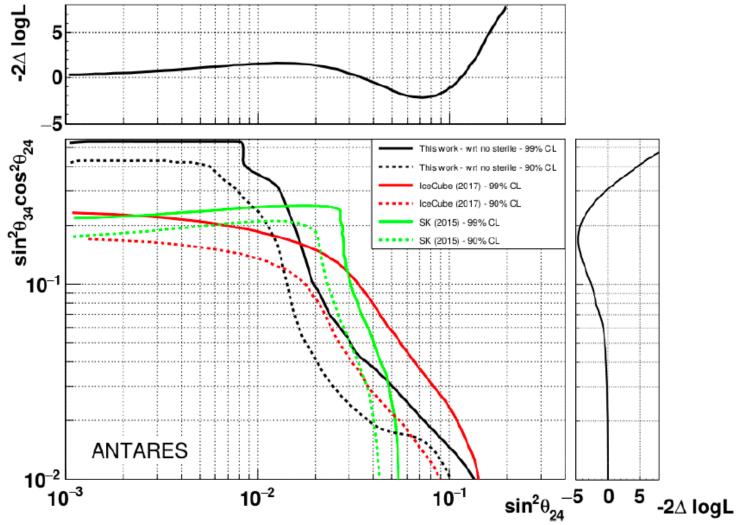

TABLE I. Table of nuisance parameters along with their associated priors, if applicable. The right two columns show the results from our best fit for normal mass ordering and inverted mass ordering, respectively.

		D	T3"			
Parameters	Priors	Best Fit				
1 arameters	1 11018	NO	IO			
Flux and cross section parameters						
Neutrino event rate [% of nominal]	no prior	85	85			
$\Delta \gamma$ (spectral index)	0.00 ± 0.10	-0.02	-0.02			
M_A (resonance) [GeV]	1.12 ± 0.22	0.92	0.93			
$\nu_e + \bar{\nu}_e$ relative normalization [%]	100 ± 20	125	125			
NC relative normalization [%]	100 ± 20	106	106			
Hadronic flux, energy dependent $[\sigma]$	0.00 ± 1.00	-0.56	-0.59			
Hadronic flux, zenith dependent $[\sigma]$	0.00 ± 1.00	-0.55	-0.57			
Detector parameters						
overall optical eff. [%]	100±10	102	102			
relative optical eff., lateral $[\sigma]$	0.0 ± 1.0	0.2	0.2			
relative optical eff., head-on [a.u.]	no prior	-0.72	-0.66			
Background						
Atm. μ contamination [% of sample]	no prior	5.5	5.6			

$$f_{\gamma}(E) = A_{\gamma} \cdot E_{T}^{B_{\gamma}}$$
 A $_{\gamma}$ is incorporated in N $_{v}$, B $_{\gamma}$ in $\Delta \gamma$



Sterile neutrinos:


3+1 neutrino model: one new mass splitting Δm_{41}^2 , three new mixing angles, two new phases

From LSND/MiniBoone/reactor expts: expect Δm^2_{41} of order 1 eV² But large Δm^2 imply fast oscillations, everything smears out. Therefore fix it. θ_{14} and δ_{14} fixed at zero, since mostly affect v_e

Name	Prior	\mathbf{Fit}	-	
$ heta_{24} \ [^{\circ}]$	FREE	0.9 ± 1.8	-	
$ heta_{34} [^{\circ}]$	\mathbf{FREE}	$24 \pm 4 \ (*)$		Yuck
$N_{ u}$	\mathbf{FREE}	0.81 ± 0.09		
$ u/\overline{ u}\left[\sigma ight]$	$0.0 {\pm} 1.0$	1.1 ± 0.6		
$\Delta\gamma$	0.00 ± 0.05	-0.001 ± 0.035		
$\Delta m^2_{32} \left[10^{-3} \mathrm{eV^2} \right]$	$2.46{\pm}0.14$	2.49 ± 0.13		Not free anymore
$ heta_{23} [^\circ]$	\mathbf{FREE}	49 ± 7		
$\delta_{24} [^{\circ}]$	\mathbf{FREE}	0 ± 120		
$ heta_{13} [^{\circ}]$	$8.41{\pm}0.28$	8.41 ± 0.28		
$M_A [\sigma]$	$0.0{\pm}1.0$	0.1 ± 1.0	-	

99% CL? Quote asymmetric error for θ_{34} ?

Why is Antares competitive in sterile neutrino limits, but not in standard oscillation?

Better explain difference between figure 8 and figure 7?