Neutrino Source Searches with Likelihood Landscapes

Neutrino Source Searches

- Hypothesis H0: background only flux
 - Atmospheric neutrino's
 - (Misreconstructed) Atmospheric Muons
- Hypothesis H1: background + signal flux
 (High energy) Cosmic Neutrinos

General Procedure

• How compatible is data with H0 or H1?

$$\lambda = \log \left[rac{P(ext{data}|H_1)}{P(ext{data}|H_0)}
ight]$$

- When to claim an observation?
 - Accept H1 if $\lambda > \lambda_c$
 - $-\lambda_c$ such that

P(accept H1 | H0 = true) < 0.00...1

$\lambda = \log \left[\frac{P(\text{data}|H_1)}{P(\text{data}|H_0)} \right]$ Test Statistic (Conventional)

Given detected (and selected) events {ev_i}

$$P(data|H) = \sum_{i} \left[\log \int P(x_{reco,i} | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

Reconstruction Detection Expected flux efficiency

Test Statistic

Given detected (and selected) events {ev_i}

$$P(data|H) = \sum_{i} \left[\log \int P(x_{reco,i} | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

Reconstruction Detection Expected flux efficiency

• New method:

$$P(data|H) = \sum_{i} \left[\log \left[P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H) \right]$$

• No big deal?

New vs. Conventional

Conventional

- Only best solution kept from reconstruction
- Selection criteria needed to select well-reconstructed events -> events are lost
- Different reconstruction algorithms (showers/tracks/tau double bang) patched together
- Event identification by BDT's and other black magic algorithms
- Parameterizations of MC events
- Fast

New Method

- Detailed knowledge of event likelihood landscape
- All events can be used

- Single 'reconstruction' algorithm for all events
- Neutrino flavour identification automatically taken into account
- Event-by-event
- Probably slow

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$

 $P(ev_i | x_{true})$

Atmospheric Neutrinos

Current Parameterization

- KM3NeT Letter of Intent
- Based on Seatray
- Polynomial fit of Honda tables
 - Extrapolation to higher energy ranges
 - Outdated? Honda 2006 used.
 - Gaisser H3a knee correction
- Polynomial fit of Gauld tables 2015

– From PromptNuFlux, L. Rottoli

Both Extrapolated (2)

Both Extrapolated (2) T. Gaisser 2012 Conventional: Honda2006 + GaisserH3a with knee cor Prompt: Enberg + knee correction R.Gauld et al., CR with H3a model **`10**⁻³ Φ (GeV cm⁻² s⁻¹ s Honda flux Honda flux + vatm - Honda flux Ŷµ prompt flux R. Enberg et al - prompt flux R. Gauld et al. suggested by S. Sar vatm - tot flux during the STAC vatm - tot flux meeting ∾<mark>⊔10</mark>⁻¹0 With R.Gauld et al, in the Lol 10⁻¹¹ estimated the 10⁻¹² improvement **10**⁻¹³ 10⁻¹⁴ 10² 10⁶ 10³ 10⁷ E_v (GeV) 10⁵ 10⁴ 14

Both Extrapolated (2) T. Gaisser 2012 Conventional: Honda2006 + GaisserH3a with knee cor Prompt: Enberg + knee correction R.Gauld et al., CR with H3a model 10¹0 Honda flux ັທ 10-" Φ (GeV cm² s⁻¹ s * 01 c⁻³ * 01 c⁻³ 10⁻³ 10⁻³ Honda flux + vatm - Honda flux prompt flux R. Enberg et al Vu prompt flux R. Gauld et al. suggested by S. Sar vatm - tot flux during the STAC vatm - tot flux meeting പ്പ100^{†®} With R.Gauld et al, in the Lol 100+7 estimated the 10018 improvement 100¹³⁹ 10⁼¹⁴⁰ 105 10⁸ 10⁹ 10⁶ 10⁷ 10 E_v (GeV) 10² 104 15

Both Extrapolated (2)

NuMu + AnuMu (Honda 2006) + gaisser H3A NuE + AnuE (Honda 2006) + gaisser H3A Prompt flux (indep. of flavor), Gauld, includes H3A

Honda: Zenith Dependence

cos(Zenith)

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$

 $P(ev_i | x_{true})$

Earth Propagation

Transversed Matter Density

ANIS, Kowalski 2003 Figure from Colnard 2009

Neutrino Cross Sections

21

ANIS, Kowalski 2003 Figure from Colnard 2009

22

Neutrino Absorption

cos(zenith angle)

Neutrino NC Scattering (1)

Neutrino NC Scattering (2)

cos(zenith angle)

Neutrino NC Scattering (3)

- Change in direction: <≈ 0.6 degrees for Enu > 10³ GeV
- Change in Energy???

Effects on expected atm. Neutrino flux neglected 26

Neutrino Oscillations

KM3NeT

Bjorken-y: electron neutrino's

Bjorken-y: muonneutrino's

Gandhi, Quigg UHE Nu Interactions

Bjorken-y comparison

У

32

Gandhi, Quigg UHE Nu Interactions

Bjorken-y comparison

Fig. 6. Differential cross section for νN scattering for neutrino energies between 10^4 GeV and 10^{12} GeV.

Gandhi, Quigg UHE Nu Interactions

Light from hadronic showers

40

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

$P^{det}(x_{true})$ Probability to detect (=trigger) and select event 6-D Interpolation from tabulated values -> fast

 $P(ev_i | x_{true})$

Detection Efficiency (1)

Detection Efficiency (2)

What is Pdet?

- Probability that an event:
 - Causes hits in detector: Jsirene
 - Leads to a trigger: JTriggerEfficiency
 - Is selected (reject atm. Muons): ??
- Get Pdet(x_{true}) by running MC events

Statistical Fluctuations

47

Different Interpolation Techniques

Polynomial vs linear fit

3rd degree polynomial

Time Consumption

Scanning over 72000 Positions * 98 Directions * 1 Energy-bins = 7056000 points... Done in

624169.543 ms elapsed 623814.165 ms user 12.998 ms system 99%CPU

3rd degree polynomial interpolation of 7 million points in 10 minutes

```
Scanning over 72000 Positions * 98 Directions * 1 Energy-bins = 7056000 points... Done in
16068.632 ms elapsed
16057.558 ms user
4.999 ms system
99%CPU
```

Linear interpolation of 7 million points in 16 seconds

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$ Probability to detect (=trigger) and select event

 $P(ev_i | x_{true})$ Reconstruction, loop over PMTs. Phit * Ptime -> to do

Conclusions

New method seems promising

• Most ingredients in place

• 'Reconstruction' part to be done

Recap: Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $P(ev_i | x_{true})$

Reconstruction, loop over PMTs.

Detection Efficiency

- For each neutrino energy, bjorken-y, position, direction (6 parameters), DO:
- (Very fast) Monte Carlo generator:
 - Secondary particles
 - Photon propagation (JSirene)
 - Trigger

BONUS bij AH Willems

- Count fraction of trig. ev.
- Store in 6D interpolatable PDF table

Detection Efficiency @ 10² GeV

Detection Efficiency @ 10³ GeV

Detection Efficiency @ 10⁴ GeV

Detection Efficiency @ 10⁵ GeV

Detection Efficiency @ 10⁶ GeV

Detection Efficiency @ 10⁷ GeV

Detection Efficiency @ 10⁸ GeV

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$

Probability to detect (=trigger) and select event

 $P(ev_i | x_{true})$

Probability to obtain measured event ev_i **given** a certain neutrino hypothesis x_{true}

Event Probability D.F.

$$P(ev \mid x) = \prod_{hit PMTs} \left[P_i^{hit} \cdot P_i^{t \, 1st} \right] \cdot \prod_{non \, hit \, PMTs} \left[1 - P_i^{hit} \right]$$

$$P_i^{hit} = 1 - \exp\left(-\int_{-\infty}^{\infty} \hat{n}_i(t) \, dt\right)$$

Expected number of photons from 40K and shower/track on PMT i at time t

$$P_i^{t \, 1st} \cdot P_i^{hit} = \exp\left(-\int_{-\infty}^t \hat{n}_i(t) \, dt\right) \cdot (1 - \exp\left(-\hat{n}_i(t)\right))$$
P not hit before t
P hit at t

Hits in Theory Practice

• Presence of ⁴⁰K background hits

$$P_i^{t \, 1st} \cdot P_i^{hit} = \exp\left(-\int_{-\infty}^t \hat{n}_i(t) \, dt\right) \cdot (1 - \exp\left(-\hat{n}_i(t)\right))$$

 If all hit times are selected: signal will be overwhelmed by background

Solution: only select hits in certain time window

Hit Selection Time Window

- Select Hits around expected hit time from given hypothesis
 - Advantage: Very pure selection
 - Drawback: biassed selection
- Solution: Select hits around triggered event

Hit Times

Hit Times

Hit Times w.r.t. direct Cher. light

$$logP(ev \mid x) = \sum_{hit PMTs} \left[log(P_i^{hit}) + log(P_i^{t \, 1st}) \right] + \sum_{non \, hit \, PMTs} \left[log(1 - P_i^{hit}) \right]$$

Hit PMTs

Not hit PMTs

Event Probability: Position

Event Probability: Direction

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$

Probability to detect (=trigger) and select event

 $P(ev_i | x_{true})$

Probability to obtain measured event ev_i **given** a certain neutrino hypothesis x_{true}

How to solve the 8D integral?

 $P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$

- Interaction vertex position (3D)
- Interaction time (1D)
- (Neutrino) Direction (2D)
- Neutrino Energy (1D)
- Bjorken-y (1D)

How to solve the 8D 6D integral?

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

- Interaction vertex position (3)
- Interaction time (1)
 Relatively easy once other params. are given?
- (Neutrino) Direction (2)
- Neutrino Energy (1)

- Analytically?

• Bjorken-y (1)

Difficulties

 Event PDF is in general sharply peaked - ~1 degree (showers), 2.5 ~0.1 degree (tracks) - ~1m (showers) Algorithm generally 1.5 misses this peak integral, true: 4.93614 , numerical: 4.92614 . Error: 0.01 with #points: 10 Each function 0.5 1.5 2 2.5 evaluation takes time 'n

MC Integration Techniques (1)

N times:

- 1) Random x from g(x)
- 2) Random y, 0<y<g(x)
- 3) If y <= f(x) { n++ }</p>

$$I = int f(x) dx = n/N * int g(x) dx$$

- 1) Random x from h(x)
- 2) A += f(x)/h(x)

$$I = int f(x) dx = A/N * int h(x) dx$$

- 1) Random x from h(x)
- 2) A += g(x)/h(x)
- 3) Random y, 0<y<g(x)
- 4) If y <= f(x) { n++ }

 $I = int f(x) dx = n/N^2 * A * int h(x) dx$

- 1) Random x from h(x)
- 2) A += g(x)/h(x)
- 3) Random y, 0<y<g(x)
- 4) If y <= f(x) { if y <= e(x) { n++ } }</p>

 $I = int e(x) dx = n/N^2 * A * int h(x) dx$

- 1) Random x from h(x)
- 2) A += g(x)/h(x)
- 3) Random y, 0<y<g(x)
- 4) If $y \le f(x) \{ \text{ if } y \le e(x) \{ \text{ if } y \le d(x) \{ n++ \} \} \}$

 $I = int d(x) dx = n/N^2 * A * int h(x) dx$

In our case...

 $h(x) \approx g(x)$ g(x) > f(x) for all x

- h(x): some guiding function
- g(x): P(ev | x) over a small subset of PMTs
- f(x): P(ev | x) with slightly more PMTs
- e(x): P(ev | x) over a even more PMTs
- d(x): P(ev | x) with all PMTs

In our case...

 $h(x) \approx g(x)$ g(x) > f(x) for all x

- h(x): some guiding function
- g(x): P(ev | x) over a small subset of PMTs
- f(x): P(ev | x) with slightly more PMTs
- e(x): P(ev | x) over a even more PMTs
- d(x): P(ev | x) with all PMTs

N times:

- 1) Random x from h(x)
- 2) A += g(x)/h(x)
- 3) Random y, 0<y<g(x)
- 4) If $y \le f(x) \{ \text{ if } y \le e(x) \{ \text{ if } y \le d(x) \{ n++ \} \} \}$

 $I = int d(x) dx = n/N^2 * A * int h(x) dx$

Guiding function

- Convenient choice: multivariate normal distribution
 - tracks: JPrefit PDF
 - Showers: ????

Guiding function

- Convenient choice: multivariate normal distribution
 - tracks: JPrefit PDF
 - Showers: ????

MASTER THESIS_

Reconstruction of High-energy Neutrino-induced Particle Showers in KM3NeT.

__BY__

www.nikhef.nl/~kmelis/Masters_Thesis.pdf/Thesis.pdf

Shower Vertex PDF

• Basically a Chi² distribution

– Very sensitive to outliers (i.e. ⁴⁰K hits)

- Use first triggered hit on each DOM
- Hit clustering algorithm:
 - If many hits: iteratively remove worst hit
 - If #hits <=16: Try all combinations</p>

Shower Vertex PDF

X [m]

Bonus: Shower Position Reconstruction

- Reasonable resolution:
 median ~1m efficient
- Principle (cluster+ chi²) usable for tau double bang prefit?

distance true <-> best fit shower position [m]

Conclusions

• Most ingredients seem

- Neutrino background and signal fluxes
- Detection efficiency tables
- Event probability
- Integral evaluation seems feasible with MC techniques

- Shower prefit (+tau double bang prefit?)
- Very fast neutrino MC simulator

Integrating over time

Integrating over time

Hypothesis Testing

- Two hypotheses:
 - H0: background flux only
 - H1: background + signal flux

Criterium when to select H1
– P(accept H1 | H0 = true) < 0.000.. (5 sigma)

Likelihood ratio

• Best criterium:

 $\lambda = \log\left[P\left(data|H1\right)\right] - \log\left[P\left(data|H0\right)\right]$

Data 'looks like' H1 => high lambda

- Criterium when to select H1
 - Accept H1 if lambda > lambda_{crit}
 - P(accept H1 | H0 = true) < 0.000.. (5 sigma)

Likelihood ratio

• Likelihood ratio:

$$egin{aligned} \lambda &= \log\left[P\left(data|H1
ight)
ight] - \log\left[P\left(data|H0
ight)
ight] \ &\log\left[P\left(data|H
ight)
ight] = -\mu_{tot}(H) + \sum_{events} log\left[\int P(ev_i|x)\cdot P^{det}(x)\cdot \mu^{flux}(x|H)dx
ight] \end{aligned}$$

- $-\mu_{tot}(H)$ Total number of expected detected events from H
- $P(ev_i|x) \qquad \begin{array}{l} \text{Probability to obtain measured event } ev_i \\ \textbf{given} \text{ a certain (8D) neutrino hypothesis x} \end{array}$
- $P^{det}(x)$ Probability to detect (=trigger) and select event
- $\mu^{flux}(x|H)$ Number of expected events from H in our detector (can)

• Neutrino only has energy

Neutrino only has energy

Neutrino only has energy

- Neutrino only has energy
- Event only measures number of hits

Example (1D)

- Neutrino only has energy
- Event only measures number of hits

$$egin{aligned} \lambda &= \log\left[P\left(data|bck+sig
ight)
ight] - \log\left[P\left(data|bck
ight)
ight] \ &= -\mu_{tot}(sig) + \sum_{events} \log\left[1 + rac{\int P(ev_i|x) \cdot P^{det}(x) \cdot \mu^{flux}(x|sig)dx}{\int P(ev_i|x) \cdot P^{det}(x) \cdot \mu^{flux}(x|bck)dx}
ight] \end{aligned}$$

 High number of hits => high energy => data looks like H1 => high lambda

Example (1D)

Likelihood ratio

• Best criterium:

 $\lambda = \log\left[P\left(data|H1\right)\right] - \log\left[P\left(data|H0\right)\right]$

Data 'looks like' H1 => high lambda

- Criterium when to select H1
 - Accept H1 if lambda > lambda_{crit}
 - P(accept H1 | H0 = true) < 0.000.. (5 sigma)

lambda_i

(multiple) detected events in certain timeperiod, given H0 is true

(multiple) detected events in certain timeperiod, given H0 is true

- Now: 3D example (energy + direction)
- Soon: 8D example

 Reproduce conventional method and show that new method works (better)

• Replace likelihood terms with real (MC) events

 $\lambda = \log \left[P \left(data | H1 \right) \right] - \log \left[P \left(data | H0 \right) \right]$

$$\log\left[P\left(data|H\right)\right] = -\mu_{tot}(H) + \sum_{events} \log\left[\int P(ev_i|x) \cdot P^{det}(x) \cdot \mu^{flux}(x|H) dx\right]$$

Fast parameterizations

 $\lambda = \log \left[P \left(data | H1 \right) \right] - \log \left[P \left(data | H0 \right) \right]$

$$\log\left[P\left(data|H
ight)
ight]=-\mu_{tot}(H)+\sum_{events}\log\left[\int P(ev_i|x)\cdot P^{det}(x)
ight. \mu^{flux}(x|H)dx
ight]$$

 $\lambda = \log \left[P \left(data | H1 \right) \right] - \log \left[P \left(data | H0 \right) \right]$

$$\log\left[P\left(data|H
ight)
ight]=-\mu_{tot}(H)+\sum_{events}\log\left[\int P(ev_i|x)\cdot P^{det}(x)
ight. \mu^{flux}(x|H)dx
ight]$$

6D interpolation tables

P detected+triggered

Outlook

- Proof of principle
- From toy MC to real MC
- Composite hyptheses
- Atm. muon background

Source Searches

- Observed flux of events
 - Single showers
 - Muon tracks
 - Double bangs
 - Sugar daddy's
- Expected flux
 - H0: atm. neutrinos and atm. muons
 - H1: cosmic source

Expected Flux (Atm. nu bckgr.)

- Neutrino flux @ atmosphere
 - Honda 2006
 - Interpolating 2D tables

Expected Flux (Atm. nu bckgr.)

- Neutrino flux @ atmosphere
- Earth propagation
 - Only CC neutrino absorption included
 - No NC scattering / energy losses (yet?)

- Neutrino flux @ atmosphere
- Earth propagation
- Interaction probability

- Neutrino flux @ atmosphere
- Earth propagation
- Interaction probability
- Shower energy (Bjorken-y)

- Neutrino flux @ atmosphere
- Earth propagation
- Interaction probability
- Shower energy (Bjorken-y)
- Visible shower energy
 - How much energy is observable as light?

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

8D Event likelihood landscapes

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

8D Event likelihood landscapes

 $P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$

- (Neutrino) Direction (2D)
- Interaction vertex position (3D)
- Muon energy (1D)
- Visible shower energy (1D)
- Interaction time (1D)

FD 8D Event likelihood landscapes

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

- (Neutrino) Direction (2D)
- Interaction vertex position (3D)
- Muon energy (1D)
- Visible shower energy (1D)
- Interaction time (1D)

Event Probability

$$P(ev \mid x) = \prod_{hit PMTs} \left[P_i^{hit} \cdot P_i^{t \, 1st} \right] \cdot \prod_{non \, hit \, PMTs} \left[1 - P_i^{hit} \right]$$

Event Probability

$$P(ev \mid x) = \prod_{hit PMTs} \left[P_i^{hit} \cdot P_i^{t \, 1st} \right] \cdot \prod_{non \, hit \, PMTs} \left[1 - P_i^{hit} \right]$$

$$P_i^{hit} = 1 - \exp\left(-\int_{-\infty}^{\infty} \hat{n}_i(t) \, dt\right)$$

Expected number of photons from 40K and shower/track on PMT i at time t

$$P_i^{t \, 1st} \cdot P_i^{hit} = \exp\left(-\int_{-\infty}^t \hat{n}_i(t) \, dt\right) \cdot (1 - \exp\left(-\hat{n}_i(t)\right))$$
P not hit before t
P hit at t

Time Profiles

* At displaced position

Time Profiles: Difficult ones *

Integration: Peak estimate(s)

• Trajectory known

Expected #photons on each PMT known

- Take hits on 20 PMTs with highest #photons
 20 peak estimates
- Merge overlapping hits (10 ns)

* At displaced position

Integration: Peak estimate(s)*

Integration: Peak estimate(s)

Procedure

- Given trajectory (direction + vertex)
- Fast Energy estimate
 - hit/non-hit info only
 - Define 'interesting' energy grid
- Determine t0 integral abscissae

 For each t0 point: evaluate logL for all energies
- Integrate over t0 for all energies
- Time-integrated energy likelihood landscape

Energy Profile

Energy profile

Energy profile

FD 8D Event likelihood landscapes

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

- (Neutrino) Direction (2D)
- Interaction vertex position (3D)
- Muon energy (1D)
- Visible shower energy (1D)
- Interaction time (1D)

Shower longitudinal position

Shower longitudinal position

Best fit Shower Energy

Backup

Honda extrapolated

arXiv:1311.7048

Knee Correction (Gaisser H3a)

Honda extrapolated

Honda extrapolated + knee correction

T. Gaisser 2012

Prompt: Gauld Flux (2016)

Gauld 2016 extrapolated

Enberg extrapolated

Enberg extrapolated + knee correction

arXiv:1311.7048

Knee Correction (Gaisser H3a)

https://arxiv.org/pdf/hep-ph/0604188.pdf

Neutrino Cross Sections

ANIS, Kowalski 2003 Figure from Colnard 2009 Neutrino Cross Sections

Neutrino Cross Sections

Gaussian Quadrature

Gaussian Quadrature

Gaussian Quadrature

Event Probability: Direction

Kopper Shower Param.

Figure 2.2 Mean Muon (μ) and tau (τ) path lengths and mean cascade lengths for electromagnetic and hadronic cascades in water. Data taken from [35].